

Technical Overview of the Enterprise Virtual Array

1

Objectives

- ↓ Discuss storage virtualization
- Describe the hardware features and functions of the Enterprise Virtual Array
- ↓ Distinguish between the Modular Arrays and the Enterprise Virtual Array
- ↓ Describe the Software features of the Virtual Controller Software (VCS).
- ↓ Identify examples of SAN-based solutions that incorporate the Enterprise Virtual Array

the value of virtualization

hp StorageWorks

eva3000

eva5000

Block level mapping

Virtual Disks

EVA family values

the technology . . .

- capacity is treated as a pool of storage blocks, not discrete disks
- powerful mapping techniques present a logical view of storage to host servers

What is Storage Virtualization?

- Combination of hardware, software, and networking gear that turns a SAN into a "coherent, intelligent storage subsystem capable of automating information management processes." (Illuminata, April 2001)
- Allows heterogeneous storage devices to be combined into a SAN-attached storage pool that is managed as a single storage resource. (IDC, November 2000)

virtualization on EVA

- All raw disk storage is pooled
- ↓ Virtual Disks (VDs) (or LUNs) are drawn from a pool
- ↓ Less overhead for:
 - Controller state
 - Mapping metadata
 - Audit / error logs
- Virtual Disks managed by customer to these constraints:
 - Size range 1GB 2TB, in 1GB increments
 - Up to 512 Virtually Disks selectively presented to hosts
 - Each Virtual Disk can be zero (none), medium or high redundancy
 - Vraid0, Vraid5, or Vraid1
 - Virtual Disk size can be dynamically expanded, but not shrunk

Virtualization

- Eliminate throughput bottlenecks
- 7 Eliminate load balancing procedures for application and Data Base

Virtual Storage Pools

- Dynamic pool capacity changes
- Pool capacity can be expanded by spindle(s)
- Virtual Disk blocks are automatically relocated to level spindle use
- Disk Spindles Becoming a Throughput Bottleneck
- No Additional Storage Space Available

Moderate Redundant Volume (RAID V5)
No Redundant Volume (RAID V0)

High Redundant Volume (RAID V1)

Add More Disks

- Disks Running at Optimum Throughput (dynamic load balancing)
- Additional Storage Space Available

Available Storage Space

Moderate Redundant Volume (RAID V5)

No Redundant Volume (RAID V0)

High Redundant Volume (RAID V1)

Enterprise Virtual Array

- Modular, scalable and highly available design
 - · Redundant Power
 - · Redundant Cooling
 - Distributed hot spare disk drives
 - Mirrored Cache with battery backup
- · virtual RAID architecture
 - · vRAID 0
 - · vRAID 1
 - · vRAID 5
- Full 2Gb fibre channel front to back
 - 1Gb fibre channel SAN compatible
- Centralized, unobtrusive "LiteTouch" manageability

vRAID levels

Virtual Disk redundancy:

- None (VRAIDO): Data is striped across all physical disks in the Disk Group.
- Moderate (VRAID5): Data is striped with parity across all physical disks in the Disk Group.
- High (VRAID1): Data is striped mirrored across all physical disks in the Disk Group. Established pairs of physical disks mirror each other.

EVA Family Characteristics

- → 2Gb FC Array Controller
- Automatic load balancing
- Virtualized data distribution
- → Snapshot/SnapClone
- Dynamically expandable disk pools
- Load leveling & Auto Sparing
- Mirrored write-back cache
- → NSPOF design
- → New Performance Architecture
- → Supports up to 240 drives
- Dual ported 2 Gb FC drives

EVA Family

- **▼ EVA 5000**
- **对 EVA 3000**

HP StorageWorks eva3000 Enterprise functionality to the mid-range

Highlights

- End-to-end 2Gb/s FC architecture
- Redundant HSV100 controllers
- · Up to 4 drive enclosures per controller-pair
- · Up to 56 drives per controller-pair
- Up to 335MB/s per controller-pair
- · Great for moderate storage growth environments
- · Scalable up to 8TB per controller pair
- Optional: business-data protection, business continuance and storage management software

HP StorageWorks eva5000 The new enterprise storage benchmark

Highlights

- End-to-end 2Gb/s FC architecture
- Redundant HSV110 controllers
- · Up to 18 drive enclosures per controller-pair
- · Up to 240 drives per controller-pair
- Up to 560MB/s w/one controller-pair
- Scalable up to 24TB/cabinet
- · Scalable up to 35TB per controller-pair
- Optional: business-data protection, business continuance and storage management software

array comparisons

Array	eva3000	eva5000	
# controllers	2	2	
host interface	FC	FC	
host ports	4	4	
drive interface	FC	FC	
drive encl <mark>osu</mark> re de <mark>nsit</mark> y	14	14	
maximu <mark>m capacity (raw)</mark>	8TB	35TB	
	146GB/10k	146 <i>G</i> B/10k	
disk sizes / speeds (rpm)	73GB/15k <mark>,10</mark> k	73 <i>G</i> B/15k,10k	
(rpm)	36 GB/15 k,10k	36GB/15k,10k	
maximum number of drives supported	56	240	

Product Description

- ▼ Inside the cabinet, things are different
 - HSV Controllers
 - Fibre Channel Drive Enclosures
 - Fibre Channel Drives
 - FC-AL Cabling
 - FC Loop Switch

eva5000 2C2D Configuration

- → 2C2D configured to be easily expanded
 - ↓ CTO in factory up to 2C5D with or without FC loop switches
 - ▼ Field upgradeable all the way to 2C12D (with FC loop switches)

2C6D-B with FC Loop Switches

2C2D-B without FC loop switches

Blank Pane

Blank Panel

eva5000 2C6D Configuration

Model 2C6D

- (1) 42U Modular storage cabinet
- (1) M3220 Enclosure pair w
- (2) HSV110 Controllers
- (2) Cache batteries per enclosure
- (6) 14-bay FC enclosures
- (17) Int FC Cables
- (7) 2-port EMU boxes
- (8) AC strips
- (2) Ou PDUs

Disks ordered separately

3.0 TBytes (36GB)

6.0 Tbytes (72GB)

Max Drive Configurations

(3) M5214 Enclosures

(2) M3220 Enclosures

(3) M5214 Enclosures

eva5000 8C8D Write Performance Model

Model 8C8D

- (1) 42U Modular Storage Cabinet
- (4) M3220 Enclosure pair w
- (8) HSV110 Controllers
- (8) Cache Batteries
- (8) 14-bay FC Enclosures
- (36) Int FCCables
- (7) 2-port EMU boxes
- (8) AC strips
- (2) Ou PDUs

Disks ordered separately

16.0 TB (112x 146GB) - Max Drive

Configuration

*This model is for "memory dump" (high speed, large block, consecutive 100% write) operations typically for Scientific Applications

(1) M5214

(2) M3220

(2) M5214

(2) M3220

(2) M5214

(2) M3220

(2) M5214

(2) M3220

(1) M5214

eva5000 - 2C12D Configurations

Model 2C12D

- (1) 42U Modular storage cabinet
- (2) M3220 Enclosure pair w
- (2) HSV110 Controllers
- (2) Cache batteries per enclosure
- (12) 14-bay FC enclosures
- (37) Int FC cables
- (7) 2-port EMU boxes
- (8) AC strips
- (2) Ou PDUs

Disks ordered separately

- 6 TBytes (36GB)
- 12 Tbytes (72<mark>6B</mark>)
- 24 Tbytes (146GB)

Max Drive Configurations

(6) M5214 Enclosures

(2) M3220 Enclosures

(6) M5214 Enclosures

2C12Ds with OC12D Expansion Cabinet

- 70 Terabytes
 - · 480, 146GB FC disks
- ·4 controllers
- · Single footprint: 17.7 ft² (1.5 m²)

Expansion Cabinet

eva3000

eva3000 Configuration

EVA3000 Base model

- (1) 42U Modular storage cabinet
- (1) M3200 Enclosure pair w
- (2) HSV100 Controllers
- (2) Cache batteries per enclosure
- (2) 14-bay M5114 FC enclosures
- (7) 2-port EMU boxes
- (8) AC strips
- (2) Ou PDUs

Disks ordered separately

(1) M5114 Enclosure

(2) M3200 Enclosures

(1) M5114 Enclosure

eva3000 architecture

→ Base eva3000 module:

- → Dual HSV100 controllers in an M3200 enclosure
 - Four optical 2Gbit front-end loops to host
 - Two copper 2Gbit back-end loops to drive enclosures
 - 2GB cache and dual power supplies
- ▼ Two M5114 FC drive enclosures
- → One 42 U 10,000 series graphite metallic rack
- ▼ Redundant zeroU PDUs
- Scales up to 56 drives (with the addition of two drive enclosures to the initial two enclosure subsystem)

eva5000 architecture

→ Base eva5000 module:

- → Dual HSV110 controllers in an M3220 enclosure
 - Four optical 2Gbit front-end loops to host
 - Four optical 2Gbit back-end loops to drive enclosures
 - 2GB cache and dual power supplies
- □ One 42 U 10,000 series graphite metallic rack
- ▼ Redundant zeroU PDUs
- Scales up to 240 drives (with the addition of expansion enclosure)

M32x0—Array Controller Enclosures

- High performance HSV1x0 controllers
 - High performance Power PC microprocessor
 - Two 2Gb/s "ready" FC-Switch Fabric host ports (2Gb/s switches and HBAs not available at first release)
 - ▼ Two or Four 2Gb/s FC-AL device ports
 - Arranged in redundant pairs
 - MPMB Data load / performance is balanced across a pair of device ports
 - Supports up to 240 disks (120 disks per pair of device ports)
 - → 1GB cache per controller, mirrored, with battery backup

Controller Enclosure Pair—Front View

Push Buttons

Plastic Bezels

LCD Displays

World Wide Name

Controller Enclosure - Back View

■ 1.5U single <u>controller enclosure</u> (offered only as 3U pair)

Controller Enclosure - Front View, Fans and Cache Batteries Access Panels

M5214—FC Drive Enclosures - Front View

- ↓ 3U disk enclosure
- → Dual redundant active-active 2Gb/s FC busses
- ↓ Fourteen 1-in. FC disks per enclosure (4 drive minimum)

FC Drive Enclosure - Back View

- Environmental Monitor Unit
- Dual 2Gb/s FC I/O module
 - B (left-side) A (right-side)
- Dual 500 watt redundant hot plug power supplies and fans

FC Ports

EMU CAN Bus

EMU CAN BUS

AC Socket (1 of 2)

FC Drive Enclosures - Rear Cabinet View

FC Disk Drives

- → Dual-ported 2Gb/sec FC-AL
- √ 72B and 146GB 10K rpm
- Up to 120 drives to be supported per FC-AL pair

backend FC loop switches

- 7(4) four 1u half-rack-wide 12-port (11 utilized with expansion cab) FC loop switches
- → improves diagnostic/service ability:
- ability to add or remove shelves
- ability to add expansion cabs

► HSV110 controller enclosures

FC cable ____ management

cable routing - EVA-2 cabinet

E2 2C6D-A, -B Config

- 2 controllers
- 6 drive shelves
- up to 84 drives
- 2 0U PDUs
- 42 U cabinet
- 4 FC loop switches

E2 2C12D-A, -B Config

- 2 controllers
- 12 drive shelves
- up to 168 drives
- 2 0U PDUs
- 41U cabinet
- 4 FC loop switches

		(_)		$\overline{\ \ }$	- 5	
	I,	X	\supseteq	$\overline{\gamma}$			-	
	0	$\overline{V_{i}}$	7	ノ		<u> </u>	0	
	L	()	1		Ir	7	7	
	0	<u> </u>	\mathcal{F}		₽	$\not\sqsubseteq$	L	
	<u> </u> -		\prod			V		
	<u>-</u>		牂	Ħ	H	K	-	
	0	M	\coprod		\parallel	ЦЙ	i	
	L		押	1	17	肃	4	
	l o		L	<u>y</u>	<u> 1</u>	M	<u>lu</u>	
HF1 HF2 MP 15 2B 1 2A								
HFI /H-2 MP II 2B 1 2A								
	25			₽7	-75			
	L _I	M	7		(111	5	
	1	Ш	\blacksquare	\square	4	#4	1	
	<u>-</u>	1	1		(\bigcap		
	0		崖			半	<u> </u>	
	╏╸		1					
	Ī		清	H	+	片	5	
	l "	Γ ()	- ([]	
	0			ノ		7	Lul	
	<u>-</u>		7			*	0	
	F			$\Big)$		Ď	믁	
	-					Ž	0	

Cabinet Cabling

↓ Fibre Channel, Power, and Cabinet Area Network (CAN)

HSV Storage System - Cabinet Bus

- → Cabinet Area Network (CAN)
- Requires Terminator at top and bottom of bus
- Provides interconnection for Environmental Monitoring Units (EMU's) and Controllers
- Assigns Enclosure Number / Address to the EMU's
- Provides support for FC-AL addressing
- Provides common path for event logging

EMU Monitors & Controls

- Disk Drives
- → Power Supplies
- 7 Fibre Channel Transceivers (GBICs)
- **对 EMU**
- 7 Fans
- 对 I/O Modules
- Temperatures (Alerts and Errors)
- Voltage Sensors (Alerts and Errors)
- Current Sensors (Alerts and Errors)

What is SES?

- → SCSI-3 Enclosure Services (SES)
- → SCSI-3 Specification:
 - A family of documents
 - ↓ SES is a member of the family
- SCSI-3 Primary Commands (SPC) referenced by SES

Disk Drives

- Fibre Channel addresses relative to physical location
- Faults reported by drives
- Bypass state
- □ Drive WWN

Power Supplies

- Emergency shutdown status

- Fibre Channel Transceivers (GBICs)
 - Presence vs. absence
 - ↓ Faults
 - Missing cables

对 EMU

- Internal hardware diagnostics
- ▼ Enclosure number conflicts
- Environmental data validation
- Enclosure WWN and serial number
- ▼ Power shutdown

7 Fans

- ↓ Speed

对I/O Modules

- ↓ Enclosure link rate (16 vs. 26)

- Temperatures (Alerts and Errors)
 - Inlet temperature (at EMU)
 - Power supplies
 - □ Drives
 - Meltdown protection Voltage Sensors (Alerts and Errors)
 - Supply output voltages for 5V
 - Supply output voltages for 12V
- Current Sensors (Alerts and Errors)
 - Supply output currents for 5V
 - Supply output currents for 12V

SES EMU Controls

- Disk Drives
 - Bypass state
 - Element identification (location)
 - □ Drive spinup
- Power Supplies
 - ↓ Emergency shutdown
 - ↓ Element identification (location)

SES EMU Controls

- Fibre Channel Transceivers (GBICs)
 - Element identification (location)
- **对 EMU**
 - ▼ Power shutdown
 - ↓ Error code translation to text
 - ↓ Code load
 - Element identification (location)
- 7 Fans
 - ↓ Speed
 - ↓ Element identification (location)

SES EMU Controls

- 对 I/O Modules
 - ↓ Element identification (location)
- Audible Alarm
 - ✓ Severity

Push button terminology

- - Push the button and hold it depressed until the operator interface changes (within about 2 sec.)
 - Release the button
- Push (and release)
 - Push the button
 - Release the button immediately

- Push the bottom button to cycle among the following choices:
 - ↓ En Examine the enclosure number
 - ↓ Li Modify the enclosure's loop id
 - rG Modify the enclosure's reporting group #
 - → Au Enable or disable the audible alarm
 - ↓ Er Examine the currently active alarm(s)
 - Er is not available when there are no currently active alarms

- Er Examine the currently active alarm(s)
 - Push and hold the top button to select the next currently active alarm
 - When the top button's backlight goes out, the last active alarm has been selected
 - Push the bottom button to return to the Er display
 - Push the top button to cycle among the digits of the alarm's numbers
 - Represented as #.#.##.##

SES EMU Alarm Codes (Example)

- O.3.02.01 N Fan speed alert; replace fan soon

 - Undicates fan alarm #1
 - N indicates that the severity is Non-Critical
 - U Unrecoverable (most severe)
 - C Critical
 - N Non-Critical
 - I Informational (least severe)
 - Alarm description; remedy

SES EMU Unusual Displays

- Ld Code load in progress or incomplete
 - Removing power disables the EMU RS232 cable required for repair!
- 7 -A EMU firmware application code is missing
 - RS232 cable required for repair!
- 7 -- Both push buttons inadvertently held/pushed while inserting the EMU
 - Remove and reseat the EMU without pushing buttons
- 78.8. EMU is not completely seated
 - Remove and reseat the EMU

EMU error code

- Current Errors
 - ↓ Audible—beeping
 - ✓ Code available on EMU display
 - ↓ 3 part error code xx-xx-xx
 - May have multiple errors available
- → Error log
 - Available through HSV Element Manager event page
 - √ 62 entries per EMU (enclosure)

EMU error code

Power Distribution Modules (PDMs)

Zero-U PDUs

PDU 1 AC receptacles

PDU 1 Circuit Breaker

PDU 2

PDU 2 AC receptacles

6 PDU 2 Circuit Breaker

- New Zero-U PDU saves valuable cabinet space
- Dual power provides independent and redundant power paths (220-240v, 30amp)

Zero-U PDUs

- Unscrew the spring-loaded screws
- 2. Fold PDU away from the rack towards the floor

Power Supply and Cooling Requirements

■ North America

- Single phase
- NEMA L6-30R receptacle
- 3 wire
- 208V to 240V 60Hz 30A

↓ Europe

- Single phase
- 2 pole IEC 309
- 3 wire
- 220V to 240V 50Hz 32A

12,708 BTUs per hour

Feature Comparison to HSG80

Enterprise Systems Overview: Feature Comparison with HSG80

→ HSV110

- ↓ 2 Host ports per controller
- Max. Hosts: 1024 connections
- Minimum: 2 controllers (always redundant)
- Multibus failover (host assisted)
- √ 2GB Mirrored Write-Back Cache (MWBC), read ahead, adaptive read

→ HSG80

- ▼ FC-SW and FC-AL protocol
- ↓ 2 Host ports per controller
- Max. Hosts: 96 (connections)
- Minimum: 1 controller (2 for redundancy)
- Transparent and multibus failover (host assisted)
- ↓ 1GB MWBC, read ahead

Enterprise Systems Overview: Feature Comparison with HSG80

→ HSV110

- √ 512 Virtual Disks
- ↓ 240 FC-AL 2Gb/s drives
- Distributed sparing
- ✓ Snapshots:
 - 7 per Virtual Disk
 - Each counts as 1 Virtual Disk
 - Fully allocated and on demand

→ HSG80

- 84 UltraSCSI drives
- Management: Serial connection, SWCC or SWMA
- Dedicated spare drives
- ✓ Snapshots:
 - 1 per Unit
 - 4 per Controller pair
 - Fully Allocated only

Enterprise Systems Overview: Feature Comparison with HSG80

7 HSV110

- ✓ Customer data resides on Virtual Disks, which are part of a pool of disks (Disk Group)
- Dynamic on-line virtual disk expansion

→ HSG80

- Customer data resides on storagesets that can be physically located in the cabinet
- Concatenate RAIDsets (only one time per RAIDset)

eva Software Overview

Sizing HSV Disk Groups

Hardware versus software capacities

```
Physical 1000 000 000Bytes = 1GB
```

Software 1073 741 824Bytes = 1.07GB Physical (2³⁰)

~ 7% Variance → 1GB Physical = 0.93GB Software

↓ System metadata overhead — 0.2%

- System metadata
- MLD—HSV Element Manager metadata
- Virtual Disk metadata

Vraid overhead

- vraid0 -0% (1 block for every 1 block usable)
- Vraid 1 50% (2 blocks for every 1 block usable)
- Vraid5 20% (1.25 blocks for every 1 block usable)

Snapshot working space

- Snap depends on rate of change of original data
- Snapclone same physical capacity as virtual disk

↓ Spare capacity

2 X physical capacity of the largest physical disk X protection selected

Virtualization Controller Software (VCS)

- ¬Software (Firmware) for the HSVxO controllers
- ¬Virtualization is integrated throughout VCS:
 - Provides improved performance by spreading data volumes (LUNs or Virtual Disks) across many more disk drives or spindles
 - Load leveling of data across a LUN / Virtual Disk is automatic and helps eliminate "hot spots" which could otherwise become performance bottlenecks
 - Dynamic expansion
 - LUNs / Virtual Disks can be expanded on the fly for OSs that support it
 - Disks can be added to disk pools on the fly
 - Distributed sparing
 - Allows allocation of space per disk group to recover from physical disk failures

VCS Versions

对 V2.xxx

- Urrent version for both eva3000 and eva5000
- Snapshot and Snapclone support

√ 3

- ✓ Current version for eva5000
- ▼ Remote replication support

Virtualization Controller Software

- Data Protection techniques (optional purchase)
 - Two Versions of Snapshot:
 - Virtually Capacity Free (On-Demand) Which can save customers a lot of disk space and money
 - Traditional (Fully Allocated) Reserves exact space size as original LUN / Virtual disk
 - Virtually Instantaneous Snapclone:
 - Starts as a snapshot and becomes over time a clone
 - Gives access to the clone immediately without waiting for the clone copy "completion"
 - Can save customers time and money

snapshot versus snapclone

	Description	Pro's	Con's
Snapshot Space efficient	Pointer based Copy before Write Allocate space on demand	Space efficient (allocated on demand)	Overcommit problem
Snapshot Space guaranteed	Pointer based Copy before Write PreAllocate space on creation	No Overcommit problem	Space inefficient (allocated right away)
Snapclone	Same as Snapshot space guaranteed, but now with background process to separate VD.	No Overcommit problem Repeatable, separate VD's	Space inefficient Consumes some background process time

virtual storage pools (virtual spare)

Virtual Disk blocks automatically regenerated to restore redundancy

distributed sparing

- Allocated space per Disk Group to recover from physical disk failure(s) in that Disk Group
- Choices—None, Single, Double

distributed sparing

- No longer spare in separate spindles
- Chunks allocated, but not dedicated as spares, on all disk drives of disk group to survive 1 or 2 disk drive failures.
- Allocation algorithm

 - □ Double (2) = capacity of 4 * largest spindle in disk group

Distributed Sparing

HSV110 Virtualization:

The Easy to Understand scenario

Disk 1	Disk 2	Disk 3	Disk 4	Disk 5	Disk 6	Disk 7	Disk 8	Disk 9	Disk 10
Data2	Data4	Data6	Data8	Parity10	\				
Data9	Parity9	Data9	Data9	Data9	Pari y10	Data10	Data10	Data10	Data10
Data7	Data7	Data7	Parity7	Data7	Data8	Data8	Parity8	Data8	Data8
Parity5	Data5	Data5	Data5	Data5	Data6	Data6	Data6	Data6	Parity6
Data3	Data3	Parity3	Data3	Data3	Data4	Parity4	Data4	Data4	Data4
Data1	Data1	Data1	Data1	Parity1	Data2	Data2	Data2	Parity2	Data2
	I	I							

distributed sparing

HSV110 Virtualization:

The Closer to Reality scenario

Redundant Storage Sets (RSS)

- Reduces chance of data loss in large (> 12 physical disks) disk groups
- Not visible to user through Interface
- Complete managed by the HSV controllers
- → Typical size for disk group: 8 12 physical disks.
- ↓ If RSS equals 12 physical disks, it splits into 2 RSS of 6 disks each
- Failed disk drive recovery restricted to affected RSS only
 - Reduces access to number of disks, more efficient
- Example: Disk Group with 28 disks
 - # of disks 6, repeat until the remainder is 12 or less
 - 28-6=22, 22-6=16, 16-6=10 stop
 - RSS configured as 6+6+6+10

HSV110 Virtualization: Redundant Storage Sets

Food for Thought

- A virtual disk is a disk drive that is imaginary, but operational. It isn't really there but it works just fine
- And then there is a snapshot which is a non-existent, but operational copy of an imaginary (but operational) disk drive
- And then there is the console LUN, which is a pretend virtual disk — an imaginary disk drive that isn't operational but acts as if it might be

eva family - supported operating systems

	eva3000	eva5000
HP-UX		
Tru64		
Windows NT / 2000		
Solaris		
AIX		
Open VMS		
Linux (Intel)		
Netware		
Windows 2003 (.NET)		

eva OS platforms

→ HP/UX

- v11.0 and v11.i (wo/EVM)
- native HP 1 Gb/s HBAs (PCI & K-class)
- native HP 2 Gb/s HBA (PCI)

→ IBM AIX

- v4.3.3
 and v5.1 (wo/EVM)
- √ Cambex 1 Gb/s HBA
- √ Secure Path v2.0C
- ✓ SUN Solaris 2.6 (in addition to v7 & v8)
 - VERITAS Clustering v1.3
 - ↓ SUN Cluster v2.2

 - ✓ secure path v3.0B
- Microsoft Windows 2000 & NT

eva OS platforms (continued)

- → Novell NetWare
 - **√** 5.1
 - **↓** 6.0

Novell.

- → Linux x86 only
 - ▼ Red Hat 7.2
 - Advanced Server 2.1

HP StorageWorks continuous access EVA

- Performs remote mirroring and disaster recovery
- Enterprise-class availability solution
- Up to the last I/O data integrity
- Fast consistent application recovery

continuous access highlights

- Management solution automates mirroring functions
- → Web based GUI
- Remote access
- **Zeronic** Zeron Zer
- Failover/fail back operations
- Engineered with robust, proven resilient technology
- → Included with VCS V3, enabled via license key

Roadmap - continuous access EVA

release 1 May 2003 release 2 * spring 2004

release 3 * fall 2004

- · initial release
- synchronous
- 64 copysets
- · bi-directional
- peer-to-peer
- CA user interface
- snap/snapclone
- DT managed services

- asynchronous
- increased copysets
- multi relationships
- CA / BC combined GUI
- MC/Serviceguard, continental clustering solutions
- cluster extension by O/S solutions

- increased copysets
- multiple sites native
 XP & EVA fan-out,
 fan-in or cascade

^{*} releases 2, and 3 in planning

Data center - Data center implementation example

wide area network

storage-based replication

campus data center

metro data center

StorageWorks continuous access data center – data center

Data center - Data center - Branch office implementation example

storage-based replication

campus data center

metro data center

branch office

StorageWorks continuous access data center – data center

StorageWorks NAS data copy regional office - data center

HP Array Portfolio

Interex, Encompass and HP bring you a powerful new HP World.

