

Interconnects

Session 2490

Richard Kaufmann High Performance Technical Computing Division

Many slides thanks to M. Krause, M. Levine, M. Maclaren, D. Roweth

HP WORLD 2003 Solutions and Technology Conference & Expo

Disclaimer

- This is a public talk.
- Some of the slides describe the interconnects in our standard product offerings.
- Other slides speculate about the technologies that may become popular in the industry as a whole. They don't represent plans or commitments from HP.

What I'll Talk About...

- System Interfaces
- System to System Interconnects
 - LAN
 - Commercial Clusters
 - Supercomputing

Network NICs drive Server Bandwidth

- System I/O interfaces have to keep up with the demands of the various interconnects
- We're currently at 250 1,000 MB/s per adapter
 - PCI 64/33 & 66 (ubiquitous adapter availability)
 - PCI-X 133MHz (many adapters available)
- Major change in the next few years
 - Bus → Point-to-Point or Switched Fabric
 - Bandwidth scaling to multi GB/s

PCI / PCI-X

- Technology Focus:
 - Nearly everything uses PCI in some form
 - · Servers, storage, desktop, mobile, etc.
 - Variable link widths and signaling
 - 33-133 MHz / wire half-duplex
 - Link widths: 32x, 64x, 128x, 256x
 128 & 256 are logical for new DDR / QDR
 - Primary deployment within chassis
 - Chip-to-chip and Adapter boards
 - Topologies: point-to-point, shared bus
 - Synchronous communication paradigm
 - Software compatibility
 - Ubiquitous deployment, most interop problems resolved
 - No standard I/O or IPC off-load capability
 - PCI-X products available this year
 - PCI-X 2.0 (2-4 GB/s) Very Soon
 - Product launches in 2004-5-...

HP WORLD 2003 Solutions and Technology Conference & Expo

PCI Express Overview

Technology Focus

- PCI Replacement for Desktop, Mobile, Server
- Variable Link Widths and Signaling
 - Initially 2.5 Gbps per wire full-duplex
 - Link widths: 1x, 2x, 4x, 8x, 12x, 16x, 32x
- Primary deployment within chassis
- Short distance copper cabling TBD
- Topologies: point-to-point, switched
 - Synchronous communication
- Bridge chips to PCI / InfiniBand
- Software Compatibility
 - New BIOS
 - Backward Compatible to PCI / Graphics Application Paradigm No standard I/O or IPC Protocol Off-load
- Products 2004-2007
 - First seen as an AGP replacement

LAN

- Ethernet: 10BaseT → 100BaseT → GigE → 10GigE → 40GigE
- Ubiquitous & completely standard
- Designed to perform in a hostile environment
- 50 300 usecs latency
 - Effort to reduce this to O(10usecs)
- As a given speed becomes predominant, cost goes into the noise.

Commercial Clusters

- Various Proprietary Interconnects, plus...
 - InfiniBand: Available now, but at reduced expectations
 - Competent clustering interconnect
 - Good performance for MPI (7usecs)
 - NOT going to take over the world
- Optimized for a machine room
- 5 20 usecs latency
- Various levels of aspiration to integrate WAN & Storage fabrics

Low to moderate cost (2% to 10% of system cost?)

HP WORLD 2003 Solutions and Technology Conference & Expo

Pressure...

- The commercial interconnects have to differentiate themselves from Ethernet
 - Ethernet is crawling up quickly (if only to handle the increased bandwidth!)
 - RDMA: O/S bypass protocol
 - iSCSI: Integration of storage fabric into LAN
 - Attention paid to latency in NICs, switches
- And the supercomputing interconnects have to defend themselves against the commercial interconnects:
 - O/S bypass protocols used to be the domain of supercomputing interconnects

Latency numbers become less differentiated
 2X instead of 10X-30X

Techniques to Conserve Memory B/W

- Direct Memory Placement
 - Zero processor copy solutions
- Protocol offload
 - TCP, iSCSI, SSL, IPSec
- OS Bypass
- RDMA

Direct Memory Placement

- Definition
 - DMA to / from Upper Layer Protocol memory
- Advantages
 - Eliminates copy to/from intermediate I/O buffer
 - Decreases memory pressure for system
 - Proven technique in high-speed OS implementations
 - Dramatic performance benefit for key applications, e.g. ftp, NFS, SPECWeb
- Requirements
 - Application memory must be made accessible to I/O subsystem
 - Set up / tear down costs (can be mitigated by intelligent implementation)

Clear buffer ownership delineation to avoid data corruption

HP WORLD 2003 Solutions and Technology Conference & Expo

Protocol Offload

Definition

- Network protocol off-load services implemented in intelligent NIC / chipset
 - Complete acceleration of main data path, e.g. TCP/IP/Ethernet, UDP, IPSec, etc.
 - Optional acceleration of ULP iSCSI, iWARP(IETF RDMA), SSL/TLS, NFS, etc.

Advantages

- Reduced memory B/W consumption
 - Eliminate CPU I-Cache / D-Cache misses due to protocol processing
- Supports interrupt coalescence / avoidance
 - Further reduction in system overhead
- Reduced I/O work requests
 - Fewer I/O transactions per large send / receive operation
 - Enables flexible QoS policies to support latency sensitive applications
- Easier to maintain system balance
 - Host Processor / Memory / I/O B/W spent on application not protocol

OS Bypass

- Eliminates application invocation of OS system call
 - No OS involvement to send / receive data or perform completion / event processing
- Advantages
 - Eliminates user-kernel context switch overhead from main path
 - Improves application responsiveness

Decreases end-to-end message latency

Remote Direct Memory Access (RDMA)

Supercomputing Interconnects

- MPI is the killer app.
 - Various pretenders to the throne.
- All proprietary below the API
 - Actually, model public domain implementation (MPICH) has helped
- System packing density important: distance limited
 - Becomes less true with new optical technologies
 - Better Cost/Bit/Second → More Cost Effective
 - Easier to cable!
- Widely varying bandwidth needs.
 - 100:1 Spread: 0.01 B/FLOP → 1.0 B/FLOP!
- Latency in the 2 usec 10 usec range
- May well hit 25% of system cost.
 - But for a class of the super-big apps, this is the single most important performance factor

Supercomputer Choke Point

- LANs and Commercial Clusters drive the Server marketplace
 - Top Ethernet speed (at any given time) starts as a switchto-switch technology, then later migrates to Servers.
- The supercomputing interconnects quite often overwhelm the server interface
 - Bandwidth chokes of 2X not unusual
 - Observation: Even this requires great attention from system designers.
 - PCI-X 2.0 (and later PCI Express)
 Will enable next generation of supercomputer networks

Examples of Supercomputing Interconnects

- Vendor-Neutral
 - Dolphin Interconnect Solutions Wulfkit3
 - 3D Torus; kit consists of adapter and 3 cables
 - Myricom's Myrinet
 - Multi-stage switch
 - Quadrics' Qsnet
 - Multi-stage switch, value-add supercomputing features
 - Infiniband
 - Various vendors
 - Moved into HPTC over the last year
- Vendor-Proprietary

IBM, NEC, et al

Example: hp AlphaServer SC

- A distributed-memory supercomputer
 - Made up of quad-processor Alpha servers
 - 750 * 4 = 3,000 CPUs at PSC
 - Tru64 Unix
 - Quadrics Elan-3 Qsnet Network
 - PCI 64/66
 - True, virtual RDMA Full get&put
 - No need to lock down pages
 - Full OS Bypass Path
 - H/W Broadcast & barrier
- Three of the top 10 supercomputers in the world

Example: PNNL Intel® Itanium® 2 System

- Made up of hp server rx2600 "long's peak" nodes
 - Two Processors, each 1.5GHz "Madison"
 - 4 FLOPS/tick → 12GF/server
 - O(1000) Servers
 - Linux
- Connected by two "rails" of Elan-3

Multi-Stage Switches

- Full bi-sectional bandwidth
- Hardware broadcast & barrier
- Logarithmic cost
- Multiple routes

Adapter per node

Elan3 Adapter

Elite3 Switch

QsNet Packaging

Network Options

- 16-128 nodes in units of 16
- 64-1024 nodes in units of 64

Switch Chassis

- 42.5 Gbytes/sec bi-sectional bandwidth
- 35 175 ns unblocked latency
- Temperature, fan and PSU monitoring
- Live insertion
- Embedded controller

HP WORLD 2003 Solutions and Technology Conference & Expo

128-Way Switch Chassis

- 1-8 ×16 way switch cards
- 16 × 8 top switch cards

16-port switch cards

Federated Networks

- Top switches
 - Multiple ×4, ×8, ×16 top switches connecting the node switches together
- Node switches
 - 64 links from nodes
 - 64 links to the top switches
- Common components

1024-way Network (PSC)

Elan-3 Performance Overview

Latency

MPI send / receive

4 - 5 μsec

Shmem put / get

2.5 μsec

Pipelined put / get

≤ 1 µsec

Bandwidth

MPI & Shmem

325 MB/sec

Depends on PCI implementation

AlphaServer ES40

2.25 μsec 210 MB/sec

AlphaServer ES45
 2.0 μsec
 305 MB/sec

Latency and Bandwidth

Elan-3 Latency Breakdown

Barrier Scaling

Switch Wiring

Future Supercomputing Interconects

- PCI-X based Quadrics
 - Respin of NIC, Switch ASICs. New cabling (hybrid copper/optical).
 - You'll see it at Supercomputing 2003
- Personal Predictions
 - PCI-X 2.0 (2-4 GB/s) enables next bandwidth bump
 - PCI Express starts in 2004, becomes predominant by 2006/7
 - Both widely taken advantage of by supercomputing clusters
 - Five Years Out
 - Advanced all-optical switching networks
 High relative cost at the beginning. Initially only for apps that are message passing limited, and have lots of \$\$\$ behind them!

Back to grousing about server interfaces!