An Introduction to Grid Technology and the Utility Data Center

Jem Treadwell

Senior Software Engineer Hewlett-Packard Software Global Business Unit

Sven Graupner

HP Labs

Agenda

- Introduction to Grid Computing
- The Globus Project
 - Globus Toolkit 2.4
 - OGSA/OGSI & Globus Toolkit 3.0
- Utility Computing and the Adaptive Enterprise (AE)
- HP's Utility Data Center (UDC)
- Utility Data Center and the Enterprise Grid

Agenda

- Introduction to Grid Computing
- The Globus Project
 - Globus Toolkit 2.4
 - OGSA/OGSI & Globus Toolkit 3.0
- Utility Computing and the Adaptive Enterprise (AE)
- HP's Utility Data Center (UDC)
- Utility Data Center and the Enterprise Grid

About Grids

- A grid infrastructure enables organizations to share distributed resources
- An electrical grid distributes power to consumers when and where it is needed
- A computer grid makes computing resources available when and where they are needed

Grid Computing: Background & Vision

- Idea emerged in the early nineties:
 - Networks were commonplace
 - The Internet was established
 - A few people began to envisage the use of networks for utility computing:
 - Computer resources as ubiquitous, on-demand commodity

- Key technologies & standards:
 - Security (SSL, PKI, Kerberos)
 - File Transfer (FTP)
 - Remote Procedure Calls
 - Resource directories (LDAP)
 - Load-balancing (LSF, PBS)
 - Parallel processing (MPI)
 - Cycle-stealing (Condor, United Devices, SETI@home)
 - Virtual environments (Legion, Avaki)
 - Global addressing WWW & URIs
- Foster, Tuecke & Kesselman:
 - Published The Anatomy of the Grid
 - Started the Globus Project
 - Began to formalize the concept

11/13/2003

Networks & Grids

- A Grid uses a network infrastructure to:
 - Span boundaries that may be:
 - organizational
 - geographical
 - political
 - Share resources:
 - easily
 - safely

Grids Defined

A Grid:

- Coordinates resources that are not subject to centralized control
- Uses standard, open, general purpose protocols and interfaces
- Delivers non-trivial qualities of service
 - Ian Foster, 2002
- An abstract concept:
 - There is no central "InterGrid"
 - A Grid can be formed simply by using a common infrastructure & protocols to share resources
 - No specific products required

Primary Grid types:

- Computational Grid:
 - Primarily for access to computational power
 - e.g. resources for long-running simulations
- Data Grid:
 - Primarily for access to data
 - e.g. results of scientific observations
- Grids often have characteristics of both!

Example Grid Uses

- A company has under-utilized resources at various global locations
 - Uses Grid technology to make them available to employees in other locations
- A company has cyclic resource demands for its web service
 - Uses Grid technology to access other internal and external resources at peak periods
- A research lab's simulation takes months to run using local resources alone
 - Reduces the time to days by joining a research Grid and agreeing to share resources

- A life sciences researcher needs access to remotely stored experimental data
 - Data provider uses Grid technology to provide controlled access to the data
- Engineers in collaborating companies need to share design data and facilities
 - Use Grid technology to provide each other with secure, restricted access to the necessary facilities

Example: TeraGrid

Virtual Organizations

- Resources may be shared by many groups or individuals
- Controlled allocation of resources is critical
- Resources may be allocated to "virtual organizations"
- A virtual organization (VO) defines:
 - A set of resources allocated for the purpose of completing a task
 - The set of users or organizations that may access the resources
 - The **set of conditions** under which sharing occurs: time, scope, ...

- Properties of a virtual organization:
 - Usually transient:
 - Exists only until task is completed
 - May include only a subset of a Grid's total resources:
 - A Grid can include multiple VOs
 - VOs can share resources

What is Needed?

- Trust & Cooperation
- Sharable resources:
 - Systems, data, storage, applications, ...
- Access to the resources:
 - Common network
 - Common protocols
 - Secure communication
- A way to discover the resources:
 - Information services
- A way to control the sharing:
 - Who has access?
 - Authentication
 - What can they access?
 - Authorization
 - When do they have access?
 - Allocation

Middleware:

- Tools
- Application Programming Interfaces (APIs)
- Software Development Kits (SDKs)

- Security:
 - External users must be given access to systems
 - Firewalls
- Support:
 - Availability of remote system administrators
- Application considerations:
 - Architecture (parallelize?)
 - Portability
 - Availability
 - Interoperability
 - Security
 - Data access
 - Licensing model

- System management:
 - Compatibility and interoperability issues
 - User management:
 - Must maintain accounts for a more transient user population
 - Must control access to specific resources (authorization)
 - Maintain/publish accurate information about resources

Agenda

- Introduction to Grid Computing
- The Globus Project
 - Globus Toolkit 2.4
 - OGSA/OGSI & Globus Toolkit 3.0
- Utility Computing and the Adaptive Enterprise (AE)
- HP's Utility Data Center (UDC)
- Utility Data Center and the Enterprise Grid

- Based at Argonne National Lab & University of Chicago
- Principals:
 - Ian Foster
 - Steve Tuecke
 - Carl Kesselman (USC/ISI)
- Objectives:
 - Develop and promote standard Grid protocols, APIs & SDKs
 - Collaborate with Grid projects in science and industry

- The Globus Toolkit:
 - Open source Grid middleware toolkit for building:
 - Scalable Grid infrastructures
 - Grid-enabled tools and applications
 - Uses public protocols & APIs
 - Current versions:
 - GT2.4
 - GT3.0

http://www.globus.org

Globus Components

Security

Security is critical:

- External users have access
- Greater risk of unauthorized access

Must ensure that:

- Only authorized users have access
- A users can only access resources allocated to his/her VO
- Inter-node communication is secure

Certificate Authority (CA):

- Verifies user's identity
- Issues/revokes certificates
- Grid partners must agree on CAs
- Must establish CA procedures:
 - Certificate revocation
 - Audit process

Grid Security Infrastructure:

- PKI for credential checking
- Proxy credentials and delegation for secure single sign-on
- SSL/TLS for authentication and secure communication
- Uses OpenSSL APIs & commands
- Kerberos also supported

CA facilities:

- OpenSSL includes CA tools
- Globus provides a Simple CA package based on OpenSSL

Resource Management

- Resource management system provides secure and controlled access to Grid resources
- Responsibilities include:
 - Authentication & authorization
 - Reservation & allocation
 - Job submission and monitoring

- Grid Resource Allocation & Management:
 - Gatekeeper provides access to resources
 - Runs & monitors jobs:
 - Internal "fork" job manager
 - Can interface with LSF, PBS, ...
 - Resource Specification
 Language specifies:
 - Hardware resources
 - Execution environment
 - Co-allocation facility (DUROC) can control parallel jobs
 - Currently no reservation or accounting facilities

Data Management

- Data management is critical to Grid applications:
 - Preparing a job may involve copying the application and data to each node
 - Efficient data access can reduce time of execution and analysis of results
 - Unnecessary transfer of large datasets impacts network

- Global Access to Secondary Storage:
 - GASS API provides transparent access to data in any location
 - Uses URL-encoded file names:
 - file:///home/jt/my_data
 - gsiftp://remote_system. hp.com/~jt/my_data
 - Suitable for accessing/transferring programs, small datasets, logs, ...

GridFTP:

- Extends traditional FTP
- Uses proxy credentials
- Secure transfer
- Partial transfers
- Parallel transfer streams
- Restarts failed transfers
- Data replication services

Information Services

- Grid users need to know:
 - What nodes are available
 - Platform type
 - O/S name & version
 - Storage capacity
 - CPU count, speed, utilization
 - Installed applications

- Monitoring & Discovery Service:
 - Query using LDAP notation
 - Grid Resource Information Service:
 - Local directory server
 - Can be queried directly
 - Reports to a GIIS
 - Grid Index Information Service:
 - Aggregates information from multiple GRIS servers
 - Can report aggregated information to another GIIS
 - GIIS server nodes can be arranged in a hierarchy

Agenda

- Introduction to Grid Computing
- The Globus Project
 - Globus Toolkit 2.4
 - OGSA/OGSI & Globus Toolkit 3.0
- Utility Computing and the Adaptive Enterprise (AE)
- HP's Utility Data Center (UDC)
- Utility Data Center and the Enterprise Grid

Next Generation Grids

- GT2 evolved with focus on "stovepipe" protocols:
 - SSL/TLS/PKI for security
 - LDAP for discovery & monitoring
 - GridFTP for data transfer
 - etc.
- Widely adopted by research community
- Less impact so far in the commercial world

- The Physiology of the Grid,
 Foster, Tuecke, Kesselman, Nick, 2002
 - Open Grid Services Architecture
 - Builds on Web services technology
 - Views a Grid as a set of services that can be:
 - extended
 - aggregated
 - Defines the core interfaces and behaviors that Grid services should possess
 - Emphasizes needs of commercial Grid applications

Web Services

- Distributed computing paradigm:
 - Application (not human) oriented
 - Use simple Internet-based protocols
 - Independent of:
 - Platform
 - Programming language
 - Services are typically persistent
 - Scalable:
 - Service instances can be added to meet fluctuating demand

Key standards:

- XML language for representing structured data
- WSDL describes Web service interfaces & protocols
- SOAP protocol for exchanging XML messages
- WS-Inspection conventions for locating service descriptions

OGSA & Grid Services

- Open architecture:
 - Extensible
 - Vendor-neutral
 - Community standards
- Converges Web services & Grid:
 - Add Grid concepts:
 - · Lifecycle, state, ...
 - Standard interfaces and behaviors
 - Persistent or transient
- Enables virtualization & sharing of resources
 - All resources represented by services
 - Provides a common interface for a resource, hides implementation
- A Grid service <u>is</u> a Web service!

- Open Grid Services Infrastructure:
 - Specifies an infrastructure for defining & implementing OGSA interfaces & behaviors
 - Defines core services:
 - Base Grid service (required)
 - Service creation & termination
 - Data operations
 - Notification
 - etc.
 - No Grid required!
- Globus 3.x is an implementation of OGSA:
 - GT3.0 (Linux) released June 2003
 - Incremental releases planned
 - Functionally compatible with GT2
 - Java-based
 - Larger system footprint

Interfaces/behaviors + service data = Grid Service

Source: Ian Foster

Globus on HP Platforms

- Globus Toolkit 2.4 is available for:
 - HP-UX on PA-RISC & Itanium
 - Linux on IA32, Itanium & Alpha
 - Tru64 UNIX on Alpha
- Download from:
 - www.globus.org
 - www.hp.com/products/globus

- Globus Toolkit 3.0
 - Currently porting to all HP platforms
 - Watch for announcements!

Agenda

- Introduction to Grid Computing
- The Globus Project
 - Globus Toolkit 2.4
 - OGSA/OGSI & Globus Toolkit 3.0
- Utility Computing and the Adaptive Enterprise (AE)
- HP's Utility Data Center (UDC)
- Utility Data Center and the Enterprise Grid

Driving Factors for Grids in Enterprise IT Environments

- Goals in enterprise IT environments:
 - Agility adapt IT infrastructure faster to changing business needs
 - Collaboration enable cooperation and sharing across organizations
 - Return on Investment –
 increase asset utilization and
 lower operational costs

- Goals translate into technologies:
 - Virtualization of resources decouples applications from hardware
 - Federation of resource pools for sharing and collaboration Grid within and across organizations
 - Automation of operation and management

Utility Computing

- Resources become commodities
 - Users access services, and are unaware of:
 - Platforms
 - Applications
 - Management
 - Seamless resource sharing across resource pools (data centers)

- Utility system:
 - Manages underlying resources automatically
 - May change resource assignments during operation:
 - Add/remove
 - Scale capacity up/down
 - Migrate applications
- Enables pay-per-use model

Adaptive Enterprise

- Infrastructure responds to changing conditions:
 - Load, failures, business needs
- Partially or fully automated

Agenda

- Introduction to Grid Computing
- The Globus Project
 - Globus Toolkit 2.4
 - OGSA/OGSI & Globus Toolkit 3.0
- Utility Computing and the Adaptive Enterprise (AE)
- HP's Utility Data Center (UDC)
- Utility Data Center and the Enterprise Grid

HP's Utility Data Center

Storage array

Network switches

Operations center rack

Utility controller (Mgmt rack)

Backup rack

HP UDC at the Palo Alto Research Labs. 12/02

UDC Components

Utility Controller Software

- Manages service templates
- Controls resources
- Reacts to workload changes and failures

Virtual Server Pools

- Heterogeneous server environments
- HP servers optimized for UDC
- Protect your current investment

Virtual Network Pools

- Standards-based VLANs
- Flexible and robust network infrastructure

Virtual Storage Pools

- HP XP and EVA storage offer flexible 'networkbased' virtualization
- EMC Symmetrix
- Integration with OpenView for storage management

Creating a Service with the Utility Data Center

Architect new service:

- business case
- service growth projection
- SLO requirement
- availability
- security needs
- time to implement

Create the service

- automatically find and allocate resources
- auto-configure network and storage
- auto-configure firewall & load balancers
- auto-configure and boot the servers

Build a service template:

Utility Controller Portal

Utility Data Center in Action

Summary: HP Utility Data Center – enabling Adaptive Enterprise

HP Utility Data Center is a complete solution for virtualizing data center environments:

- 1. Resources are wired once to support their virtual, flexible allocation and reallocation
- 2. New applications and systems can be ignited within minutes
- 3. Utilization of servers, storage and network are significantly improved
- Resources are virtualized, and optimize themselves to meet your service level objectives
- 5. Administrative and operational overhead is minimized and opportunities for error reduced

HP WORLD 2003 Solutions and Technology Conference & Expo

Agenda

- Introduction to Grid Computing
- The Globus Project
 - Globus Toolkit 2.4
 - OGSA/OGSI & Globus Toolkit 3.0
- Utility Computing and the Adaptive Enterprise (AE)
- HP's Utility Data Center (UDC)
- Utility Data Center and the Enterprise Grid

UDC and the Enterprise Grid

Goal:

- Give users access to resources in multiple UDC resource pools
- Enable enterprise-wide:
 - Collaboration
 - Resource sharing

Note: Slides in this section illustrate a research application, and do not represent a product.

UDC & Grid: Mutual Benefits

UDC brings to the Grid:

- Sophisticated, flexible resource topologies
- Hardware-enforced isolation and protection
- Virtualized resource environment

The Grid brings to UDC:

- Ability to co-allocate resources from multiple UDCs
- Cross-organizational user credentials
- Uniform service model (OGSI)
- Community and standards focused on sharing of resources

Utility Data Center

Utility Data Center =

programmable pool of data center resources

Grid Interface for UDC

UDC in an Enterprise Grid

Resource Request Construction

- Designing a
 Resource Topology
- 2. Generating RSL for this topology

Grid Resource Topology Designer

UDC in an Enterprise Grid

UDC in an Enterprise Grid

UDC & Enterprise Grids: Summary

- Goals of agility, collaboration & RolT can be realized through virtualization, federation & automation:
 - Enabled by Grid technology
 - Grid core: OGSA/OGSI
- Grid technology is moving into Enterprise IT landscapes
- Adaptive Enterprise requires automated management
- UDC adds value with its hardware-supported capability for:
 - Resource virtualization
 - Automated resource management
 - Component isolation

For information on the UDC/Grid demonstration contact Sven.Graupner@hp.com

The Global Grid Forum (GGF)

- Standards-setting body:
 - Working groups
 - Research groups
- Mission:
 - Promote and support development, deployment, implementation of Grid technologies and applications
- Membership:
 - 40+ countries
 - 400+ organizations
 - 2500+ mail-list subscribers

- Three meetings per year:
 - GGF7: March 2003, Tokyo
 - GGF8: June 2003, Seattle
 - GGF9: October 2003, Chicago (working sessions only)
 - GGF10: March 2004, Frankfurt
 - GGF11: June 2004, Hawaii
- 500+ people per meeting
- HP is a Platinum sponsor and active participant in GGF

http://www.ggf.org

HP WORLD 2003 Solutions and Technology Conference & Expo

References

- HP Grid external web sites: http://www.hp.com/products/globus http://www.hp.com/techservers/grid
- HP Utility Data Center (UDC): http://www.hp.com/go/hpudc
- The Globus Project: http://www.globus.org
- The Anatomy of the Grid:
 http://www.globus.org/research/papers/anatomy.pdf
- The Physiology of the Grid (Open Grid Services Architecture): http://www.globus.org/research/papers/ogsa.pdf
- The Global Grid Forum: http://www.ggf.org

Interex, Encompass and HP bring you a powerful new HP World.

Backup Slides

Example: European Data Grid

- Funded by the European Union
- Intensive computation and analysis of shared scientific databases
- Applications: high energy physics, biology, earth observations
- Nodes in fifteen countries
- http://www.edg.org

Virtual Organization Example

HP WORLD 2003 Solutions and Technology Conference & Expo

Grid Applications

- Portability:
 - App must run on multiple platforms
 - Use common facilities:
 - · databases, event systems, ...
- Architecture:
 - Some apps may need to be parallelized
- Licensing:
 - May require different model
- Security:
 - Authentication & authorization
 - May need secure communication
 - Privileges, tempfiles, setuid, ...

- Interoperability:
 - Grid applications may need to deal with different data standards:
 - Endianness, floating point format, data size, ...
- Accessibility:
 - Install app on every node
 - Stage it at run-time
- Data Access:
 - Local app can NFS-mount
 - Grid app may have to:
 - · Transfer input to local storage
 - Transfer output back to the user