Oracle applications in a Split Configuration Environment using HP-UX

Rajesh Krishnaiah Umesh Pathak

Sr. Technical Consultant Hewlett Packard Company

Agenda

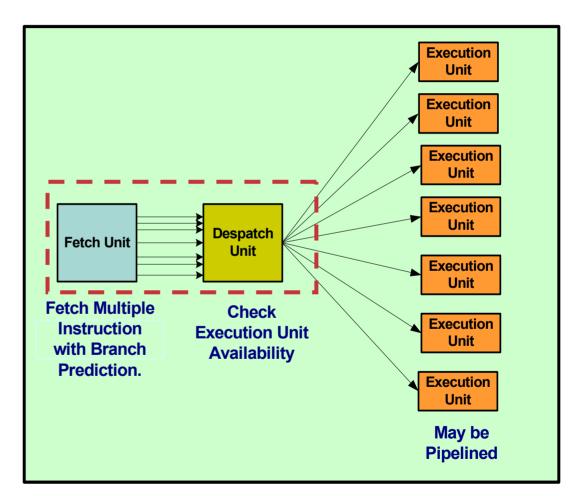
- Introduction
- What is IPF
- Why IPF
- Oracle on IPF
- Split Configuration
- Why Split Configuration
- Oracle E-Business Suite and Split Configuration
- Performance tips
- References
- Q & A

Before we start

- Will talk about
 - database migration option from PA to IPF
 - performance tuning tips
- We assume you already know about:
 - Oracle database/EBS installation & implementation procedures
 - Client server / multi tier architecture
 - Basic HP-UX kernel/Oracle configuration parameters

Itanium Product Family (IPF)

- Originally called "Intel Architecture 64 bit" (IA-64)
- Co-developed by HP and Intel
- Next generation processor
- Based on Explicitly Parallel Instruction Computing (EPIC) architecture
- Features:
 - Predication
 - Speculation
 - Large register set
 - Multiple layers of cache


Itanium Product Family

- Features:
 - Advanced branch architecture
 - Register Stack
 - Avoid saving & restoring registers across function calls
 - Instructions Execute in Parallel
 - More Instructions are Executing
 - Deeper Pipeline
 - Architecture is explicitly parallel

Processor Architecture: EPIC

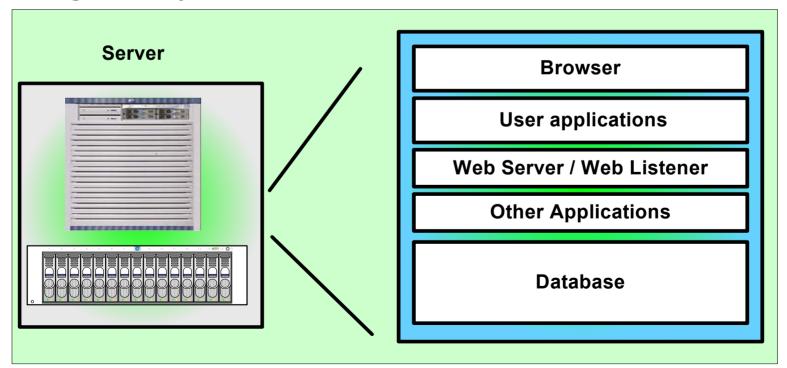
- Explicitly Parallel execution
- Dependency checker shifted to compiler
- Instructions are grouped and bundled
- More chip space for execution units

Why IPF?

- Superior performance
 - Leading benchmark results
- Performance for all applications
- Next generation technology
- Support for a range of H/W platforms (2 to 64 CPU)
- Support for multiple Operating Systems
 - HP-UX, MS Windows, Linux
 - Multiple Operating Systems can concurrently run on different partitions on the same box
- Same version of HP-UX for both PA and IPF in future
- Enhanced manageability and scalability

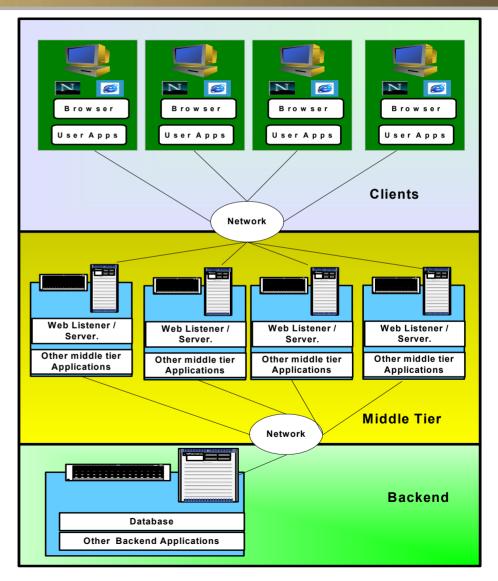
Oracle on HP-UX - IPF

- Fully supported Oracle Database
 - Oracle 9i-R1 database developer release
 - Oracle 9i-R2 database production release with HMP
 - Downloadable from http://otn.oracle.com
- Superior performance on IPF
 - Benchmark results back this up
- Easy migration of Database (from PA to IPF)
 - Traditional export/import/upgrade
 - Just move/copy required data

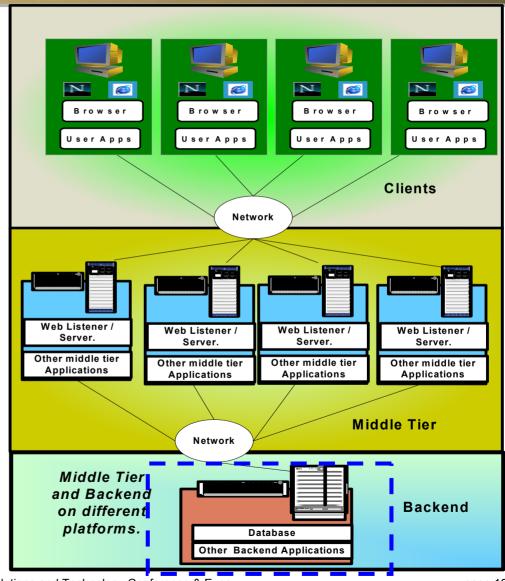

Agenda

- Introduction
- What is IPF
- Why IPF
- Oracle on IPF
- Split Configuration
- Why Split Configuration
- Oracle E-Business Suite and Split Configuration
- Performance tips
- References
- Q & A

Typical single tier environment


- Everything on one system
- Probably easiest and cheapest to implement
- May not provide best performance, flexibility, manageability

Typical multi tier environment


- Applications running on different tiers
- Complex to implement
- Better performance flexibility, manageability ...
- Good for high end complex applications

Typical split configuration

- Applications running on different tiers with different platforms
- Can use most appropriate platform(s) for each tier
- Complex to implement
- Enhanced performance, flexibility, manageability
- Good for high end applications

Agenda

- Introduction
- What is IPF
- Why IPF
- Oracle on IPF
- Split Configuration
- Why Split Configuration
- Oracle E-Business Suite and Split Configuration
- Performance tips
- References
- Q & A

Oracle E-Business Suite (EBS) Overview

- Set of business applications
 - Enable you to manage CRM, HRM, ERP, ...
- Usually various components interact with single database
- Typically implemented in multi-tier environment

E-Business Suite Components

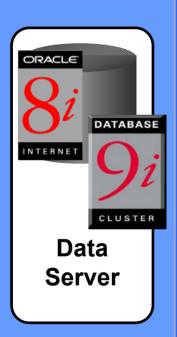
Web Listener

Browser

Jinitiator

User Apps **Servlet Engine**

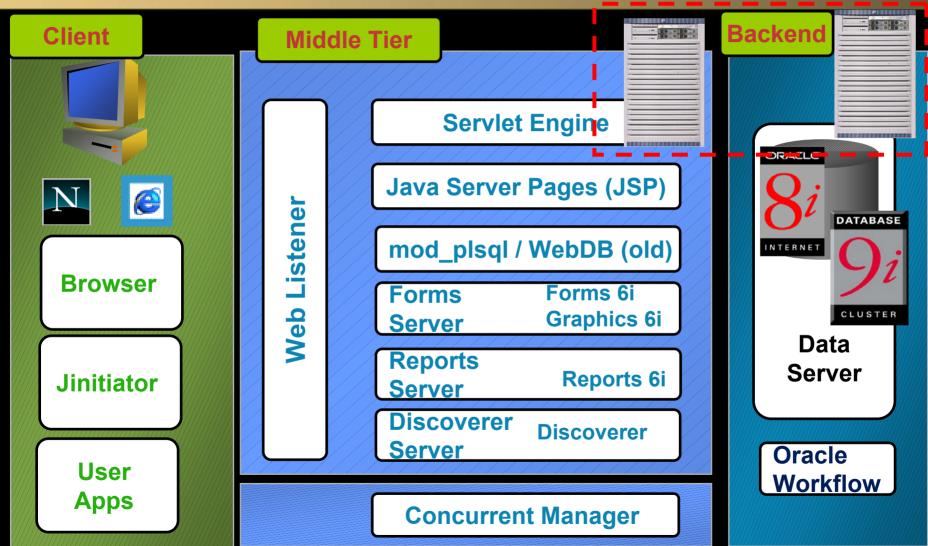
Java Server Pages (JSP)


mod_plsql / WebDB (old)

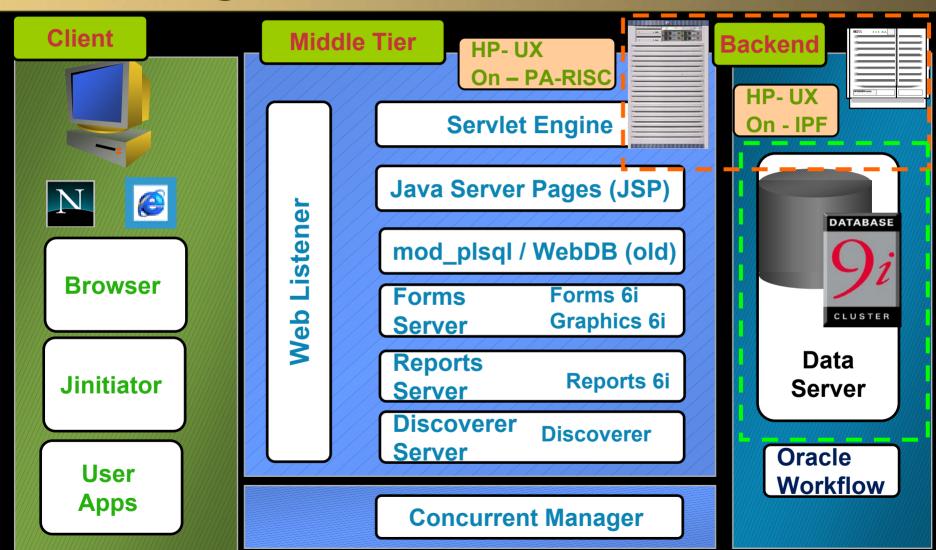
Forms 6i
Server Graphics 6i

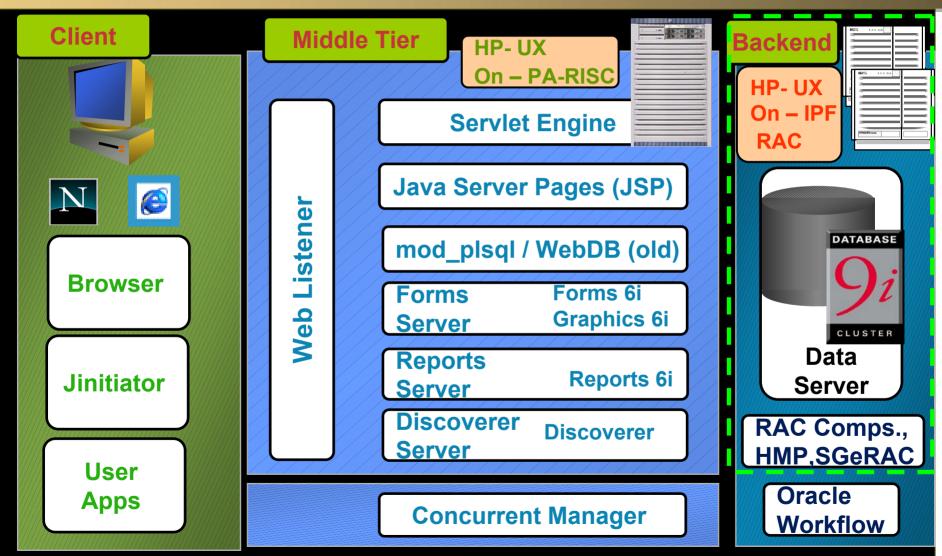
Reports 6i
Server

Discoverer Discoverer Server


Concurrent Manager

Oracle Workflow


E-Business Suite Implemantation


E-Business Suite in Split Configent env. using IPF (Single Instance DB)

E-Business Suite in Split Config env. using IPF (RAC)

How to implement?

- Broadly two categories
 - 1. New Implementation
 - 2. Migration
 - Expansion
 - More power, capacity, flexibility

New implementation (Database tier)

- Setup
 - H/Ws (HP-UX Server(s)) for database
 - Network
 - Storage
 - Database Server(s) IPF
 - Install HP-UX for IPF and required S/Ws
 - Configure Kernel
 - Install and configure RAC components (if needed)
- Install database S/W (Version 9i-R2)
- Configure database
 - Configuration files (.ora, listener etc.)
 - Data files, log files, table space etc.
- Create database

New implementation (Middle Tier/Client)

Setup

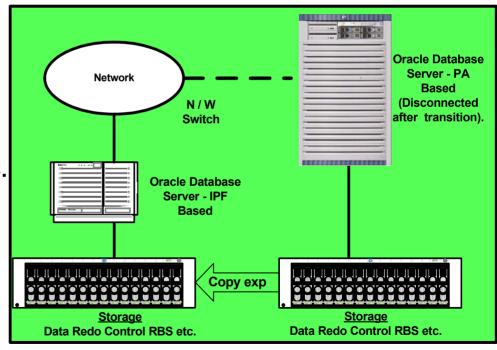
- H/Ws (HP-UX Server(s)) for apps
- Network
- Storage
- Middle-tier Server(s) PA-RISC
 - Install HP-UX for PA and required S/Ws
 - Configure Kernel

EBS

- Install
- Configure EBS configuration files including tns etc.
- Client system
 - Install needed software
 - Configure appropriately
- Ready to fly

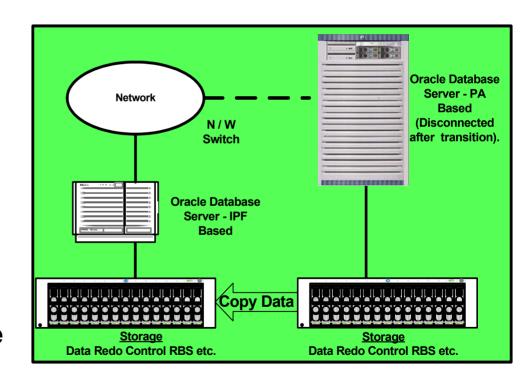
Migration

- Setup
 - H/Ws (HP-UX IPF server(s)) for database
 - Network
 - Setup Database Server(s) IPF
 - Install HP-UX for IPF and required S/Ws
 - Configure Kernel
 - Install and configure RAC components (if needed)
- Install database S/W (Version 9i-R2)
- Configure configuration files (.ora, listener etc.)
- Migrate Database from existing HP-UX PA-RISC system to new HP-UX IPF system
- Remove old PA-RISC database server from the environment
- Move IP address / hostname to new IPF system or change tns configuration on middle tier appropriately

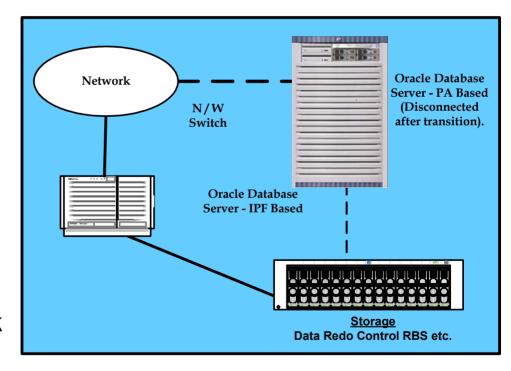

Migration

- Database migration
 - Traditional Export/Import/Upgrade
 - Copy all Oracle data (data, log, RBS, Undo, control etc.)
 - Move storage (Suggested)
- Starting out:
 - Install Oracle database (9.2) S/W on IPF system
 - Shutdown and backup database on PA-RISC system
 - Upgrade PA database to version 9.2 (if needed)

Database migration (Export/Import)


- Export the database on PA system
- Create required file systems/raw partitions on IPF system
- Copy export files from PA system to IPF system
- Import the database to IPF system
- Configure database, listener etc.
- Remove old server from the environment
- Bring IPF server into the environment
- Need extra Storage
- Time consuming

Database migration (Copy database)


- Create required file systems/raw partitions on IPF system
- Copy old database from PA system to IPF system (can use tar, cpio, rcp etc.)
- Setup & configure database, listener etc. on IPF system
- Remove old server from the environment
- Bring IPF server into the environment
- No performance impact
- Need extra storage and more time

Database migration (Move database - suggested)

- Move storage from PA system to IPF system
- Import required Volume group(s) (file systems/raw partitions) from PA system to IPF system
- Setup & configure database listener etc. on IPF system
- Remove old server from the environment
- Bring IPF server into the environment
- No extra storage / Very quick
- No performance impact

Database migration Other options

- In case don't want to first upgrade database (8.1.7) to 9.2 on PA-RISC
 - Shutdown and backup database (8.1.7) on PA-RISC system
 - Move storage or copy database (data, log, redo control etc) from PA system to IPF system
 - Follow the the steps to upgrade 8.1.7 to 9.2
 - Configure database, listener etc. on IPF system
- For detailed database migration options and steps please refer –
 - Oracle 9.2 release notes and Oracle 9i Database
 Migration Release 2 (9.2)
 - Migration white paper

Why split configuration

- IPF gives better performance
- No need to upgrade everything at the same time
 - Can expand gradually
 - Measure, assess and grow
- You can utilize your existing H/W
 - Example: Existing PA database server can be utilized in the middle tier
- Any tier can have mix of PA and IPF in future

What has been done?

- HP and Oracle worked together to ensure migration works smoothly:
 - http://otn.oracle.com/tech/hp/PA-RISC_to_Itanium_wp.pdf
- We have used the migration methods (Move/Copy the storage) internally for various benchmarks
- We have used same technique (migration/split config.) for our OASB benchmark
 - http://www.oracle.com/apps_benchmark/html/index.html?0325A_Report1.html
- HP and Oracle have worked together and certified "Split Configuration" architecture
- Easy upgrade from PA-RISC to IPF
- Compatibility between PA-RISC and IPF
 - Source Code
 - Binary through dynamic code translation technology (Aries)

What has been done?

- Inbox upgrade
- Broad portfolio of ISV applications supported
- Support for various development tools

- cursor_space_for_time
 - It's possible to significantly decrease Oracle's shadow memory footprint by setting this parameter to FALSE without paying a significant penalty in CPU utilization
- hpux_sched_noage
 - Sets the priority of the Oracle processes to a fixed value
 - Avoids priority inversion penalty
 - For example, Oracle processes that are holding a latch will not be preempted, meaning fewer latch waits and sleeps

- java_pool_size
 - Allocates space in the SGA for services parsing requirements of Java commands
 - Set it to 0 for certain applications, where Oracle RDBMS is not required to process any Java statements
 - When this parameter is set to zero, Oracle allocates only a very small amount of memory for the Java pool
 - NOTE: You should not set this parameter to zero if you are using any of the Java based modules

- session_cached_cursors
 - Lets you specify the number of session cursors per Oracle shadow process
 - Repeated parse calls of the same SQL statement cause the session cursor for that statement to be moved into the session cursor cache
 - Because each cursor requires some SGA space, keeping this value low reduces the overall memory requirements

- shared_pool_size
 - The part of the SGA that contains the data dictionary cache and library cache among many other things. This could be the largest part of the SGA.
- shared_pool_reserved_size
 - Reserves a portion of the shared SQL pool for large SQL statements.
 - typically set to 10% of the shared_pool_size.

Performance tuning

- timed_statistics
 - Specifies whether to collect statistics related to time
 - Setting this to FALSE lets Oracle avoid the overhead of additional system calls
 - If not set value of all time related statistics are set to zero
 - Now Oracle uses light weight system call on HP-UX
- Shared library permissions
 - Shared libraries does not need to have write permission
 - Write permission on shared lib could impact performance

Performance tuning

- Data page size of oracle binary can be adjusted to balance CPU and memory utilization
 - Larger data page size
 - more memory
 - less CPU
 - To check the data page setting
 - \$ /usr/bin/chatr \$ORACLE_HOME/bin/oracle.
 - To set the data page size (e.g. 1M)
 - \$ /usr/bin/chatr +pd 1M \$ORACLE_HOME/bin/oracle
 - [NOTE: +pd <size> is the requested virtual memory data page size .]

Performance tuning (Key kernel parameters)

- shmmax
 - Should be big enough to hold complete SGA
- maxdsiz
 - Per process memory limit
 - Applicable for 32 bit applications
 - More than 1 GB may not be of any use
- maxssiz
 - Should be adjusted appropriately (roughly 128 MB)
 - This and maxdsiz should be adjusted together

Performance tuning (Key kernel parameters)

- maxdsiz_64bit
 - Per process memory limit for 64 bit application
 - Need to set big enough
 - Typically 2 to 4 GB is fine.
- maxssiz_64bit
 - Per process stack size for 64 bit application
 - Typically 1 GB is fine

References

- Migration white paper and other topics
 - http://otn.oracle.com/tech/hp/content.html
- HP-Oracle alliance site (other white papers etc.)
 - http://oracle.hp.com
- Information about IPF and development tools
 - http://www.hp.com/go/itanium
 - http://h21007.www2.hp.com/dspp
- Intel Itanium
 - http://www.intel.com/products/server/processors/server/itanium2/index.htm?iid=ipp_srvr_proc+high1_080702&

References

- Oracle 9i
 - http://otn.oracle.com/software/products/oracle9i/content.ht
 ml
- EBS
 - http://www.oracle.com/applications/index.html
- EBS Benchmark (Split Configuration)
 - http://www.oracle.com/apps_benchmark/html/index.html?0318A Report1.html

Thanks.

Rajesh Krishnaiah

(rajesh.krishnaiah@hp.com)

Umesh Pathak

(umesh.pathak@hp.com)

