802.1X vs VPNs for Edge Access Security

Paul Congdon

Chief Architect ProCurve Networking Business Hewlett Packard Company

HP ProCurve Networking Adaptive EDGE Architecture TM

Solution approaches that focus on security, mobility and convergence independently are inherently insufficient.

Customers need a single network that provides an integrated approach to secure, mobile, converged networks.

What is Edge Access Security?

HP World 2003 Solutions and Technology Conference & Expo

Important considerations

- Authentication
 - How is user identity verified?
- Authorization
 - How is access controlled?
 - How are access rights configured within the network?
- Encryption
 - How is data protected?
 - How are encryption keys distributed and installed?
- Mobility
 - How are security associations maintained while roaming?
- Performance
 - How are application requirements supported?

Two mobile access security approaches

IEEE 802.1X

- Originally designed for wired networks
- Adopted as a standard component to 802.11 wireless solutions
- Modeled after dial-up access security
- A Layer-2 solution
- Embedded in HP ProCurve switches and access points

VPN Gateway solutions

- Originally designed for remote access via the Internet
- A Layer-3 solution
- Key component of the HP ProCurve 700wl Series

IEEE 802.1X

logical topology

Supplicant

• The entity desiring access to the services of the authenticator.

Authenticator

• The entity that requires the entity on the other end of the link to be authenticated

Authentication server

 An entity providing authentication service to the authenticator. Typically a RADIUS server

802.1x port access entity (pae)

 The protocol entity associated with each port. Implements eap over lans (EAPOL)

Radius client and server

• The backend protocol entity supporting authentication, authorization and accounting for network access (rfc 2865)

Extensible authentication protocol (eap)

• A simple encapsulation protocol support numerous authentication methods (rfc 2284)

Today's 802.1X Solution

VPN Gateway

client access pointpateway authentication server

logical topology

Client

• The entity desiring access to the network

Gateway

• The entity that provides access to the internal network

Authentication Server

 An entity providing authentication service to the gateway. Could be RADIUS, LDAP or Kerberos

802.11 Interface

• The wireless interface

Ethernet Interface

• The wired interface

Tunnel Interface

 The interface used to communicate with the internal network via an encrypted tunnel. Can be PPTP, L2TP or IPSec

Today's VPN Gateway Solution

Comparing models

Authentication

802.1X with WEP

- May use any EAP method
- Certain EAP methods provide mutual authentication (e.g EAP-TLS, EAP-TTLS, PEAP)
- Access points themselves are RADIUS clients
- No supplicant configuration needed to locate authenticator

- VPN Gateway
- Many choices based upon VPN client software. Typically RADIUS with MS-CHAP or IKE for IPSec
- Access points are unprotected and simple
- Gateway contains authentication client software
- Client software configuration required

Authorization

802.1X with WEP

- Authorization parameters are returned to the authenticator via Radius attributes
- Dynamic VLAN assignment
- Dynamic Key installation
- Other non-standard attributes are possible (bandwidth limits, access control lists, etc)

VPN Gateway

- Authorization parameters (aka access rights) are returned to the gateway by a control server software
- Typically very flexible policy based management and authorization

Encryption

802.1X with WEP

VPN Gateway

- Uses native 802.11 encryption schemes (WEP, TKIP, AES)
- Encryption is performed by WLAN hardware and access point
- Only wireless frames are protected
- Layer-2 scheme

- Numerous VPN encryption schemes are supported (DES, 3DES, Blowfish, etc)
- Host software performs encryption operations
- Frames are encrypted on all links between the host and the gateway
- Layer-3 scheme

Mobility

802.1X with WEP

- Today security associations must be re-established
- Future schemes involve preauthentication

VPN Gateway

- Intra-gateway roaming is easy
- Inter-gateway roaming uses tunneling

HP World 2003 Solutions and Technology Conference & Expo

Performance

802.1X with WEP

- Encryption performed in hardware on the WLAN interface card
- Access control at the very edge of the network
- Performance bounded by wireless link (54 Mbps)

VPN Gateway

- Encryption performed in software
- Access control within the network at aggregation points
- Performance limited by architecture of gateway (software ~= 30 Mbps, accelerator ~= 400 Mbps)

Usage Considerations

- Client and deployment considerations
 - VPN clients are abundant and free
 - 802.1X supplicant OS support is growing but not complete
- Performance considerations
 - PDAs and low-end devices may have trouble with VPN software
 - 802.1X authenticators are at the very edge of the network
 - VPN gateways typically inspect every packet in software
- Cost considerations
 - VPN gateways are an additional device in the network
 - 802.1X components are typically included

More Usage Considerations

- Policy considerations
 - Today, 802.1X configures VLANs and installs WEP keys
 - VPN gateways provide extensive rights management
- Mobility considerations
 - Today, hand-off with 802.1X requires re-authentication
 - VPN gateway tunnels may span multiple access points and sub-networks
- Protocol considerations
 - 802.1X is a Layer-2 solution
 - VPN gateways are a Layer-3 solution and require IP
 - VPN gateways must replicate protected multicast traffic for each client
 - Wireless QoS has no effect on VPN traffic

802.1X Solutions from HP

Desktops, Notebooks, PDAs

Microsoft Windows XP SupportIntegrated wireless adapters

secured edge Printers

•HP 680x 802.11b print server

Ethernet Switches •HP ProCurve Switches (25xx, 26xx, 41xx, 53xx, 93xx)

Access Points •HP ProCurve 520wl

AAA Servers

•HP-UX AAA Radius Server•Microsoft Win2K Server Support

HP ProCurve 700wl Secure Access Series

A Complete Wireless Mobility Solution

HP ProCurve Access Controller 720wl

HP ProCurve Access Control Server 740wl

HP ProCurve Integrated Access

Manager 760wl

HP ProCurve Access Controller 720wl

- Enforces user access rights at the edge of the network
- Secures wireless traffic between users and the network
- Manages application persistence as users roam between APs or across subnets
- HP ProCurve Access Control Server 740wl
 - Consolidates user configuration and policy management
 - Maintains and reassigns user access rights based on location or time of day
- HP ProCurve Integrated Access Manager

760wl

- Policy management, enforcement, security and roaming all-in-one solution
- Ideal for smaller wireless LAN or branch office deployments
- A Complete family of accessories

Interex, Encompass and HP bring you a powerful new HP World.

