
OpenVMS/RMS
Indexed File Tuning

and the Million Dollar Bit

Hein van den Heuvel
Performance Engineer

HP, Enterprise Solutions Partners

page 2

Introduction and overview

This presentation is based on, and much similar to,
earlier Decus and CETS submissions (similar slides)
The focus shifts to one specific tuning/design issue
which has proven to have tremendous performance
impact: Duplicate Key Chains.
This presentation consists of:
– General performance remarks
– Picture of an indexed file on disk structure
– Detailed tuning points including Duplicate Key Chains
– Nice to knows (not presented)
– File patching (not presented)

page 3

The Million Dollar bit

The title is of course a bit of a teaser, but really for more
than one customer a single bit set incorrectly has cost
them more then a million dollars in oversized servers
and lost production.
The bit is called XAB$V_NUL and instructs RMS not to
bother to maintain the index structure for one particular
key value.
Maintaining excessive duplicate keys (millions of
duplicates for a single key value) can cost thousands of
READ IOs causing a single record insert to take
minutes instead of being a sub-second operation.
See also OpenVMS Technical Journal V2 (July 2003)

http://h71000.www7.hp.com/openvms/journal/index.html

page 4

Get some, any, RMS training.

If this was a ‘Real’ Database application (Oracle /
SQLserver / MySQL), would you not have had:
– a dedicated DB administrator
– a handfull of specialized DB designers/programmers?
– Invested in weeks (years?) of training
– Hired mostly experienced database personel?

RMS may be for free, but is still needs some TLC!
– How much have you invested in RMS experience?
– Used formal training? (HP, Bruden, Parsec)
– Allow a engineer to build hands-on experience?

RMS Tuning, Hein van den Heuvel page 517-Nov-03

Anatomy of an Indexed File

Prologue
Key 0
Primary

Key 1
Alternate

2
Root
6 *

Index
2 6

Index
*

Data
1 2

Data
3 6

Data
7

Root
Smith *

Index
Jones Smith

SIDR
Bell Jones

SID
Sla..

Down Down keyDown
Down index

Next

Down
Next

Next

ANALYZE/RMS/INT

Areas

1

0

RMS Tuning, Hein van den Heuvel page 617-Nov-03

Design For Performance,
Work with the numbers.

RMS does (unfortunately) no magic (no optimizer)
All RMS activity is rather predictable
Calculate/predict IO resource needs
Instrument application
– Display records or work-units processed for batch.
– SYS$GETJPI / LIB$SHOW_TIMER
– SET FILE /STATISTICS followed by

• MONITOR RMS /ITEM=CACH …
• RMS_STATS & RMS_TUNE_CHECK tools on VMS Freeware

– SHOW PROCESS/ ACCOUNTING
– Compare Expected and Actual measurements

http://h71000.www7.hp.com/freeware/freeware50/rms_tools/

RMS Tuning, Hein van den Heuvel page 717-Nov-03

Production Systems

Regular Converts for indexed files
– Daily / Weekly / Monthly / Yearly based on usage
– Combats both Internal and External fragmentation
– Opportunity to tune
– Delivers basic statistics: record count
– Implied backup
– Implied sanity check
– Corruption might not yet show in production

RMS Tuning, Hein van den Heuvel page 817-Nov-03

Production Systems

Periodic Analyze / Optimize
• Index root level(s) still as planned ?
• Bucket size still adequate ?
• Number of (global) buffers still adequate ?
• File size still as planned ?

Standard tools
• $ANALYZE/RMS $MONITOR…
• $EDIT/FDL/NOINTERACTIVE
• $DIRECTORY/FULL

RMS Tuning, Hein van den Heuvel page 917-Nov-03

Performance still bad ?

Is there a bottleneck ?
– CPU : $MONI MODE

INTERRUPT = Devices and cluster locks
MPSYNC = Kernel access serialization (locks?)
KERNEL = Locks and QIO and logical names
EXECUTIVE = RMS (or ORACLE or…)
USER = real work!

– IO : $MONI DISK, IO, PROC/TOPDIO
Watch out for MONI DISK/TOPQ because serial reads
will NOT cause a queue and yet still be an IO problem!

– LOCKS: $MONI LOCK, DLOCK

RMS Tuning, Hein van den Heuvel page 1017-Nov-03

Performance still bad ?

No IO problem, No CPU problem, and still No
Performance? Probably Serialization!
Basic application understanding

• “Master record with ‘next key’ value”
• mailbox to go through?

Hot files
• DECps / Advise (Now C.A. previously VPA)
• Viewpoint (Datametric)
• DLB dynamic load balancer (TTI)

RMS Tuning, Hein van den Heuvel page 1117-Nov-03

: … Just Do It!: … Just Do It!RMS Tuning

RMS Tuning can be as EASY as
– $set rms/system/indexed/buffer=20
– $set rms/system/extend=2000
– $set rms/system/sequent/buffer=4/block=32
– $set file /global_buffer=50 *.DAT

RMS Tuning, Hein van den Heuvel page 1217-Nov-03

RMS Tuning: Just Do It

The 80/20 rule applies
• A little tuning can help a whole lot
• Ideal tuning requires a whole lot

Just get it roughly right and your end-users will love
you for it

RMS Tuning, Hein van den Heuvel page 1317-Nov-03

Code does not break

Many performance options are transparent
Some require quota / resource adjustment

RMS Tuning, Hein van den Heuvel page 1417-Nov-03

Code does not break

Parameter Transparent? Adjustment
Number of Buffers Yes ENQLM

Size of buckets Yes WSQUOTA

File Extend Quantity Yes Clustersize?

File/Area Placement Yes Spindles

Global Buffers Yes GBLPAGFIL,
GBLPAGES,…

RMS Tuning, Hein van den Heuvel page 1517-Nov-03

What to look for ?
(Details on next slides)

Bucket Size
Number of Local and Global Buffers
Duplicate Alternate Key Chains (SIDR)
Number of Index Levels (depth)
Allocation and Extend Sizes
Placement in Space and Time
Bucket splits
Compression
Deleted key ranges

RMS Tuning, Hein van den Heuvel page 1617-Nov-03

What is a Bucket anyway?

Unit of transfer to IO device
NOT directly dependent on CLUSTERSIZE
FINE Tuning with clustersize helps

Contains Data or Index records
Records can NOT cross bucket boundaries
If records do not fit, a BUCKETSPLIT occurs

Different sizes for different usage in file
Data / Level-1 Index / Rest-of-Index / Alternate keys
RMS memory buffers size = largest bucket size in file

Bucket Size is a Permanent file attribute

RMS Tuning, Hein van den Heuvel page 1717-Nov-03

Bucket Size Cheat Sheet

Bucket Size SMALL MEDIUM BIG

Size (Blocks) 1 - 6 6 - 24 24+

Size (Records) 1 - 10 10 - 300 300+

Index Levels 4+ 2 or 3 1 or 2

CPU time 0 ms 0.1 ms 0.5 ms

RMS Tuning, Hein van den Heuvel page 1817-Nov-03

Bucket Size Cheat Sheet

Bucket Size SMALL MEDIUM BIG

IO Transfer time
@ 5 MB/Sec

 0 ms 1 – 2 ms 3+ ms

Working Set Minimal Low Impact Add Pages

Contention Low Medium High

Disasters Low risk
Low impact

Low risk Higher risk
Big impact

RMS Tuning, Hein van den Heuvel page 1917-Nov-03

What about buffers

A buffer is a chunk of RMS maintained memory to
read a bucket (or to write from)
PUTs and UPDATEs need many buffers if multiple
keys are in use
Indexed file Sequential GETs need only 1 buffer
Keyed GETs need 1 for each index level plus one
for data (and perhaps for RRV)

RMS Tuning, Hein van den Heuvel page 2017-Nov-03

What about LOCAL buffers?

RMS was frugal : just 2 buffers! (pre 5.4) now
‘deepest index + 2’ is the default
Set on CONNECT time (HLL OPEN call)
Defaults can be set for at process and system level
through $SET RMS /BUF…

• but they apply to every file opened!
Local buffer max = 254 through RAB
Specify up to 32K buffers through XABitm

RMS Tuning, Hein van den Heuvel page 2117-Nov-03

What about GLOBAL Buffers?

GLOBAL BUFFERS REALLY WORK
Share buffers by all accessors on a node
Efficient in clusters (no change broadcasts)
Expect to SAVE Memory.

» Sure, they use memory, but with many concurrent
users they often save memory by requiring fewer
local buffers per user (100 is less than 30 times 6)

Great to cache (all) index buckets
» Primary and Alternate indexes alike

GLOBAL BUFFERS REALLY WORK

RMS Tuning, Hein van den Heuvel page 2217-Nov-03

What about GLOBAL Buffers

Great for read and write accessed files
• PUTs first need to read, to know where to write.
• Can write from global cache, avoiding next read

Gotchas:
• Up to VMS 7.2 (patch kit for 7.1) a per node serial

sequential scan was used to locate buckets under
protection of an exclusive, local, lock.

SHOW PROC/RMS=GBHSH (VMS 7.2+)SHOW PROC/RMS=GBHSH (VMS 7.2+)
• Needs LOCKs to work, thus needs shared access
• ‘Deferred Write’ option forces a local buffer copy
• Not used for DCL opened (process permanent) files
• Sequential readers may trash cache (bad citizens)

RMS Tuning, Hein van den Heuvel page 2317-Nov-03

How many GLOBAL Buffers

‘None’ is the only wrong answer.
RMS Limit is 32K, Practical 200 - 2000 ?
42? One for each user?
Cache (top of) index and then some?
Goal is 80 - 99% hit rate.
– But really the goal is an acceptable IO rate.
– 99% hit rate on 5000 accesses/second is still 50 IO/second
– 90% hit rate on 50 accesses/second is only 5 IO/second

Treat as memory budget
• You have xxxx pages in the bank to start with.
• spent pages wisely, don’t spend all in one place.

RMS Tuning, Hein van den Heuvel page 2417-Nov-03

Duplicate Chains,
Overview.

RMS stores duplicates as 7 byte RRV pointers in
Secondary Index Data Records (SIDR)
If SIDR is larger then Bucket Size a new Bucket is
allocated
RMS maintains duplicates in arrival order
– This is deliberate documented behavior which some

applications count on.
– Last record added with key value ‘Request’ should

become last entry in last SIDR with key ‘Request’
New inserts must first find the end of target SIDR
chain potentially requiring many read IOs

RMS Tuning, Hein van den Heuvel page 2517-Nov-03

Duplicate Chains,
Picture.

SIDR Index (=root)
“Done”,”*”

Prologue Key 2
Alternate

Active[1,2],
Done[1,2,3]

Done[6,7,8,9,
10…99]

Done[100,
101,…190]

Done[…]
Request[1,2,3]

No more Index Entry !

Sidr Data (100/bucket)

13Request

4200+Done

12Active

BucketsSIDRsKey

SIDR
Buckets

RRV’s pointing to User Data Record.

RMS Tuning, Hein van den Heuvel page 2617-Nov-03

Duplicate Chains,
Detection methods.

Problems often seen on SHORT Alternate Keys
• Equally possible on primary keys, but those are more

often then not made unique or almost unique.

High READ IO rate for an application that is
supposed to be mostly writing.
Very high XFC or IO-controller Cache Hit Rate.
ANALYZE/RMS/FDL <your-file.idx>
RMS_TUNE_CHECK tool on VMS Freeware

• Used to be called ‘sidr’.
• Suggestion: check .txt help file, and try –m argument

http://h71000.www7.hp.com/freeware/freeware50/rms_tools/

RMS Tuning, Hein van den Heuvel page 2717-Nov-03

Duplicate Chains,
Detection example 1 of 2.

ANALYZE/RMS/FDL/OUT=SYS$OUTPUT X.IDX

– Bucket size was 16
– Therefore… 1968/16 = 123 SIDR buckets.
– Just 9 index entries: 112 buckets with duplicates!
– And… maximum SIDR size = 1168 entries

(16*512 – 15 – compressed-key-size) / 7

ANALYSIS_OF_KEY 2ANALYSIS_OF_KEY 2
::
DATA_SPACE_OCCUPIEDDATA_SPACE_OCCUPIED 19681968
DUPLICATES_PER_SIDRDUPLICATES_PER_SIDR 969969
LEVEL1_RECORD_COUNTLEVEL1_RECORD_COUNT 9 9

RMS Tuning, Hein van den Heuvel page 2817-Nov-03

Duplicate Chains,
Detection example 2 of 2.

RMS_TUNE_CHECK Y.IDX

– Every new record inserted with key value 0000000000
will require 4000+ read IOs and 1 (or more) Write.

– Most new records will have that key value… how else
did those 1.7 millions duplicates get there?

::
Duplicate count, Buckets, Key valueDuplicate count, Buckets, Key value
--

17597481759748 40454045 000000000 000000000
4646 11 292164044 292164044
2727 11 211941745 211941745
2525 11 211147595 211147595

RMS Tuning, Hein van den Heuvel page 2917-Nov-03

Duplicate Chains,
Solutions 1 of 3.

DROP the Key! Do you really use it?
– Consider SORTING primary data as alternative.
– What is the business value of a query ‘find the first of the 2 million

records without an appointment’. Now. And the next, and the next…
Apply NULL KEY VALUE
– Set ‘the million dollar bit’ : xab$v_nul = 1
– Set ‘null value’ byte xab$b_nul = 32 (for ‘zero’)
– Sample FDL command to set ‘space’ as null key value:

• NULL_KEY yes
• NULL_VALUE 32

– NO index entry made if each byte of the key for the records added
equals the ‘null value’ byte

– NO application code change needed. Just re-convert!
• Restricted use. May need to define application data value.

RMS Tuning, Hein van den Heuvel page 3017-Nov-03

Duplicate Chains,
Solutions 2 of 3.

Increase the Bucket Size (for the alternate key)

– IO Size is not such an important factor in the Cost to do
an IO. It’s the number of IOs that matter.

– RMS Maximum bucket size is 63
– If the current bucket size is 12 or less, then duplicate

key read IO count can be divided by 5 or more.
– Edit FDL file, change bucket size in the AREA for the

key with a problem, and re-convert.

RMS Tuning, Hein van den Heuvel page 3117-Nov-03

Duplicate Chains,
Solutions 3 of 3.

Add (ordered) key segment to ‘de-duplicate’
– Goal is NOT to make each key unique,
– Goal is just to avoid buckets full of duplicates.
– A few (hunderds!) duplicates is just fine (even efficient!)
– Physical data need not be changed, just the key

definition to add a segment (XABW_POSx, XABB_SIZx)
– The new segment will change the sorting order. Ok?
– Sample: change STATE to STATE + ZIP(9)
– Sample: add low bytes from primary as segment to

alternate key to divide average dup count by 100?

RMS Tuning, Hein van den Heuvel page 3217-Nov-03

Index Depth

Each level to traverse may need an IO
Each level requires a (temporary) LOCK
Locking ‘amplified’ with global buffers
Bucket locking is cluster wide
Binary search minimizes lock duration
‘Flat’ files are often best but may cause too much
contentions. Compensate extra levels through more
buffers

RMS Tuning, Hein van den Heuvel page 3317-Nov-03

Index Depth Cheat Sheet
Sample

100,001 records; recordsize =100; keysize =10; overhead included

Bucket size: 1 2 3 20
records per data bucket 4 10 15 102

records per index bucket 49 100 152 1022

level 0 (data) buckets 25001 10001 6667 981

level 1 index buckets 511 101 44 1

level 2 index buckets 11 2 1

level 3 index buckets 1 1

index blocks 523 208 135 20

page 34

Index Depth Excel spread
sheet

Number of Records: 100,001 10 Records per data bucket

Average Record Size 89 92 Keys per index bucket
Key Size 9

 Blocks

Data Bucket Size: 2 10001 Level 0 (data) Buckets 20002

Index Bucket Size 0 109 Level 1 Buckets 218
Data Bucket Fill Percent 100 2 Level 2 Buckets 4
Index Bucket Fill Percent 100 1 Level 3 Buckets 2

Total Allocation: 20,226
Root Level: 3

512 Byte Block size
15 Byte Bucket Overhead
11 Byte Record Overhead
2 Byte Key Pointer Size

• Click on spreadsheet to activate

RMS Tuning, Hein van den Heuvel page 3517-Nov-03

Adequate Extends

High price if done wrong
• Not acceptable to run out of disk space while in production
• Frequent file system (XQP) requests each requiring

several IOs (worse with High Water Marking)
• Fragmentation

One bucket requiring multiple clusters = SPLIT IO
Unwarranted disk head movements

Very easy to do right
• Rely primarily on adequate allocation
• If file needs to grow, allow significant growth

Gotcha: Maximum extend is 65536

RMS Tuning, Hein van den Heuvel page 3617-Nov-03

Compression

DATA and KEY compression is goodness
Save SPACE and save CPU TIME

• Fewer data buckets => fewer IO
• Fewer index keys => fewer index levels
• More effective caches
• Less memory to walk

Remember to verify effectiveness
• FDL has no smarts to detect negative compression

Index compression often discouraged as it prohibits
binary searches in index buckets

RMS Tuning, Hein van den Heuvel page 3717-Nov-03

Deleted key ranges

Deleted records are purged from the data bucket.
• Space can be re-used for records with similar keys.
• deleted ‘ID’ remains gone, allowing alternate key, and

RFA, access to conclude the record was deleted.
• With ‘Fast Delete’ a future alternate key access will

remove the associated alternate key.
• Exception: The last key is never deleted, but left

The Primary key index is never removed.
• Buckets remain ‘reserved’ for key range from index.
• CONVERT/RECLAIM designed to clean up (off-line!)

PROBLEM: ‘GET First Record’ may travers empty
buckets

RMS Tuning, Hein van den Heuvel page 3817-Nov-03

Deleted key ranges (Continued)

Example: “work queue” file with date & time key.
• If work needs to be done, a record is inserted.
• Worker process takes action and deletes record.
• At end of day, no records are left.

If worker falls behind, new records fill up bucket and ‘spill’ into
next bucket. The first bucket wil never be re-used for data,
because keys increase.
Workaround / Solution:
– Maximum bucket size (63) may cache queue longer, adding fewer buckets.

(watch out for RMS AIJ)
– Remember last record processed, used KGE.

• Does NOT have to be exact, just update when crossing bucket
boundary (peek into RFA? Update every 100 records or seconds?)

RMS Tuning, Hein van den Heuvel page 3917-Nov-03

Deleted key ranges (picture)

Index (=root)
00105, 00912, 02518, *

Prologue Key 0
Primary Xab$b_rvb

Xab$b_dvb
Xab$b_lvl = 1

Data (empty)
00085(del)

Data (empty)
00912(del)

Data (empty)
02518(del)

Data (busy!)
04025,04026

RMS Tuning, Hein van den Heuvel page 4017-Nov-03

What about IO

Eliminate it: Caches & Application design
A files place in space and time is critical

• Just because it fits, does not make it the right place.

Spread it out
• Multiple disks per application
• Hardware or software striping
• Bound volume sets (area placement)

Yes, you can bind a Solid State disk with a real disk
• Shadow sets (notably for read intensive)

RMS Tuning, Hein van den Heuvel page 4117-Nov-03

What about IO

Speed it up
• Solid state disks (DECram, EZnn)
• Faster disks (10,000 rpm now available)
• Shorter seeks by reducing area on disk
• Faster area on zoned disks

RZ29 has 16 zones from 67 to 135 sectors per track.
Some 50% of the data lives in 30% of the seek range

• Track read ahead caching
• Writeback caching (notably with battery backup)

RMS Tuning, Hein van den Heuvel page 4217-Nov-03

Bucket Splits

Necessary evil… CONVERT regularly
• RMS keeps records in primary key order
• RMS maintains single pointer from original record file

address (RFA) to actual location after split
Cause by random inserts or updates changing the
effective record size
Try to add records in primary key order
Fill factor used to avoid or ease splits

• leave room for a few records per bucket
• Localized multiple inserts? Split will make room.

page 43

Cluster size

Fine-tuning. Exercise in trading speed for space.
More important with underlying STRIPING
– EDIT/FDL makes buckets too large for large cluster.
– Make CHUNK, CLUSTER and BUCKET SIZE all have nice

factors, notably for small chunks (swxcr).
Chunk=16, Cluster=64 Bucket=8, NOT bucket = 17

– Each AREA = XQP Extend. Will be cluster aligned
– Buckets will not cross into extends

By default the data buckets in the first AREA 0 extend are
unaligned following the file PROLOGUE. Can be fixed by using
area 0 for top index, area 1 for data.

Interex, Encompass and HP bring you a powerful new HP World.

RMS Tuning, Hein van den Heuvel page 4517-Nov-03

Assorted Nice to Knows

Convert starts duplicate chains in their own buckets,
mostly goodness but…
Use normal editor for FDL files
EDIT/FDL/NOINTER takes TWO inputs:
– File design: Defines keys and such. Do not touch.
– Statistics: really only uses 3 inputs!

• Record count: Set to anticipated value
• average record size: Keep from old stats
• cluster size: Set to small ‘nice’ value: 12? 6?

RMS Tuning, Hein van den Heuvel page 4617-Nov-03

Assorted Nice to Knows

Use ANALYZE/SYSTEM to peak at global buffers and
hit & miss counters if no file stats.

• SDA> SHOW PROC/RMS=(GBH,GBDSUM)

Tune system files
• sysuaf, rightslist, mail_profile, mail.mai files,...

RMS Tuning, Hein van den Heuvel page 4717-Nov-03

Assorted Nice to Knows

Use ‘idle’ program to maintain global buffers when
files are not always open. Keep them warm

• Drive with file of files
• Consider touching ‘desirable’ records on startup
• Optionally add check index levels/allocations

Use SHR=NIL to avoid locking
$GET for first record walks index. Cache its RFA in
application?

RMS Tuning, Hein van den Heuvel page 4817-Nov-03

Assorted Nice to Knows

Records are stored in order by Primary key.
• Assume record has name and number as keys
• If frequent sequential or ‘generic’ search by name is

needed and only random access by number then, contrary
to popular believe, name should be primary

If significant portion of the file is read by alternate key
order, then it will often be more efficient to walk entire
file by primary

• With random distribution, each alternate key need an IO to
find right data bucket. By contrast, each primary bucket
read will return several records

Interex, Encompass and HP bring you a powerful new HP World.

RMS Tuning, Hein van den Heuvel page 5017-Nov-03

Patching up broken files

The remainder of this presentation was the main
contents presented at CETS200 in session 705

RMS Tuning, Hein van den Heuvel page 5117-Nov-03

Anatomy of an Indexed File

Prologue
Key 0
Primary

Key 1
Alternate

2
Root
6 *

Index
2 6

Index
*

Data
1 2

Data
3 6

Data
7

Root
Smith *

Index
Jones Smith

SIDR
Bell Jones

SID
Sla..

Down Down keyDown
Down index

Next

Down Next

Next

ANALYZE/RMS/INT

Areas

1

0

page 52

Bucket header
$libr/extr=$BKTdef sys$library:lib.mlb

Offset Type Description
0, x-1 Char Bucket Check Byte
1 Char Index level or Area indicator
2 Word VBN Address Sample (low 16 bits)
4 Word Free Space Offset (end of data)
6 Word Next Record Id (for prologue 3)
8 Long Next Bucket VBN
12 Byte Bucket Level (0 = data)
13 Byte Flags (LAST, ROOT, PointerSize)

page 53

Record header
(Variable, Compression)

$libr/extr=$IRCdef sys$library:lib.mlb

Offset Type Description
0 Byte Control Byte (2=Valid, DEL,RRV)
1 Word Record ID
3 Word RRV ID (original ID)
5 Long RRV VBN (original VBN)
9 Word Record Length
11 Byte Key length as stored here
12 Byte Count of front bytes (previous key)
13 Chars KEY data (variable count)
Data Chars RECORD data (variable count)

RMS Tuning, Hein van den Heuvel page 5417-Nov-03

Excuses for corruption

Hardware failure: Disk, controller, cable.
Partial IO due to Power-failure
stop/id (amplified with deferred write usage)
Software failure
– RMS: NO known problems since 6.0
– Experimental defrag tool?
– Privileged code (write logical block)
– Stupid code: $READ/$WRITE indexed files.
– Experimental data caching tool?

RMS Tuning, Hein van den Heuvel page 5517-Nov-03

Basic PATCH strategy

Use tools to locate problem zone
Goal is to be able to CONVERT the file
Concentrate on DATA buckets only
Concentrate on bringing bulk of file back

• Trade-off between TIME and DATA

Worry about touching up remainder later.
• Use BACKUPs and application reports to reconstruct

any lost records if needed.

RMS Tuning, Hein van den Heuvel page 5617-Nov-03

Basic PATCH Analysis tools

ANALYZE/RMS/INTERACTIVE
• Drill down structure as per first slide.

DUMP
• /BLOCK=(START:x, COUNT:y)
• /RECORD=(START:x, COUNT:y)

SEARCH, DIFF, EDT
• Quick tests for linear read.

DCL: READ/KEY
• Quick test for random access read

RMS Tuning, Hein van den Heuvel page 5717-Nov-03

Basic PATCHing tools

COPY / BACKUP : Work on test file first!
PATCH… on VAX in cluster.

• ‘vested’ Alpha version is floating around

DCL on file in SEQUENTIAL-512 bytes mode
Reading (CONVERT) by alternate key
ZAP
COPY_BLOCK
‘binary’ file editor ‘rms-edt?’
CONVERT… when all is well again.

RMS Tuning, Hein van den Heuvel page 5817-Nov-03

DCL as PATCHing tool

Flip file from indexed to sequential (and back later) in
order to read /write a block at a time.

• set file/att=(org=seq,rfm=fix,mrs=512,lrl=512)
• set file/att=(org=idx,rfm=var,mrs=x,lrl=y)

DCL File and symbol manipulations:
• open/read/write file filename.dat
• key[0,32]=vbn_number !Binary key value
• read/key=&key file record

Use & to postpone symbol substitution, quotes are a problem
• record[x*8,y*8]=z

replace y bytes at offset x by value z
• write/update/symbol file record
• close file

RMS Tuning, Hein van den Heuvel page 5917-Nov-03

ZAP as PATCHing tool

Simple Macro tool to read, update, format, write buckets.
Take your time to study outputs. ‘dense’, but all you need is there.
Uses DBG as GUI

• Define dbg$decw$display “ “
• bucket buffer pointed to by ‘buf’ and R2
DBG> examin/octaword @r2
DBG> deposit/byte @r2=0
DBG> go … back to prompt, format and write.

Text DocumentClick on icon to get source

RMS Tuning, Hein van den Heuvel page 6017-Nov-03

COPY_BLOCK as PATCHing tool

Simple C tool to move a block/bucket between files.

May need to update source to your liking (input VBN).

Can be used to ‘clone’ a good (but old) bucket from a backup

over a broken file bucket.

Adjust checkbytes… if you are so lucky

Text DocumentClick on icon to get source

RMS Tuning, Hein van den Heuvel page 6117-Nov-03

Basic PATCH strategies

‘easy’Adjust check byte
– Loose nothing?!

Patch ‘around’ broken bucket(s)
– Loose a bucket of records

Adjust next free byte value
– Loose a end portion of bucket

Construct deleted record over bad blocks
– Loose a middle portion of bucket

reconstruct bucket header
– Loose nothing? ‘hard’

RMS Tuning, Hein van den Heuvel page 6217-Nov-03

Basic Check byte correction

If somehow the beginning of an updated bucket
was written, but not the end, you may only
have to make the check-bytes match
Needed for most other steps.
Really easy to do.
Easiest to adjust byte-0 to match last one
(even though last one is really the bad one)

Done! ‘if you would only be so lucky’

RMS Tuning, Hein van den Heuvel page 6317-Nov-03

Patch ‘around’ broken
bucket(s)

If the bucket, or a series of buckets really ‘looks
like a mess’ (DUMP), then maybe just give up
on that data.
Fairly easy to do: Quick & dirty
Set next-vbn in bucket before bad zone to
point to first valid bucket after bad zone.
hope that buckets are adjacent.
Verify prior and next bucket VBN with pointers
from the index bucket above it.

RMS Tuning, Hein van den Heuvel page 6417-Nov-03

Adjust next free byte value

The beginning of an updated bucket was
written, but not the end. The free byte points
into the end. The new data abruptly flows into
old data blocks.
Fairly easy patch.
‘Eye-ball’ dump to find good/back boundary.
ANAL/INT/RMS
– POSITION/BUCKET broken-vbn
– NEXT 9999: run into broken record
– BACK : find start of last good record
– Calculate end of last good record.

RMS Tuning, Hein van den Heuvel page 6517-Nov-03

Construct deleted record
over bad blocks

Experts only. A lot of work.

Easy to get RMS to loop if done wrong

Fake all but FLAG (deleted) and SIZE

Fake KEY with data key compression (Tricky!)

Maximum data recovery chance!

RMS Tuning, Hein van den Heuvel page 6617-Nov-03

reconstruct bucket header

If somehow the beginning of a bucket was
overwritten (zeroed out? Text file?)
Al lot of the header data is ‘redundant’

• first check from last
• Since we are only interested in the data level

make level=0, and area=0
• vbn sample from vbn address
• flags = 0 (not last bucket is it?)
• next bucket from index (or adjacent value)

Construct deleted record to span into good
zone.

	OpenVMS/RMSIndexed File Tuning and the Million Dollar Bit
	Introduction and overview
	The Million Dollar bit
	Get some, any, RMS training.
	Anatomy of an Indexed File
	Design For Performance,Work with the numbers.
	Production Systems
	Production Systems
	Performance still bad ?
	Performance still bad ?
	RMS Tuning
	RMS Tuning: Just Do It
	Code does not break
	Code does not break
	What to look for ?(Details on next slides)
	What is a Bucket anyway?
	Bucket Size Cheat Sheet
	Bucket Size Cheat Sheet
	What about buffers
	What about LOCAL buffers?
	What about GLOBAL Buffers?
	What about GLOBAL Buffers
	How many GLOBAL Buffers
	Duplicate Chains,Overview.
	Duplicate Chains,Picture.
	Duplicate Chains,Detection methods.
	Duplicate Chains,Detection example 1 of 2.
	Duplicate Chains,Detection example 2 of 2.
	Duplicate Chains,Solutions 1 of 3.
	Duplicate Chains,Solutions 2 of 3.
	Duplicate Chains,Solutions 3 of 3.
	Index Depth
	Index Depth Cheat Sheet Sample
	Index Depth Excel spread sheet
	Adequate Extends
	Compression
	Deleted key ranges
	Deleted key ranges (Continued)
	Deleted key ranges (picture)
	What about IO
	What about IO
	Bucket Splits
	Cluster size
	Assorted Nice to Knows
	Assorted Nice to Knows
	Assorted Nice to Knows
	Assorted Nice to Knows
	Patching up broken files
	Anatomy of an Indexed File
	Bucket header$libr/extr=$BKTdef sys$library:lib.mlb
	Record header(Variable, Compression)$libr/extr=$IRCdef sys$library:lib.mlb
	Excuses for corruption
	Basic PATCH strategy
	Basic PATCH Analysis tools
	Basic PATCHing tools
	DCL as PATCHing tool
	ZAP as PATCHing tool
	COPY_BLOCK as PATCHing tool
	Basic PATCH strategies
	Basic Check byte correction
	Patch ‘around’ broken bucket(s)
	Adjust next free byte value
	Construct deleted record over bad blocks
	reconstruct bucket header

