



## HP NonStop Systems Fundamentals



Jim Henry
Director – Global Field Marketing
NonStop Enterprise Division
Hewlett-Packard

hp

© 2004 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice

#### Course Objectives



- Describe NonStop Server positioning in the HP product line
- Describe in a general way the capabilities of HP NonStop servers and the synergy between them and other HP products
- Provide and understanding of
  - NonStop server hardware and software architecture
  - Unique capabilities
  - Role in Adaptive Enterprise







## HP NonStop Fundamentals



#### **Basic Principles**





2002

#### HP NonStop Division





# HP NonStop Computing Design Goals









### Availability Continuum

100% availability objective (application level)



HP WORLD 2004



#### Downtime is Expensive

- Lost productivity
- Customer dissatisfaction
- Lost revenue opportunities

The Standish Group ranks the HP NonStop server the leading system for application availability: "The HP NonStop [server] has the highest peaktime availability both on the system and the application level of all the systems we've researched."

#### **Cost of Downtime**

| Industry       | Business<br>Operation     | Average Cost<br>per Hour of<br>Downtime |  |
|----------------|---------------------------|-----------------------------------------|--|
| Financial      | Brokerage operations      | \$7.84 million                          |  |
| Financial      | Credit card authorization | \$3.16 million                          |  |
| Media          | Pay-per-view              | \$183,000                               |  |
| Retail         | Home shopping (TV)        | \$137,000                               |  |
| Retail         | Home catalog sales        | \$109,000                               |  |
| Transportation | Airline reservations      | \$108,000                               |  |
| Media          | Teleticket sales          | \$83,000                                |  |
| Transportation | Package shipping          | \$34,000                                |  |
| Finance        | ATM fees                  | \$18,000                                |  |

# The Demand for 7 x 24 Is Stronger Than Ever



- The Internet is driving electronic commerce and a structural change in business
- Globalization of competition and companies
- Integration of customer and suppliers supply chains
- Networking of dispersed information systems
- 7 x 24 applications growing faster than total server market

## 7 x 24 applications as percent of total







#### Scalability

- The ability to expand system resources to meet performance requirements:
  - Processors
  - Storage / Database
  - Peripheral devices
  - Applications
- The challenge is to do this while Online/Internet transaction processing continues!



#### Himalaya Massive Scalability



#### I/O Expansion Cabinet

- 240 GB disk
- 8 GB 240 GB Disk
- 2-4 I/O controllers





**4080 CPU**s

16 million GigaBytes Disk

65,000 I/O slots

- CPU CABINET
  - 2-4 CPUs
    - 512 KB 8 GB RAM
  - 8 GB 240 GB Disk
  - 2-4 I/O controllers

- Any component or cabinet can be
  - added
  - removed
  - replaced
- While all applications continue running
- The NonStop server at AOL grew from 600 CPUs to 1000 CPUs in 90 days

without taking down the application

## Scalability is Becoming the Big Issue!



- While "Continuous Availability" is still the NonStop domain, Scalability is becoming as important
- Customers are now demanding online scalability to infinite limits!



#### HP NonStop™ servers — Business-Critical Enterprise solutions



#### 500 Financial Services Companies

- 80% of ATM transactions
- 66% of credit card transactions
- 75% of the world's 100 largest electronic funds transfer networks

#### 106 Securities / Commodities Exchanges

- 95+% of securities transactions
- 106 of the world's 120 exchanges

#### 135 Telecommunications Providers

- 100% of the 35 largest
- Wireless and land lines

#### 40 Police, Fire, Emergency Dispatch Systems

- Many large & small cities worldwide
- Majority of all U.S. 911 calls

#### 450 Manufacturers

Most European car manufacturers: Mercedes, Peugeot, Renault, Porsche

#### 400 Retailers and Wholesalers Worldwide

Including Hertz, Target, Victoria's Secret

#### 200 Hospitals and Healthcare Providers Worldwide

World's Largest HMO: Kaiser

## 100 Very Large Databases for Business Intelligence

- Deutsche Telecom
- AOL
- Target



# NonStop servers Complete HP's high-end availability, scale and data integrity continuum





### Winning against IBM Mainframes



| Account    | Application |
|------------|-------------|
| 7 10000111 |             |

One of the largest banks in Latin America
 CIF Database

•Consortium of all railroads in the UK

•One of the largest regional EFT networks in the U.S.) EFT



#### Sabre - fare search solution



- Central NonStop system with up-to-the-second data
  - Fares, rules, flight seating availability
  - 14,000 TPS, 409,000 I/Os per second
- HP-UX
  - 28 HP rp5405 servers running HP-UX 11i
- Linux

**TPF** 

 15 HP Integrity rx5670 servers running Red Hat Linux Advanced Server 2.1 Sabre DBOR (Database of record)

Sabre ATSE (Air Travel Search Engine)

NonStop system - 192 CPUs



Massive search engine

Replicated, in-memory copies of the search DBMS

# HP vs. IBM: the high-end ESG server advantages





#### Hybrid Common Software Base



- Open languages
  - C, C++, Java, Cobol, Perl, JavaScript
- Open distributed component architectures
  - J2EE, Corba, SOAP, XML, WSDL
- Open DBMS
  - ANSI 92
  - ODBC, JDBC, JSQL, Java stored procedures
- Open middleware
  - Tibco, BEA WLS, WebMethods, SeeBeyond, JMS, MQSeries
  - Tuxedo, Corba OTS, JTS
- Open development
  - Microsoft Visual Studio.net, JDeveloper, VisualCafé. BEA Workbench, eclipse etc.
- Open systems management
  - OpenView, BMC Command/Post, Tivoli, CA







## HP NonStop Fundamentals



#### **Hardware Overview**



#### Computer architectures





## NonStop™ Server parallel architecture





Cell

2 lock-stepped CPUs

2-16 GBytes memory

2 ServerNet controllers

## NonStop<sup>™</sup> Server parallel architecture





- All CPU/memory cells are similar to hard partitions in SuperDome terminology
- Each has its own copy of the OS
- Each can be added, deleted, upgraded without affecting any other cells
- All applications continue running when a cell fails, is deleted, added or upgraded



## NonStop™ Server parallel architecture





- ServerNet fabric for system internal interconnect
- not for memory access by CPUs
- composed of 12-way non-blocking switches (12 Gbit/sec throughput per switch
- add switches to a maximum cross-sectional bandwidth of 13 terabytes/sec

#### NonStop<sup>™</sup> Server parallel architecture





System is physically a cluster in a box HPWORLD 2004



#### NonStop™ Server single system image





- All copies of the OS on different nodes work together to achieve:
  - Single Virtualized file system
  - Awareness of health of all hardware, applications and middleware
  - Recovery mechanisms
  - Load balancing
  - Single System management
  - Single instance of the DBMS
  - Single application domain



#### NonStop™ Virtual Server application architecture



Java Server Pages, Java servlets, Java Beans, EJBs, Tuxedo servers, CORBA objects



#### Distributed Services in OS

- Transaction management
- · Load balancing
- Logging
- Recovery
- DBMS
- File system

Dynamically change distribution and number of replicated server objects instead of re-partitioning hardware

#### NonStop<sup>™</sup> ServerNet Cluster





2005 ServerNet Cluster Scalability > 1024 Itanium CPUs



# AOL – large system/low management requirements



- Over 398 million emails and 500 million recipients per day
  - Peak hour delivery in excess of 21 million emails
  - Greater than 40,000 TPS at peak
- More than 2.5 billion application transactions (user requests) per day
  - More than 2 million user requests per minute at peak
- 28 programs comprise the application accounting for over 49,000 processes running in a typical 24 hour period across the complex

#### AOL - Managing 24X7Xforever: Staff

- 4 Developers
- 3 QA Analysts
- 7 Operations Support people
  - 3 DBA's
  - 4 Operations Administrators
- This group manages nearly 1500 NonStop processors



# complex highly available applications





Most comprehensive TCO study in our industry

Covered every aspect of IT costs

Measured real applications

Worldwide study of approximately
2000 customers

- Total cost of ownership must take into account, hardware, software, staff, maintenance etc.
- the NonStop server is
  - 40% lower Total Cost of Ownership than Sun
  - less than one-half the TCO of IBM Parallel Sysplex





#### Standards-based server strategy

HP NonStop MIPS

HP Integrity

HP 9000 / e3000 PA RISC

HP AlphaServer <sub>Alpha</sub>

HP ProLiant x86



## Industry standard

HP NonStop (Itanium based)

HP Integrity (Itanium based)

HP ProLiant (x86 based)

Focused innovations

- Management
- Virtualization
- High availability
- Storage
- Clustering



## key hardware feature comparison



| •feature                         | NonStop™<br>S74000    | NonStop<br>S86000 | NonStop<br>S88000 | Itanium             |
|----------------------------------|-----------------------|-------------------|-------------------|---------------------|
| <ul><li>microprocessor</li></ul> | R12K                  | R14K              | R16K              | ltanium II          |
| •s-cache size                    | 4 MB SDR              | 8 MB DDR          | 8 MB DDR          | 6 MB on CPU<br>chip |
| •main memory                     | 0.5 GB, 2 GB,<br>4 GB | 1, 2, 4, 16 GB    | 1, 2, 4, 16 GB    | 4, 8, 16, 32 GB     |



#### Recommended NonStop SAN Architecture





#### Enterprise Storage Virtualization





- Servers access logical units
- Logical units can be enlarged or relocated within the storage
- Enterprise Storage manages physical disks





# The NonStop Kernel Operating System



hp



#### Basic design goal — Invisible cluster with no single point of failure



Remaining processors assume workload and continue to run without restart!



# NonStop Server - Highest level of Fault Tolerance





- Every hardware component can be replaced while all applications continue to run
- Every important system process has a backup process running in a different node
  - 100% synchronized with primary
    - Message system
    - DBMS engine
    - File system
    - Transaction manager
    - CORBA orb
    - Communications stacks
    - Web server

Continuous processing

No failover --- Immediate takeover

If 3,000 TPS

&

5 minute failover

=

Over 1 million transactions queued up during failover



# Integrated Data Access and Transaction Support in the OS



- One Data Access Manager / disk
  - Process pair with helper processes
- SQL access methods
- Data aggregations
- Data functions
- Mixed workload management
- Locking, concurrency control
  - No distributed lock manager
- Transaction support
- Audit log management



### Mixed mode DBMS



- Traditional Portable DBMS is ported outside of the OS and access OS functionality through a porting layer
- Mixed mode processing generates long I/O queues in the OS
- Portable DBMS cannot control the priority of each I/O request inside of the OS





# Unique DBMS for critical applications



### Always available

RDBMS fully available for Inserts, deletes, updates and selects while:

- Tables are
  - created
  - dropped
  - renamed
  - indexed view, constraint (R/W)
- Database partition are
  - split
  - moved
  - dropped
  - have partition boundaries moved
- Audit trail disk
  - Added
  - Moved
  - Multi-disk version created

### Capable of mixed-mode

- Provides sub-second response time to transactions concurrent with:
  - Massive queries
  - Full table scans
  - Thousands of simultaneous transactions per second
  - Over any number of nodes

### **Open interfaces**

- JDBC
- ODBC
- JSQL
- OLE/DB
- ANSI SQL



# AE Integration hub - Application and data integration as an extension to existing applications





#### Application integration

- Process flow
- Message router
- Transformations

#### Rules-based engine

- Business rules applied to events
- access to current transactions
- access to historical transactions
- ability to launch response to events

#### Data integration

- 24 x 7 data cache
- Enterprise state engine
- Real-time data warehouse
- Enterprise message log

## Real time enterprise – Manufacturing Hewlett Packard



### Challenge

- Lack of real-time, consolidated view of supply chain information

   higher inventory costs and inaccurate, costly decision making
- Many supply chain management (SCM) applications
- Multiple HP products, technologies, services and partner applications provided from both sides of the merger



# Adaptive supply chain solution internal project—Integration Hub



- Enhances existing applications portfolio
- Enables integration and consolidation programs
- Centralizes key data from across the supply chain systems
- Enables immediate response to real-time changes in the supply chain



# NonStop in Real Time Supply Chain



- RTSC provides a single, real-time enterprisewide view of the supply chain to enable
  - Real-time decision making
  - Up-to-the-second view of your business
  - New functionality
  - Competitive advantage
- RTSC is designed to easily integrate the largest SAP installations
  - Multiple instances
  - Multiple versions

| Total IT benefits          | More than US\$6 million per year    |
|----------------------------|-------------------------------------|
| Total operational benefits | More than US\$1 million per year    |
| Total strategic benefits   | More than US\$2 million per year    |
| Order cycle time           | Improved by 15%                     |
| Net present value          | US\$37 million over a 5-year period |

### Real Time Solutions



- Real Time Supply Chain (RTSC)
  - Complete visibility of entire supply chain
  - Ability to recognize and react to events in real-time
- Real Time Financial Services (RTFS)
  - 360° view of every customer
  - Value added to current transactions
    - CRM
    - Fraud
- Real Time Healthcare (RTHC)
- Real Time Homeland Security (RTHS)







# HP NonStop Servers



### **Software Environment**







Legacy application

**Guardian Environment** 

**Guardian Services** 

**Guardian Utilities** 

**Guardian APIs** 

**NonStop Kernel** 



## NonStop Kernel - Open System Services - (OSS)



Legacy application

Open Application

**Guardian Environment** 

**Guardian Services** 

Guardian Utilities
Guardian APIs

**OSS Environment** 

**Open System Svcs** 

OSS Utilities
OSS APIs

**NonStop Kernel** 



## Objectives of Open System Services (OSS)



- Provide a UNIX-based environment with transparent access to NonStop Kernel fundamentals for open applications
- Enable customers to reap the benefits offered by open, standards-based environments:
  - development and management skill set
  - large software base
  - portability



### **OSS Product Features**



### **Open Applications**

### **Open System Services**

POSIX.2/XPG4 Tools and Utilities POSIX.1/XPG4 API

Utilities
Libraries
150+ C Functions

**NonStop Kernel** 

Processes
File system
I/O
Pipes/FIFOs
Signals
I18N (L10N)

### Products that Use OSS



- TUXEDO NonStop Tuxedo
- WebServer itp Webserver
- SQL DBMS –SQL/MX
- CORBA NonStop Corba
- Java JVM, SDK
- BEA WLS 8.1, BEA WLI 8.1
- Web services software
- SOAP, XML, WSDL
- Open Source Software
- Apache, Tomcat, Perl, TCL,CVS, SAMBA, etc.



# Commands and Utilities



| alias    | cpio    | fold    | lp                | ps      | tr                                                            |
|----------|---------|---------|-------------------|---------|---------------------------------------------------------------|
| ar       | csplit  | gencat  | lpstat            | pwd     | true                                                          |
| awk      | cut     | genxlt  | ls                | read    | tty                                                           |
| basename | date    | getconf | make              | rm      | type                                                          |
| bc       | dc      | getopts | man               | rmdir   | umask                                                         |
| bg       | diff    | grep    | ${\tt mkcatdefs}$ | sed     | unalias                                                       |
| c89      | dirname | head    | mkdir             | sh      | uname                                                         |
| cancel   | echo    | iconv   | mkfifo            | sleep   | uncompress                                                    |
| cat      | ed      | id      | more              | sort    | unexpand                                                      |
| cd       | egrep   | ipcrm   | mv                | split   | uniq                                                          |
| chgrp    | env     | ipcs    | nm                | strings | uudecode                                                      |
| chmod    | expand  | jobs    | nohup             | strip   | uuencode                                                      |
| chown    | expr    | join    | od                | stty    | vi                                                            |
| cksum    | false   | kill    | passwd            | tail    | wait                                                          |
| cmp      | fc      | lex     | paste             | tar     | WC                                                            |
| comm     | fg      | ln      | pathck            | tee     | who                                                           |
| command  | fgrep   | locale  | pax               | test    | xargs                                                         |
| compress | file    | logger  | pr                | time    | yacc                                                          |
| ср       | find    | logname | printf            | touch   | zcat HP WORLD 2004 Solutions and Technology Conference & Expo |



# OSS file system







# **OSS** security example

```
drwx r-x r-x and -rwx r-- r--
drwx r-x r-x and -rwx r-- r--
drwx rwx r-x and -rwx r-x r--
drwx rwx r-x and -rwx r-x r--
```

# Development Languages & tools



### Languages

- ISO/ANSI C
- ANSI C++
- ANSI COBOL
- Java
- Ptal
  - not industry standard but familiar to HP 3000 SPL wizards

#### Tools

- CVS
- Make
- VI, EMACS

#### •C & C++ libraries

- library routines libl.a, lex
- libyacc.a, yacc library routines
- libtermcap.a, termcap routines
- libinet.a, socket routines
- ANSI C++ libraries



# ETK – Enterprise Tool Kit



- a Visual Studio .NET based application development environment for NonStop<sup>TM</sup> servers
  - fully integrated into Visual Studio .NET
  - same look and feel as that of Visual Studio .NET
    - leverages Microsoft technologies and usability research
- supports
  - C, C++, COBOL, pTAL.
  - NonStop SQL
  - Corba
- complementary tools
  - Visual Inspect
    - Symbolic debugger for distributed applications
- Integrated help system.







# Linux - Open Source Tools



- command shells: bash, osh
- version control systems: cvs, rcs, sccs
- utility sets: diffutils, fileutils, findutils, git, mtools, sh-utils, sharutils, textutils
- utilities: less, rsync, uucp, which
- editors: ed, emacs, vim
- file server: samba
- security tools: openssh, openssl
- scripting languages: perl, python, tcl
- file compression tools: bzip2, gzip, zlib
- windowing systems: X11, vnc

Makes OSS environment look more like a Linux environment to developers and system managers



# open source @ ITUGLIB



| ⋅A2ps     | Diction          | Glib     | Help2man   | Nano             | Shtool           | Which                                        |
|-----------|------------------|----------|------------|------------------|------------------|----------------------------------------------|
| -Amanda   | Diffutils        | Global   | Httptunnel | Ncftp            | Stow             | Xaos                                         |
| -Apache   | Doschk           | GLPK     | Indent     | Ncurses          | Tar              | Zlib                                         |
| -Autoconf | Ed               | Gmp      | Jabber     | Oleo             | Tcl              | Db                                           |
| -Automak  | <b>Emacs</b>     | Gnats    | Jpeg       | Patch            | Termcap          | Dbmanua                                      |
| e         | Enscript         | Gnubg    | Less       | Perl             | <b>Termutils</b> | 1                                            |
| Barcode   | <b>Fileutils</b> | Gnuchess | Libiconv   | <b>Plotutils</b> | Texi2html        |                                              |
| Bash      | <b>Findutils</b> | Gnugo    | Libxmi     | Pth              | TeXinfo          |                                              |
|           | Flex             | GnuPG    | Libxml2    | <b>Python</b>    | <b>Textutils</b> |                                              |
| ∙Bc       | Floss            | Gperf    | Lynx       | RCS              | Tiff             |                                              |
| ∙Bison    | Gawk             | Grep     | M4         | Readline         | Time             |                                              |
| ∙Bool     | Gcal             | Groff    | Make       | Rsync            | Trueprint        |                                              |
| Bzip2     | Gdbm             | Gsl      | Man-db     | Rx               | Units            |                                              |
| -Cpio     | Gengetopt        | Gtypist  | Marst      | Samba            | Uucp             |                                              |
| -Cscope   | Gettext          | Guile    | Мс         | Sed              | Vim              |                                              |
| ·CVS      | Ghostscri        | Gzip     | Miscfiles  | Sh-utils         | Wdiff            |                                              |
| •DAP      | pt<br>Git        | Hello    | Motti      | Sharutils        | Wget HPV         | VORLD 2004<br>d Technology Conference & Expo |

# Open application development and execution







# HP NonStop S-Series Servers

- HP NonStop S7x0
- HP NonStop S7x00
- HP NonStop S7x000 and S86000
- MIPs processor-based
- Intel processors beginning in 2005
  - Seamless migration
  - Full application compatibility
  - Complete protection of customer investment
- All designed for:
  - Availability
  - Data integrity
  - Performance
  - Compatibility











# Where To Go for More Information



hp



## World Wide Web

### **NonStop Enterprise Division Home Page:**

http://nonstop.corp.hp.com/





# Technical Reference Materials





### Education



- Instructor-led Training
- CBTs
- Self-study Training
- Web-based training
- Weekly conference calls
- Distribution Lists
- Technical Update Training
   Seminar CDs
- NonStop University
- This presentation for your peers or customers!

# Online Education – NonStop University



- http://nonstopu.qweb.cpqcorp.net/ecs
  - Use your corporate login
    - Analyst Readiness Center
    - Certification NonStop Servers
    - Field Engineering Readiness
    - ITUG Technical Presentations
    - NED Initiatives
    - NonStop Conference Calls
    - Quickstart NonStop Servers
    - Sales Readiness Center
    - Transfers of Information
    - LOTs more!







### Co-produced by:





