
 1

 Managing kernel configurations
in HP-UX 11i v2

Introduction..3
Kernel configuration features... 3
What is a kernel configuration? ... 3
Overview of kernel configuration commands... 4
Overview of the kcweb tool .. 5
Other kernel configuration operations .. 7

Common behavior for kernel configuration commands..8
Common command line flags... 8
Common output formats ... 8
Common exit status codes .. 9
Common security constraints... 9
Persistence of changes .. 9

Managing kernel modules with kcmodule ..11
Getting information about modules .. 11
Interpreting module information.. 12
Changing module states.. 14

Managing kernel modules with kcweb ..15
Getting information about modules .. 15
Interpreting module information.. 16
Changing module states.. 17

Managing kernel tunable parameters with kctune...19
Getting information about tunables.. 19
Interpreting tunable information.. 20
Changing tunable values .. 21

Managing kernel tunable parameters with kcweb ...22
Getting information about tunables.. 24
Interpreting tunable information.. 24
Changing tunable values .. 25

 2

Monitoring kernel resource usage...26
Getting information about alarms ... 26
Interpreting alarms information.. 27
Changing alarm values.. 28
Resource usage commands.. 29

Managing the running configuration with kconfig ..29
Managing saved configurations using kconfig ..29

Getting information about saved configurations.. 29
Interpreting saved configuration information ... 31
Using and modifying saved configurations ... 32

Managing configurations with system files ..32
Making configuration changes with system files... 32
Uses for system files ... 35

Managing device bindings...35
Primary swap device.. 35
Dump devices .. 36
Device driver specifications... 36

The kernel configuration log file...36
Parsing command output ...37
Recovering from errors...38

The automatic backup configuration.. 38
Booting a saved configuration .. 39
Booting in failsafe mode .. 40
Guidelines for recovering from errors... 40

Kernel configuration example..41
Kernel configuration quick reference card...44
Transition from previous HP-UX releases..45

3

Introduction
With each successive release of HP-UX, system administrators have increased ability to make changes
to the configuration of the HP-UX kernel without experiencing costly and inconvenient downtime.
Innovations such as Dynamic Kernel Tunables and Dynamically Loadable Kernel Modules allow critical
maintenance tasks to be performed without sacrificing application availability.

With these innovations comes the need for a simpler and more comprehensive mechanism to
manage kernel configurations. HP-UX 11i v2 introduces a new suite of kernel configuration
management commands and a new Web-based graphical interface that provide unified kernel
configuration management. This paper describes the use of these new tools. It is intended for use by
HP-UX system administrators.

Kernel configuration features
The new suite of kernel configuration tools provides the following key features for system
administrators:
• All kernel configuration tasks can be performed in a single graphical interface.
• All kernel configuration tasks can also be performed using a cohesive set of commands with the

same user interface and same behavior.
• Kernel configurations can be saved and restored and moved between systems.
• Administrators can save any number of kernel configurations, and can switch between them at

will�often without a reboot.
• The running kernel configuration is automatically backed up before each configuration change (if

desired).
• The system automatically maintains a detailed log file of all kernel configuration changes.
• Kernel modules and kernel tunable parameters now have descriptions associated with them. Kernel

tunable parameters have online documentation and descriptions of the relationships between
them.

• All kernel configuration commands can produce output in both user-friendly and script-friendly
formats.
HP supports release-to-release compatibility for the script-friendly formats.

What is a kernel configuration?
Logically, a kernel configuration is a collection of all of the administrator choices and settings needed
to determine the behavior and capabilities of the HP-UX kernel. In this implementation, the collection
includes:
• A set of kernel modules, each with a desired state
• A set of kernel tunable parameter value assignments
• A primary swap device specification
• A set of dump device specifications
• A set of bindings of devices to device drivers
• A name and optional description of the kernel configuration

Physically, a kernel configuration is a directory under /stand that contains the files needed to realize
the specified behavior. The directory includes:
• An HP-UX kernel executable
• A set of HP-UX kernel module files
• A kernel registry database, containing all of the above settings
• A system file, describing the above settings in human-readable form
• Various other implementation-specific files
In addition to the configuration of the running kernel, HP-UX systems can have any number of saved
kernel configurations, limited only by the disk space available in /stand.

4

Overview of kernel configuration commands
There are three primary commands used to manage kernel configurations: kconfig, kcmodule, and
kctune.

kconfig is used to manage whole kernel configurations. It allows configurations to be saved, loaded,
copied, renamed, deleted, exported, imported, etc. It can also list existing saved configurations and
give details about them. For more information, see the section �Managing saved configurations using
kconfig� on page 23, or the kconfig(1M) man page.

5

kcmodule is used to manage kernel modules. Kernel modules can be device drivers, kernel
subsystems, or other bodies of kernel code. Each module can be unused, statically bound into the
main kernel executable, or dynamically loaded. kcmodule will display or change the state of any
module in the currently running configuration or any saved configuration. For more information, see
the section �Managing kernel modules with kcmodule� on page 8, or the kcmodule(1M) man page.

kctune is used to manage kernel tunable parameters. These are variables that control the behavior of
the kernel. They have many uses�common ones include controlling the allocation of system
resources and tuning aspects of kernel performance. kctune will display or change the value of any
tunable parameter in the currently running configuration or any saved configuration. For more
information, see the section �Managing kernel tunable parameters with kctune� on page 14, or the
kctune(1M) man page.

In addition to these three primary commands, there are two other kernel configuration commands.
The kcpath command prints information about the location of the currently running kernel�it is
intended for use by scripts and applications that need this information. (See the kcpath(1M) man
page for details.) The kclog command searches the kernel configuration log file; for details see the
section �The kernel configuration log file�on page 28, or the kclog(1M) man page.

Finally, users of the mk_kernel(1M), kmpath(1M), and kmtune(1M) commands present in previous HP-
UX releases should be aware that these commands can still be used. They have been re-implemented
as small shell scripts that invoke the commands listed above. These commands will be removed in a
future release.

Overview of the kcweb tool
Administrators can configure and manage the kernel without remembering the syntax of the kernel
configuration commands and the exact names of modules and tunables by using the Web-based
user-friendly HP-UX kernel configuration tool. kcweb is a Web-based HP-UX kernel configuration tool
used to configure and manage the kernel of your system. The various features of kcweb are as follows:

• Web-based and user-friendly graphical user interface (GUI)
• Monitor and modify kernel tunables
• Add, modify, and remove alarms
• Modify kernel module state
• Access the manpage for tunable
• Command preview�when a tunable, module, or alarm is modified, you can use the command

preview feature by choosing the ? button; this will show the kernel configuration command
invocation that will perform the requested task

6

7

kcweb can be accessed in any of the following ways:

• From the command-line using the kcweb command
• From the HP Service Control Manager (SCM)
• From the Kernel Config (kcweb) area of SAM
• From a Web browser, using the URL of a kcweb server that has already been started

By default, kcweb invokes the Mozilla Web browser. If you want to invoke kcweb on any other
browser, set the BROWSER environment variable to the pathname of the browser you wish to use. For
more details, see the kcweb(1M) man page.

Other kernel configuration operations
This paper contains sections describing some special kernel configuration operations and special uses
of the kernel configuration commands.

The usage of some kernel resources can be monitored, and alarms can be delivered when usage rises
above a set threshold. These alarms can be configured and reviewed using the kcalarm command or
the kcweb tool. The resource usages can be reviewed using the kcusage command or the kcweb
tool. For more information, see the section �Monitoring kernel resource usage� on page 20.

Administrators of older versions of HP-UX may be accustomed to using text files (�system files� or
�dfiles�) to specify kernel configurations and make changes to them. The format of these files has
been enhanced1 to accommodate new kernel configuration innovations, while retaining the
usefulness of a text file for configuration operations. (They are particularly useful when using the same
configuration on multiple systems, since they can be easily moved between systems.) The use of
system files is described in the section �Managing configurations with system files� on page 25.

Some uncommon configuration settings can be controlled only through the use of system files. These
include the setting of the primary swap device, the setting of the initial dump devices, and the explicit
binding of specific devices to specific device driver modules. For more information, see the section
�Managing device bindings� on page 27.

All kernel configuration changes made using the kernel configuration commands are logged to the
file /var/adm/kc.log. Details about this log file can be found in the section �The kernel configuration
log file� on page 28, or the kconfig(5) and kclog(1M) man pages.

The primary kernel configuration commands support a specialized output format designed for use by
scripts and applications that need to parse the output of the commands. Such scripts and
applications must use this specialized output format since HP does not guarantee release-to-release
compatibility for any other output format of these commands. More detail is available in the section
�Parsing command output� on page 29, or the kconfig(5) man page.

It is possible to have an undesirable, or even unbootable, kernel configuration because of mistaken
configuration changes, hardware failures, or software defects. Mechanisms exist both to prevent such
problems and to help recover from them. For more details see the section �Recovering from errors� on
page 30.

1 The system file formats from previous releases of HP-UX are still accepted.

8

Common behavior for kernel configuration commands
Because the kernel configuration commands are part of a unified suite, they share behavior
whenever possible. Shared behaviors include command line flags, output formats, exit status codes,
security constraints, and persistence of changes.

Common command line flags
Command line flags are shared by the kernel configuration commands as shown in the table below.

Flag Description kc
on

fig

kc
m

od
ul

e

kc
tu

ne

kc
lo

g

-a (all) Include information in the output that is normally omitted for
brevity.

! ! !

-B (Backup) Back up the currently running configuration before
changing it. ! ! !

-c (configuration) Specify the saved configuration to manage. If
omitted, manage the currently running configuration. ! ! !

-C (Comment) Include a comment in the kernel configuration log
file entry associated with this command invocation. ! ! ! !

-d (description) Display descriptions of each item. ! !

-D (Difference) Display only elements for which there is a change
being held for next boot. ! ! !

-h (hold) Hold the requested changes for next boot. ! ! !

-K (Keep) Do not back up the currently running configuration. Keep
the existing backup unmodified. ! ! !

-P (Parse) Use the special �parsable� output format. ! ! !

-S
(Set) Display only elements that have been set to something
other
than default.

! ! !

-v (verbose) Display items using verbose output format. ! ! !

Common output formats
When retrieving information, the primary kernel configuration commands produce output in three
basic output formats: table, verbose, and parsable.

By default, the commands produce a short table format. This is a format that gives one line for each
item being described. Only the most commonly used information is included in order to allow the
output to fit on one line on most terminals.

With a –v (verbose) flag, the commands produce a verbose output format. This format gives all
available information for each item being described, taking multiple lines to do so. A blank line
separates the items in the output.

With a –P (Parse) flag, the commands produce an output format designed to be parsed by scripts or
applications. This format is described in the section �Parsing command output� on page 29. Scripts
and applications must parse this output format because HP supports release-to-release compatibility
of output format only when the –P flag is used.

9

The kernel configuration commands all use a common format for error, warning, note, and progress
messages. It is the same format used by the Software Distributor package and is, therefore, already
familiar to most administrators.

ERROR: This is an error message. It explains why the
 requested operation cannot complete.

WARNING: This is a warning message. The requested
 operation completed, but not smoothly.
 A situation may exist that needs correction.

NOTE: This is a note. It provides information about
 how the operation completed or other
 information of potential interest to the
 administrator.
 * This is a progress message. It displays the
 steps completed during the operation.

Common exit status codes
All of the kernel configuration commands exit with one of these status codes:

0 Operation was successful.
1 The requested changes could not be applied to the currently running system.
 They are being held and will be applied at next boot.
2 The operation could not complete successfully.

Common security constraints
Any user can run the kernel configuration commands to query configuration information. However,
access to configuration information is subject to standard UNIX® file system permissions on the relevant
files.

Superuser privileges are required to make any configuration changes.

Persistence of changes
By default, the kernel configuration tools will apply configuration changes to the currently running
system, causing an immediate change in behavior. System administrators can override this default by
specifying the -h (hold) option to any of the commands. This option causes the change(s) to be held
until the system is rebooted. HP recommends that this option be used only when the next reboot is
expected to happen soon. If the reboot doesn�t happen for months after the change, the change
could come as an unwelcome surprise to an administrator who had forgotten the request.

Some configuration changes cannot be applied without a reboot. These changes will be held until the
system is rebooted even if the –h option is not specified. In these cases, a warning message will be
printed.

If multiple configuration changes are requested in a single invocation of one of the kernel
configuration commands and any one of those changes requires a reboot, all of the requested
changes will be held until the system is rebooted. In particular, if a saved kernel configuration is
loaded using kconfig –l (load) and that configuration cannot be used without a reboot, the state of
the running system is not changed and the specified kernel configuration will be used at next boot
instead.

Changes being held for next boot can be listed using the –D (Differences) option to the kcmodule,
kctune, or kconfig commands. See below for more details on each of these commands.

Changes being held for next boot are discarded when the currently running configuration is replaced
using kconfig –i (import), kconfig –l (load), or kconfig –n (next boot); when explicitly discarded
using kconfig –H (unHold); or when subsequent changes are made that override them. For
example, let�s say you run the following commands:

kctune –h nproc=5000 (set to 5000, hold for next boot)
kctune nproc=6000 (set to 6000, now)

The value of nproc at next boot will be 6000; the change to 5000 is discarded. A warning will be
printed in these situations.

10

Changes that are made to the currently running system are retained when the system is rebooted.
They remain in effect until changed.

11

Managing kernel modules with kcmodule
The kcmodule(1M) command is used to query and change the states of kernel modules in the
currently running configuration or in a saved configuration. The HP-UX kernel is built from a number of
modules, each of which is a device driver, kernel subsystem, or some other body of kernel code. A
typical kernel has 200�300 modules in it.

Getting information about modules
When you run kcmodule with no options, it shows you the modules on your system, their current state,
and the state they will have at next boot. On a typical system, you will see many modules in static
state; some modules that are unused, which are often device drivers for hardware your system
doesn�t have; and a handful of modules in loaded state. (The states are described below.)

When using the –c (configuration) option, kcmodule displays the module information from a saved
configuration instead of from the currently running system.

The output of kcmodule can be varied with several options. To control which modules are listed, use
the –a (all),
–D (Differences), and/or –S (Set) flags. The –a option adds required modules to the output (normally
they are omitted). The –D option restricts the output to only those modules whose state at next boot is
different from their current state. The –S option restricts the output to modules whose state has been
explicitly set (i.e., it omits required modules, unused modules, and modules added to satisfy a
dependency). The output can also be restricted by listing module names on the command line.

To control the output format, use the –d (description), –v (verbose), or –P (Parse) flags. Without these
flags, the output looks like this:

Module State Cause

fcms static depend

krs static required

Using the –d flag adds the description of each module.

Module State Cause

Description

fcms static depend

Fibre Channel Mass Storage Driver

krs static required

Kernel Registry Service

Using the –v flag gives verbose, multi-line information about each module:

Name fcms [3E4741A9]

Description Fibre Channel Mass Storage Driver

State static (to resolve dependencies)

Capable unused static

Depends On module libfcms

 interface HPUX_11_23 1.0.0

Name krs [3E47419F]

Description Kernel Registry Service

State static (required)

Capable static

Depends On module libkrs

 module libkrs_pdk

 interface HPUX_11_23 1.0.0

12

The –P flag, which is designed for use by scripts or programs, gives complete control over what
information is printed:

kcmodule -P name,desc fcms krs

name fcms

desc Fibre Channel Mass Storage Driver

name krs

desc Kernel Registry Service

For more information on the –P (Parse) flag and its use by scripts or programs, see the section �Parsing
command output� on page 29, or the kconfig(5) man page.

Interpreting module information
Looking at the sample output above, you can see that each module has a name and a text
description. Each module also has a version, which typically looks like either [3E36E5FA] or 0.1.0,
depending on the age of the module. Older modules use the first form and newer modules use the
second form.

A kernel configuration can only use one version of any given module. However, multiple versions may
be listed if, for example, your currently running system is using a different version of a module from the
one that will be used at next boot. Version numbers are normally omitted from the short listing, but will
be included if there�s more than one version of a module.

Each kernel module in the currently running configuration has a state, which describes how the
module is being used. The possible states are:

unused The module is installed on the system but not in use.

static The module is statically bound into the kernel executable. This is the most
common
 state. Moving a module into or out of this state requires relinking the kernel
executable
 and rebooting.

loaded The module is dynamically loaded into the kernel. Newer modules support
this state.
 Such modules may be added to the kernel configuration or removed from it
without
 rebooting.

auto The module will be dynamically loaded into the kernel when it is first needed,
but it
 hasn�t been needed yet.

When kcmodule is giving information about the currently running system, and there are configuration
changes being held for next boot, kcmodule will list both the current state and the state at next boot.
For next boot, the same states are used, with complementary meanings:

unused The module will not be used.

static The module will be statically bound into the kernel executable.

loaded The module will be dynamically loaded into the kernel during the boot
process.

auto The module will be dynamically loaded into the kernel when it is first needed
after
 each boot.

When kcmodule is giving information about a saved configuration, the same states are used.

Next to each module state is a �Cause�, which tells why the module is (or will be) in that state. The
causes are:

explicit The system administrator explicitly chose the state.

best The system administrator chose to use the module, but didn�t choose a
specific state,
 so the module is in its �best� state as determined by the module developer.

13

auto The module was in auto state, and was automatically loaded when
something tried to
 use it.

required The module was marked required by its developer.

depend The module is in use because some other module in the configuration
depends on it.

14

Different modules can support different states. Nearly all modules can be in static state, but only a
few support loaded or auto states. Many modules can be in unused state, but required modules
cannot. The �Capable� line in the output shows which states a module supports. (Hint: to see if a
module is required, look to see whether unused appears on the �Capable� line. If it does, the module
is not required.)

Modules often have dependencies between them. For example, device drivers typically cannot be
configured into the kernel unless the driver support modules are also configured. Dependencies like
this are shown on the �Depends On� lines in the output. A module can be dependent on a particular
other module, specified by name and version. A module can also be dependent on an interface that
must be supplied by some other module, without specifically saying which module(s) supply that
interface. Modules that supply such interfaces have an �Exports� line in the output listing the interfaces
they export.

Changing module states
To change the state of a module, put module state assignments on the kcmodule command line. (Or
see the section, �Managing configurations with system files� on page 25.) For example, to load the CD
File System module, named cdfs:

kcmodule cdfs=loaded
In fact, loaded is the developer-chosen �best� state for cdfs, so this command is the same as:

kcmodule cdfs=best
To unload it:

kcmodule cdfs=unused

See the kcmodule(1M) man page for details.

When you change a module state using a command similar to the above examples, the change will
be made immediately to the currently running system, if possible. Sometimes it�s not possible to make
the change immediately; for example, there might be a CD file system mounted, in which case cdfs
can�t be unloaded. In those cases, kcmodule will hold the change and apply it at next boot. A
change that moves a module into or out of static state can never be applied immediately, and will
always be held for next boot. If any change on the kcmodule command line has to be held for next
boot, they all will be.

When modules are moved into or out of static state, the kcmodule command will run for quite a
while. This is because such changes require that the kernel executable be relinked. If you have
multiple changes to make, it is best that you list them all on the same kcmodule command line or
make the changes in a system file and import it. (See the section �Managing configurations with
system files� on page 25.) Either of these techniques will ensure that the kernel executable is only
relinked once.

Sometimes you may want to force a change to be held for next boot, instead of applying it
immediately. In these cases you can give the –h (hold) flag to kcmodule to force that behavior. HP
recommends that this flag be used only when the next boot is expected to be soon. If the next boot
doesn�t happen for months after making such a change, the system administrator could be
unpleasantly surprised at the effect of a pending change that had been forgotten.

Changes to saved kernel configurations can be made using the –c (configuration) flag. Such changes
are made to the saved configuration immediately, but they won�t affect the running system until that
saved configuration is either loaded or booted. See the section �Managing saved configurations
using kconfig� on page 23 for more information.

When changing module states, kcmodule supports the –B and –K flags to specify backup behavior,
and the –C flag to specify a log file comment. See the sections �Recovering from errors� on page 30
and �The kernel configuration log file� on page 28 for details.

15

Managing kernel modules with kcweb
kcweb can be used to query and change the states of kernel modules in the currently running
configuration. Using kcweb, you can:

• Determine which modules are currently running in the kernel
• View details about a module
• Modify the state of a module

You can view the modules pane by choosing the modules menu item from the navigation column in
kcweb.

Getting information about modules
To get more detailed information about a particular module, execute the following two steps:

• Select the modules menu item in the navigation column. The modules pane is displayed, listing all
the modules that are currently configured on your system.

• Select a module to view the details about a particular module in the details pane.

16

Interpreting module information
If you choose a module, the module details pane is displayed.

The module details pane contains the following information:

Field name Description

module Indicates the name of the module.

description Indicates a brief description of the module.

version Indicates the version of the module.

state Indicates the state of the module in the kernel that is currently running (unused,
static, loaded, auto).

cause Indicates the reason why the module is in its current state (explicit, auto,
depend, required, default).

next boot Indicates the state of the module after the system is restarted.

next boot cause Indicates the reason why the module is in its next boot state.

capabilities Indicates all the states that the module is capable of supporting.

dynamic Indicates that it is a dynamically loadable kernel module.

required Indicates whether or not the kernel requires the module.

dependencies Indicates the modules required by this module.

exports Lists all the interfaces exported by this module.

17

Changing module states
To change the state of a module, execute the following steps:

• Select the modules menu item in the navigation column. The modules pane is displayed, listing all
the modules that are currently configured on your system.

• Select a module that you wish to modify by choosing the icon or the modify module state
button.

The modify module state page is displayed.

Note: If the cause is dependent/required, the modify module state button will not appear since
kcweb does not allow modifications to the state of a required module or a module on which other
modules are dependent.

The modify module state page contains the following fields:

Field name Description

module Name of the module that will be modified.

description A description of the module.

version Version number of the module

state The current value of the module.

cause How the module got into its current state.

next boot The state that the module will be changed to if you click the OK button.

capabilities All the states that the module can support.

dynamic Indicates whether the module is a dynamically loadable kernel module.

dependencies All the modules on which this module depends.

mode of change

Contains a set of radio buttons to apply kernel configuration changes
immediately or to hold kernel configuration changes till next boot. This field is
displayed only for dynamic modules. By default, the change at next boot radio
button is selected. If you do not select any radio button, kernel configuration
changes will be held till next boot.

reason for change Editable text field to enter comments for change in module state.

back up the current
configuration before applying
change

Backup of current configuration before applying the change; by default, this
checkbox is selected.

18

19

Managing kernel tunable parameters with kctune
The kctune command is used to query and change the values of kernel tunable parameters
(tunables) in the currently running configuration or in a saved configuration. Tunables are variables
that govern the behavior of the HP-UX kernel. Tunables are used for a variety of different tasks�some
control resource allocations, others control security policies, others enable optional kernel behavior,
etc. There are 150�200 tunables in a typical kernel.

System administrators can create their own user-defined tunables if they choose. These will not affect
the operation of the system directly, but they can be used in computing the values of other tunables.
For example, an administrator could choose to create a num_databases tunable and then set several
kernel tunables based on its value. A subsequent change to the value of num_databases would
cause all of the related kernel tunable values to be changed as well.

Getting information about tunables
When you run kctune with no options, it shows you the tunables associated with the kernel modules on
your system (as well as any user-defined tunables), their current values, and the expressions used to
compute those values. If there are changes to those values being held for next boot, those will be
shown as well. On a typical system, the expression for most tunables is �Default,� meaning that the
administrator is allowing the system to choose the tunable value.

When using the –c (configuration) option, kctune displays the tunable information from a saved
configuration instead of from the currently running system.

The output of kctune can be varied with several options. To control which tunables are listed, use the –
D (Differences) or –S (Set) flags. The –D option restricts the output to only those tunables whose value
at next boot
is different from their current value. The –S option restricts the output to only those tunables that are set
to a non-default value. The output can also be restricted by listing tunable names on the command
line.

To control the output format, use the –d (description), -g (group), –v (verbose), or –P (Parse) flags.
Without these flags, the output looks like this:

Tunable Current Expression Changes
acctresume 4 Default
maxuprc 256 Default Immed
nproc 4200 Default Immed

Using the –d flag adds the description of each tunable:

Tunable Current Expression Changes
Description

acctresume 4 Default
Percentage of disk space that must be free to resume accounting

maxuprc 256 Default Immed
Maximum number of processes for each non-root user

nproc 4200 Default Immed
Maximum number of processes on the system

Using the –g flag adds the name of the module defining the tunable and sorts the output by module
name. This has the effect of grouping related tunables together in the output.

Module Tunable Value Expression Changes
acct acctresume 4 Default
pm maxuprc 256 Default Immed
pm nproc 4200 Default Immed

20

Using the –v flag gives verbose, multi-line information about each tunable:

Tunable acctresume
Description Percentage of disk space that must be free to resume
Module pm
Current Value 4 [Default]
Value at Next Boot 4 [Default]
Value at Last Boot 4
Default Value 4
Constraints acctresume >= -100
 acctresume <= 101
 acctresume > acctsuspend
Can Change At Next Boot Only

Tunable nproc
Description Maximum number of processes on the system
Module pm
Current Value 4200 [Default]
Value at Next Boot 4200 [Default]
Value at Last Boot 4200
Default Value 4200
Constraints nproc >= 100
 nproc <= 30000
 nproc >= maxuprc + 5
 nproc <= nkthread – 100
 nproc >= semmnu + 4
Can Change Immediately or at Next Boot

The –P flag, which is designed for use by scripts or programs, gives complete control over what
information is printed:

kctune -P name,current acctresume nproc
name acctresume
current 4

name nproc
current 4200

For more information on the –P flag and its use by scripts or programs, see the section �Parsing
command output� on page 29, or the kconfig(5) man page.

Interpreting tunable information
Looking at the sample output above, you can see that each tunable has a name and a text
description. Each tunable is associated with a kernel module whose name is listed in the verbose
output (or in the table output if –g is specified). Tunables can be seen and changed only if they are
associated with a module that is installed on the system (or are user-defined). The module does not
have to be in use.

When displaying tunable information for the currently running system, kctune includes the current
tunable value and the expression used to compute it. If changes to the tunable�s value are being
held for next boot, the next boot value and expression are also shown. Verbose listings also show the
value the tunable had when the system was last booted. When displaying tunable information for a
saved configuration, kctune displays only a current value.

Tunable values are computed integer expressions, which can refer to other tunable values. (Circular
references are not permitted.) The value of a tunable could be 4200, or 0x400, or 12*1024, or
4*nproc+20. Values and expressions use the syntax of the C programming language. Therefore,
numbers can be written in decimal (256), octal (01000), or hexadecimal (0x100). Expressions can use
the following operators and symbols:

() ~ ! - + * / % << >> < <= > >= & ^ | == != && || ?:

Whitespace is not permitted in any tunable expression. For backward compatibility, tunable names
used in expressions can appear in all capitals, but this usage is discouraged and support for it will be
removed in a
future release.

21

All kernel tunables have a default value, which is chosen by the developer and is shown in the
verbose output. For some tunables, the default value is fixed and never changes. For other tunables a
new default value is chosen by the system at boot time. Still others can be automatically tuned,
meaning that the default value can change periodically while the system is running, in response to
changing system resources and needs. When a tunable is set to default, its expression is reported as
�Default,� as seen in the examples above. In these cases, the system is free to choose the value it
thinks optimal, and to change it as needed. HP recommends that tunables be left set to default unless
the default is known to be unsatisfactory.

Note: setting a tunable to �Default� is not the same thing as setting it explicitly to the default value
reported by kctune. Using the example above, if you set nproc to 4200, its value will remain 4200 until
you change it. However, if you set nproc to �Default,� its value will be kept up to date with any
improvements HP makes to the default value for nproc.

Some tunables have constraints on their values, which are shown in the verbose output. Sometimes
these are minimum and/or maximum values, as shown for nproc above. Other times these are fixed
relationships between tunables (for example, acctresume must be greater than acctsuspend) or
restrictions on the allowed values (for example, dnlc_hash_locks must be a power of two). These
constraints are enforced whenever changing tunable values. There are other constraints, not shown
by kctune, that are based on the current state of the system and can change over time (for example,
nproc cannot be set to less than the number of processes currently running). These constraints are
enforced only when changing the currently running system, and not when making changes held for
use at next boot or changes to a saved configuration.

Some tunables have restrictions on when their values can be changed. These restrictions are noted in
the kctune output. Tunables whose values can be changed immediately are marked Immed. Tunables
whose values can be automatically tuned by the system are marked Auto. Tunables without either
marking can only be changed with a reboot.

All HP-UX tunables have man pages. To obtain information about the behavior, allowed values, and
side effects of a tunable, consult the man page for that tunable, which can be found in section 5 of
the online manual. An overview of all of the kernel tunables can be found in the �Tunable kernel
parameters� document, available on docs.hp.com.

Changing tunable values
To change the value of a tunable, put tunable value assignments on the kctune command line. (Or
see the section �Managing configurations with system files� on page 25.) For example, to set nproc to
4300:

kctune nproc=4300

To set a tunable to �Default,� either of these assignments will work. (Setting a user-defined tunable to
�Default� causes it to be removed.)

kctune nproc=
kctune nproc=default

Assignments can be to expressions, as noted above. Note that the assignment may need to be
quoted to avoid interpretation by the shell.

kctune 'nkthread=nproc*2+100'

To create a user-defined tunable, use the –u (user-defined) flag when you assign the tunable a value.
The –u flag is not needed to change the value of an existing user-defined tunable.

Using the += symbol, you can increase the value of a tunable (by 100, in this example):

kctune nproc+=100

Using the >= symbol, you can ensure a minimum value of a tunable. The following command will set
nproc to 5000 if its current value is below 5000. If its current value is already 5000 or greater, it will be
left unchanged. Note that the assignment was quoted to avoid interpretation by the shell:

kctune 'nproc>=5000'

See the kctune(1M) man page for details.

22

When you change a tunable value using a command similar to the above examples, the change will
be made immediately to the currently running system, if possible. Sometimes it�s not possible to make
the change immediately; for example, you might be trying to reduce the maximum value of some
resource to below the current usage. Also, there are some tunables that cannot be changed without
a reboot. In those cases, kctune will hold the change and apply it at next boot. If any change on the
kctune command line has to be held for next boot, they all will be.

Sometimes you may want to force a change to be held for next boot, instead of applying it
immediately. In these cases you can give the –h (hold) flag to kctune to force that behavior. HP
recommends that this flag be used only when the next boot is expected to be soon. If the next boot
doesn�t happen for months after making such a change, the system administrator could be
unpleasantly surprised at the effect of a pending change that had been forgotten.

Changes to saved kernel configurations can be made by using the –c (configuration) flag. Such
changes
are made to the saved configuration immediately, but they won�t affect the running system until that
saved configuration is either loaded or booted. See the section �Managing saved configurations
using kconfig�
on page 23 for more information.

When changing tunable values, kctune supports the –B and –K flags to specify backup behavior, and
the
–C flag to specify a log file comment. See the sections �Recovering from errors� on page 30 and �The
kernel configuration log file� on page 28 for details.

Managing kernel tunable parameters with kcweb
kcweb can be used to query and change the values of kernel tunable parameters (�tunables�) in the
currently running configuration. Using kcweb, you can

• Modify the value of a tunable
• View details about a tunable
• Search for a tunable
• Check the current and next boot value for a tunable
• Print details about a tunable or print a list of all tunables

You can view the tunables pane by choosing the tunables menu item from the navigation column in
kcweb.

23

24

Getting information about tunables
To get more detailed information about a particular tunable, execute the following two steps:

• Select the tunables menu item in the navigation column. The tunables pane is displayed, listing all
the tunables that are currently configured on your system.

• Select a tunable to view the details about a particular tunable in the details pane.

Interpreting tunable information
If you choose a tunable, the tunable details pane is displayed.

The tunable details pane contains the following information:

Field name Description

tunable Indicates the name of the tunable.

description Indicates a brief description of the tunable.

module Indicates the name of the module (if any) that the tunable is associated with.

current Indicates the current maximum value for the resource.

next boot (expression) Indicates a formula describing the next boot value (note: this can also be an integer).

next boot (integer) Indicates the planned value, with all formulae computed.

last boot value Indicates the value of the tunable when the system was last booted.

default Indicates the default value for the tunable.

legal range Indicates the range of values that are legal for the tunable.

present usage Indicates the amount of the resource consumed at the time the pane was displayed, as an integer
value followed by the percent usage of resource in parentheses.

dynamic Indicates that a dynamic kernel tunable can be modified without rebooting the system.

auto tune status Indicates whether the tunable is being automatically tuned.

25

Changing tunable values
To change the value of a tunable, execute the following steps:

• Select the tunables menu item in the navigation column. The tunables pane is displayed, listing all
the tunables that are currently configured on your system.

• Select a tunable that you wish to modify by choosing the icon or the modify tunable_name
button.

The �modify tunable� page is displayed.

The modify tunable page contains the following fields:

Field name Description

tunable Indicates the name of the tunable that will be modified.

description Indicates a description of the tunable.

module Indicates the kernel module that the tunable is associated with.

current Indicates the current value of the tunable.

next boot (expression) A formula describing the next boot value (can be an integer).

next boot (integer) Indicates the calculated value of the user input field �next boot�; may need to be refreshed
by clicking the recalculate button.

last boot value Indicates the value of the tunable when the system was last booted.

default This is the default value of the tunable; pressing the default button will copy the default value
into the planned field.

legal range

Indicates the range of acceptable values for the tunable; negative numbers are indicated
by a minus sign (-), positive values have an implicit plus sign (+). �NA� means not available,
and indicates that the underlying command, kctune, is returning neither a minimum nor a
maximum value.

dynamic Indicates whether the tunable value can be changed without rebooting the system.

auto tune status Indicates whether the tunable is automatically tuned.

mode of change
Contains a set of radio buttons to apply kernel configuration changes immediately or to
hold kernel configuration changes till next boot. This field will appear only for dynamic
tunables. By default, kernel configuration changes will be held till next boot.

back up the current
configuration before
applying change

Implies backup of current configuration before applying the change. By default, this
checkbox is selected.

reason for change Enter a comment.

26

Monitoring kernel resource usage
Some tunable parameters represent kernel resources whose usage can be monitored. For these
tunables, you can set alarms to notify you when the usage of the corresponding kernel resource
crosses a threshold you specify.

Getting information about alarms
To get more detailed information about a particular alarm using kcweb, execute the following two
steps:

• Select the alarms menu item in the navigation column. The alarms pane is displayed, listing all the
alarms that are currently configured on your system.

• Select an alarm to view the details about a particular alarm in the details pane.

The alarms page allows you to:

• Create and remove alarms
• Activate and deactivate alarms
• Find alarms that have been triggered
• View details on alarms

27

Interpreting alarms information
If you choose an alarm, the alarm details pane is displayed.

The alarms details pane contains the following information:

Field name Description

tunable Indicates the name of the tunable.

status Indicates the status of the alarm if it is active or if the resource is currently exceeding the
threshold.

threshold Indicates the percentage at which the alarm should activate.

present usage Indicates the percentage of resource being consumed at the previous polling.

event type Indicates the event notification to be used.

polling interval Indicates the time interval between polling.

notification Indicates the method used to notify about alarm triggering.

notification data Indicates supplementary information used by the notification method (not present if the
notification method does not require it).

notification port Indicates the port to communicate notification on (not present if not required by the
notification method).

comment Indicates the comment field; some comment data is added automatically when alarms
are deactivated.

28

Changing alarm values
To change the value of an alarm for a tunable, execute the following steps:

• Select the alarms menu item in the navigation column. The alarms pane is displayed, listing all the
alarms that are currently configured on your system.

• Select an alarm that you wish to modify by choosing the icon or the modify . . . button.

The modify alarm page is displayed.

The modify alarm page contains the following fields:

Field name Description

tunable Indicates the name of the tunable for which the alarm will be modified.

threshold Indicates the percent at which the alarm is to trigger.

event type

Displays the checkboxes that determine when notifications are to be sent:

initial - first polling at which resource usage exceeds threshold; when an alarm is first added,
activated, deactivated, or the system reboots

repeat - each polling at which resource usage exceeds threshold (this can lead to a large number of
messages if the polling interval is small)

return - first polling at which resource usage falls below threshold

If none of the checkboxes are checked, the default event type, as set by kcalarm will be used.

Note: More than one checkbox can be checked; selecting both �initial� and �return� will generate a
notification whenever the usage crosses above or below the threshold.

polling
interval Displays the interval, in minutes, between polling of resource usage.

notification Displays the notification method (console, opcmsg, syslog, textlog, email, snmp, tcp, udp).

comment Indicates the comment field.

29

Resource usage commands
The kcalarm command is used to add, delete, or list selected kernel tunable alarms, as well as turn
kernel tunable monitoring on and off.

kcalarm is used to manage selected kernel tunable alarms and monitors; alarms and monitors are
implemented in the kcmond daemon. Users can create, modify, delete, and list selected kernel
tunable alarms. Alarms send a notification though various notification targets when a kernel tunable
crosses a specified percentage threshold of its current setting.

Monitoring is the process of collecting historical tunable data. When this feature is turned on, historical
data is collected on the usage of supported tunables. The data is used by the kcusage command to
generate usage tables (including top consumers) for supported kernel tunables. The data also
enables usage graphs in the kcweb tool. Monitoring is turned on by default when the kcweb tool is
installed.

For more information, see the kcalarm(1M), kcmond(1M), and kcusage(1M) man pages.

Managing the running configuration with kconfig
The kconfig command has two options that are useful for dealing with changes to the currently
running kernel configuration being held for next boot. Configuration changes are held for next boot
when requested (using the
–h (hold) option to kcmodule or kctune, or the –n (next boot) option to kconfig). Configuration
changes are also held for next boot when they cannot be applied to the currently running system.

To get a list of changes being held for next boot, run kconfig –D (Differences). This is really just a short
cut for running kcmodule –D and kctune –D. Similarly, to get a list of configuration settings that are
set to non-default values, run kconfig –S (Set). This is a short cut for running kcmodule –S and
kctune –S2.

If you decide that you don�t want those changes to be applied at next boot after all, run kconfig –H
(unHold). All changes being held for next boot will be discarded.

For more information on changes being held for next boot, see the section �Persistence of changes�
on page 7.

Managing saved configurations using kconfig
When you have an HP-UX kernel configuration that satisfies your needs, you may want to save a copy
of
it to protect yourself against inadvertent configuration changes. Or you may want to have multiple
kernel configurations so you can switch between them easily. HP-UX allows you to save as many kernel
configurations
as you wish (subject to available disk space in /stand), and to modify them and use them at will.

Getting information about saved configurations
When you run kconfig with no options, it shows you the saved configurations on your system. There will
always be a saved configuration called backup, which is automatically maintained by the system; any
other saved configurations on the system will also be listed. (For more information on the backup
configuration, see the section �Recovering from errors� on page 30.)

The output of kconfig can be varied with several options. The output can be restricted to specific
configurations by listing them on the command line.

To control the output format, use the –a (all), –v (verbose), or –P (Parse) flags. Without these flags, the
output looks like this:

Configuration Title
backup Automatic Backup
day Configuration for daytime multiuser processing

2 Device binding changes are not included in these outputs. See the section �Managing device bindings� on page 27.

30

night Configuration for nighttime batch processing

31

Using the –v flag gives verbose, multi-line information about each saved configuration:

Configuration backup
Title Automatic Backup
Save Time Sun Jan 12 07:46:40 2003
Modify Time Sun Jan 12 07:46:40 2003

Configuration day
Title Configuration for daytime multiuser processing
Save Time Sun Jan 12 07:49:00 2003
Modify Time Sun Jan 12 07:49:00 2003

Configuration night
Title Configuration for nighttime batch processing
Save Time Sun Jan 12 07:52:12 2003
Modify Time Sun Jan 12 07:52:12 2003

Using the –a flag gives the same output as using the –v flag, except that after each saved
configuration, the entire outputs of kcmodule –a –v and kctune –v for that configuration are
displayed. This gives a record of all settings in the configuration (except device bindings).

The –P flag, which is designed for use by scripts or programs, gives complete control over what
information is printed:

kconfig –P name,title

name backup
title Automatic Backup

name day
title Configuration for daytime multiuser processing

name night
title Configuration for nighttime batch processing

For more information on the –P flag and its use by scripts or programs, see the section �Parsing
command output� on page 29, or the kconfig(5) man page.

Interpreting saved configuration information
Referring to the examples above, each saved configuration has a name. The names must start with a
letter; contain only letters, digits, and underscores; and be at most 32 characters long. Except for the
backup configuration, you choose the name for each saved configuration when you create it, and
you can rename it at will.

Each saved configuration can also have a title. The title can be used to provide a longer description
of the configuration�s purpose or settings. It is optional.

Each saved configuration also has a pair of timestamps. �Save Time� indicates when the configuration
was last saved (kconfig –s). �Modify Time� indicates when the configuration was last changed.

Associated with each saved configuration is a complete set of module state settings, tunable value
settings, and device bindings. These can be seen using

 kcmodule –c configname
and
 kctune –c configname
or by using
 kconfig –a configname

(Device bindings are visible only by looking at the system file for the saved configuration, located in
/stand/configname/system.)

32

Using and modifying saved configurations
Creating saved configurations
Saved kernel configurations can be created in three ways: by saving the currently running
configuration, by copying an existing saved configuration, or by reading a system file.

To save the currently running configuration, use kconfig –s (save). The resulting saved configuration
will include any changes to the currently running configuration that are being held for next boot.

An existing saved configuration can be copied using kconfig –c (copy).

For information on working with system files, see the section �Managing configurations with system
files�
on page 25.

Using saved configurations
A saved configuration can be loaded using kconfig –l (load). This changes the configuration of the
currently running kernel to match what was saved. If the configuration can be changed without a
reboot, the changes will take effect immediately. Otherwise, all of the changes will be held for next
boot.

Sometimes you may want to force the configuration change to be held for next boot rather than
applying it immediately. In these cases, mark the saved configuration for use at next boot using
kconfig –n (next boot). HP recommends that this flag be used only when the next boot is expected
to be soon. If the next boot doesn�t happen for months after making such a change, the system
administrator could be unpleasantly surprised at the effect of a pending change that had been
forgotten.

To find out which saved configuration is marked for use at next boot, use kconfig –w (which). This
command also identifies the saved configuration that was most recently loaded or booted, or the
system file that was most recently imported.

Modifying saved configurations
To modify the module state settings and tunable value settings in a saved configuration, use the –c
(configuration) option to the kcmodule and kctune commands, respectively. Saved configurations
can also be changed by changing their system file and then importing it; see the section �Making
configuration changes with system files� on page 25.

Several options to kconfig allow other changes to saved configurations. The –r (rename) option will
rename a saved configuration. (The backup configuration cannot be renamed.) The –t option will
change the title on a saved configuration. The –d (delete) option will delete a saved configuration.

If a configuration has been marked for use at next boot and you decide you want to continue using
the currently running configuration instead, use kconfig –H (unHold) to discard all changes being
held for next boot.

Managing configurations with system files
Every kernel configuration has a corresponding system file. A system file is a flat text file that describes
all of the configuration settings in a compact, machine-readable, portable format. The format of a
system file is described in detail in the system(4) man page. It is an enhancement of the format used in
previous releases of HP-UX; the previous formats are still accepted.

Making configuration changes with system files
System files provide an alternate mechanism for kernel configuration because configuration changes
can be made by editing a system file and then telling the kernel configuration tools to apply the
changes. This is the kernel configuration method most familiar to users of older versions of HP-UX.

To make configuration changes using a system file, start with the system file corresponding to the
configuration you want to change.3 The system automatically maintains system files for each
configuration. The system file for the currently running configuration is located at /stand/system. The

3 You will be asked to confirm your changes if the system file comes from a different configuration than the one you�re changing, or if

it�s out of date with respect to the configuration you�re changing.

33

system file for any saved configuration is located at /stand/configname/system. If you want to
create a new system file for a configuration, use the kconfig –e (export) command. This command
takes two forms:

kconfig –e filename (export the running configuration)
kconfig –e configname filename (export a saved configuration)

Note: /stand/system, and any system file created by exporting the running configuration, always
reflects any changes that are being held for next boot.

Once you have a system file, you can edit it using any text editor, making the changes you desire.
After editing it, you can apply the changes with the kconfig –i (import) command. This command
takes three forms:

kconfig –i filename (import to running configuration, now)
kconfig –h –i filename (import and hold for next boot)
kconfig –i configname filename (import to saved configuration)

In the first form, if the changes cannot be applied to the running system, they will be held for next
boot.

For backward compatibility, the mk_kernel command is still available to apply changes made in a
system file. Note that its name is no longer accurate since it will apply configuration changes without
making a kernel, if it can. This command has the form:

mk_kernel [–o target] [–s filename]
filename is the name of the system file to read; if not specified, /stand/system is used. To import to a
saved configuration, target should be the name of the configuration. To import to the currently
running system, taking effect immediately if possible, target should be /stand/vmunix. (Changes will
be held until next boot if they cannot be applied immediately.) If target is omitted, the changes will
be made to a saved configuration called hpux_test. It is not possible to import to the currently
running system using mk_kernel, forcing changes to be held for next boot. Use kconfig –h –i for this
purpose.

It is important to note that the system files at /stand/system and /stand/configname/system are
automatically recreated after every configuration change. In this process, comments in the system file
are not preserved. Also, the ordering of lines in the file is not preserved. Therefore, HP recommends
against putting comments in the system files. Instead, to add your comments directly to the kernel
configuration log file, use the
–C (Comment) option when importing the configuration. (See the section �The kernel configuration
log file�
on page 28.)

Most changes made in system files can be made using the kernel configuration commands, and vice
versa. Following are the equivalents:

System file line Kernel configuration command

modulename kcmodule modulename=best

module modulename best kcmodule modulename=best

module modulename state [version]4 kcmodule modulename=state

(no entry for modulename) kcmodule modulename=unused

tunablename tunablevalue kctune tunablename=tunablevalue

tunable tunablename tunablevalue kctune tunablename=tunablevalue

(no entry for tunablename) kctune tunablename=default

swap swapdevice (no equivalent)

dump dumpdevice (no equivalent)

driver devicename drivername (no equivalent)

4 System files created by the kernel configuration tools always list the version number for each module. However, it is not required.

Administrators adding module lines to a system file need not give version numbers.

34

35

Uses for system files
System files are primarily useful in four situations. First, they are useful for system administrators who are
familiar with them from previous releases of HP-UX. If you are used to editing /stand/system and
running mk_kernel to make configuration changes, it will still work.

Second, system files are the only mechanism through which device bindings can be seen or changed.
See the section �Managing device bindings� on page 27 for more details.

Third, system files are useful if you want to apply multiple configuration changes simultaneously. You
can edit /stand/system and change three tunable values and two module states, and have all of
those changes take effect together when you import the system file with kconfig –i or mk_kernel.
By contrast, each invocation of one of the kernel configuration commands applies changes
separately (although multiple changes listed on the same configuration command line are applied
together).

Applying multiple changes together is particularly valuable when modules are moved into or out of
static state, because each command that does this will run for quite a while. This is because such
changes require that the kernel executable be relinked. If you have multiple such changes to make, it
is best that you list them all on the same kcmodule command line, or make the changes in a system
file and import it. Either of these techniques will ensure that the kernel executable is only relinked once.

The other primary use for system files is copying configurations from one system to another. It is not safe
to copy a kernel configuration directory from one machine to another, and HP does not support
doing that. However, it is perfectly safe to export a system file from a configuration on one system,
move that system file to a different system, and import it there. This is an appropriate and effective
way to ensure that two machines are running compatible configurations. (Compatible means they
have the same set of kernel modules, but they may have different versions of those modules due to
patch installations.)

In some cases, running compatible configurations is not enough�you need to be sure that two
machines are running exactly the same configuration. In that case, use the –V (Version match) flag
while importing the system file on the target system. This flag turns on strict version checking, and the
import will fail if the two machines have different versions of kernel modules installed.

Managing device bindings
Device bindings are infrequently used configuration settings that can only be configured using system
files (see the section �Managing configurations with system files� on page 25). Device bindings are
notations about how particular hardware devices should be used or controlled. There are three basic
types of device bindings supported by HP-UX: primary swap device specifications, dump device
specifications, and device driver specifications. Most kernel configurations have no device bindings.

Primary swap device
Each kernel configuration is allowed to have a primary swap device specification. In essence, this
specifies which disk volume should be used by the system for paging. At present, only the primary
swap device is specified using the kernel configuration mechanisms; other swap devices, if desired,
are configured after boot using the swapon command or system call, or through entries in
/etc/fstab. (See swapon(1M), swapon(2), and fstab(4) for details.)

The primary swap device is specified in a system file as a line with one of the following forms:

swap deviceID 5
swap lvol
swap none

swap default

Only one such line is allowed. If no such line is specified, swap default is assumed.

The first form explicitly identifies the disk device to use for paging. The disk device may not contain a
file system, and must not be an LVM or VxVM physical volume. Disks are presently identified using
hardware paths (see ioscan(1M) for details), but this may change in future HP-UX releases.

5 Earlier versions of HP-UX allowed the specification of a starting offset and size of the paging area on the specified device. These

specifications are still accepted for backward compatibility; see system(4) for details. New installations should not use these
obsolescent features.

36

The second form (swap lvol) specifies that the primary swap device is one of the logical volumes in
the root LVM volume group, and that the lvlnboot(1M) command has been used to identify the
logical volume.

The third form (swap none) specifies that there should be no primary swap device. The system will be
unable to perform paging activities.

The fourth form (swap default) specifies the default behavior. It is equivalent to lvol if the system
boots from an LVM volume group. Otherwise, paging is directed to the disk containing the root file
system, in the area between the end of the file system and the end of the disk.

Dump devices
Each kernel configuration is allowed to have any number of dump devices. These are devices to
which a system crash dump should be written, if a system crash occurs. The dump devices specified in
the kernel configuration are typically only used during the boot process; once the boot process
completes, the system uses the dump devices specified in /etc/fstab instead. (See crashconf(1M)
for more details.)

Dump devices are specified in a system file as lines with the following forms:

dump deviceID
dump lvol

dump none

dump default

Any number of such lines can be specified. If no such lines are specified, dump default is assumed.

The first form (dump deviceID) explicitly identifies the disk device to use for crash dumps. The disk
device may not contain a file system, and must not be an LVM or VxVM physical volume. Disks are
presently identified using hardware paths (see ioscan(1M) for details), but this may change in future
HP-UX releases.

The second form (dump lvol) specifies that the crash dump device(s) are logical volumes in the root
LVM volume group, and that the lvlnboot(1M) command has been used to identify the logical
volume(s).

The third form (dump none) specifies that there should be no crash dump device. The system will be
unable to save crash dump information in the event of a system crash.

The fourth form (dump default) specifies the default behavior. Crash dumps will be written to the
primary swap device. (Using the same device for primary swap and for crash dumps is common and
accepted.)

Device driver specifications
Most of the time, the system can correctly choose the device driver module that should control each
hardware device in your system. In some circumstances, you may need to force a particular
hardware device to be controlled by a particular device driver module. If so, you can specify an
explicit attachment of the device to the driver in question. Most installations have no need to specify
explicit device driver specifications.

Explicit device driver bindings are specified in a system file as lines with the following form:

driver deviceID drivername

The deviceID is the identification of the hardware device in question. Devices are presently identified
using hardware paths (see ioscan(1M) for details), but this may change in future HP-UX releases. The
drivername is the name of the kernel module that is the desired driver for the device.

The kernel configuration log file
It is often useful to know what configuration changes have been made on a system. For this purpose,
the kernel configuration tools automatically maintain a log file at /var/adm/kc.log. This file lists every
change made using the kernel configuration commands. (Some configuration changes can be made
by calling kernel system calls directly. These changes are not logged. Changes made through the

37

kcweb, the Web-based GUI for kernel configuration, are logged since kcweb uses the kernel
configuration commands to make the changes.)

The log file is a plain text file that you can view directly. The kclog command is provided for when you
want to do an intelligent search of the log file, but its use is optional. (More information on the kclog
command can be found in the kclog(1M) man page.)

All of the kernel configuration commands accept a –C (Comment) option when they are being used
to make configuration changes. The –C option allows you to specify a comment that will be included
in the log entry for your change. This can help readers of the log understand the reasons for your
changes.

To add a comment to the log without making a configuration change, use kclog –C.

In the kcweb tool, you can select the change log viewer menu item from the navigation column to
see the kernel configuration log file (in reverse order).

Parsing command output
Improvements to HP-UX often require changes in the output formats of commands like those
described in this paper. This can be troublesome when applications or scripts have been written that
parse the outputs of those commands. For this reason, each of the primary kernel configuration
commands (kcmodule, kctune, and kconfig) have a special output format, selected using the –P
(Parse) flag, designed for parsing by applications. In addition to providing release-to-release
compatibility, it is also easier to parse than human-readable output.

Note: HP reserves the right to change the other output formats of these commands at any time. HP will
not support applications and scripts that parse the output of these commands unless they use the –P
option.

The –P option to each of these commands takes a list of field names, identifying the fields that the
application wants to have appear in the output. The available field names are different for each

38

command and are documented in the man pages for the commands. The list is comma-separated
and cannot contain spaces. Examples are shown in the sections above.

The output format consists of one line per field, containing the field name, a single tab character
(ASCII 9), the field value, and a newline (ASCII 12). The fields are printed in the order requested for
each item, with empty lines between the items.

Some fields have multiple values. In these cases, there will be one line for each value of the field, each
starting with the field name in the manner described.

Some fields do not have values under some circumstances. For example, the �value at last boot�
tunable field has no meaning for tunables in a saved configuration. In these cases, no line will be
printed for that field.

The special field name ALL can be used to retrieve all available data. When this field name is used,
the output may include fields that are not listed in the man page. The order of fields in the output is
undefined.

Recovering from errors
Occasionally, kernel configuration changes are made that are undesirable. Also, hardware failures
and changes can ruin a previously acceptable kernel configuration. HP-UX has several mechanisms
available to system administrators who need to recover from such issues. They include the kernel
configuration log file (described above); saved configurations, including the automatically
maintained backup configuration; and failsafe boot mode.

The automatic backup configuration
The system automatically maintains a saved configuration called backup. Generally, any time you use
the kernel configuration tools to make a change to the currently running configuration, the previous
(pre-change) configuration is saved to backup. Therefore, the backup configuration is somewhat like
the �Undo� command in a word processor. In these cases, if you load the backup configuration using
kconfig –l backup, it will reverse the last change you made to the currently running configuration
using the kernel configuration commands.

Some changes can be made to the currently running configuration by calling kernel system calls
directly. The backup configuration is not updated when those changes are made.

There are cases in which you may not want this automatic backup behavior. For example, if you have
made an undesirable change and are trying to fix it, you do not want the kernel configuration
commands to replace a good backup configuration with the one containing your undesirable
change. The –K option (keep the existing backup) can be given to any kernel configuration
command to disable the automatic update of the backup configuration. When making changes
using kcweb, you can turn off the �back up the current configuration before applying change�
checkbox to disable the automatic backup behavior.

When your system first boots, the backup configuration mirrors the configuration that was in use before
the reboot. You may not want this replaced by the first kernel configuration change you make,
especially since the first kernel configuration change could be made by a startup script before you
even get a login prompt.

For this reason, the first configuration changes after a boot are handled specially. Instead of
automatically replacing the backup configuration, the kernel configuration commands will ask you
whether or not to do so. 6 They will continue to ask each time you make a change, until the first time
you say �yes.� From that point on, until next boot, they will automatically replace the backup
configuration with each change as described above.

If you want to disable the automatic replacement of the backup configuration for a particular
change, specify –K. If you want to force an automatic replacement of the backup configuration,
specify –B (Backup). These flags work with any kernel configuration command that makes
configuration changes.

6 If the command is being run non-interactively, such as from a startup script, the answer is assumed to be �no� for kcmodule, kctune,

and kcdevice, and �yes� for kconfig.

39

Booting a saved configuration
In extreme circumstances, a mistaken configuration change can result in a kernel configuration that
won�t boot. In these cases, you have two options: boot a different configuration, such as the
automatic backup configuration, and/or boot in failsafe mode (described below).

To boot a saved configuration on an Itanium® Processor Family system, interrupt the automatic boot
process when it reaches the point that it has started the HP-UX boot loader. (On most systems, this is
during the second 10-second countdown.) At the HPUX> prompt, type

HPUX> boot configname
To boot a saved configuration on a PA-RISC system, interrupt the automatic boot process when you
arrive at the boot console handler. Tell it to boot from the desired device (typically with a boot pri
command). When it asks if you want to interact with the ISL or IPL, say yes. (The exact mechanism to
get to this point varies; consult your system�s hardware manual or the hpux(1M) man page for details.)
At the ISL> prompt, type

ISL> hpux configname/vmunix
In either case, this will boot the saved configuration named configname. When the boot is complete,
it will be the currently running configuration; the previous configuration is lost (unless it had been
automatically saved as backup).

40

Booting in failsafe mode
The other alternative for recovering from an unbootable configuration is booting in failsafe mode.
When you boot the system in failsafe mode, your configuration settings are ignored. All kernel tunables
are given failsafe values, default device bindings are used, and no kernel modules are dynamically
loaded during boot. This method is particularly useful when a hardware change or failure has caused
all of your saved configurations to be unbootable.

To boot an Itanium Processor Family system in failsafe mode, get to the HPUX> prompt as described
above and type

HPUX> boot –tm
To boot a PA-RISC system in failsafe mode, get to the ISL> prompt as described above and type

ISL> hpux –f0x40000
(The two methods can be combined if you want to boot a saved configuration in failsafe mode. This
uses the kernel executable built for the saved configuration, including all of its static modules but none
of its dynamically loaded modules.)

When you boot the system in failsafe mode, the previous kernel configuration will be automatically
saved for you with a configuration name something like saved_3DE78FA0. The exact name will be
printed for you in the boot messages on the console.

When you boot the system in failsafe mode, the boot will stop when you reach single user mode. At
this time you should take any necessary steps to repair your system or your configuration and then
reboot onto a valid configuration. HP does not recommend continuing to boot to multiuser mode
after a failsafe boot.

Guidelines for recovering from errors
If you have an undesirable or unbootable kernel configuration, HP recommends the following
approach to resolving the problem.

If your system is up:
 If you know which configuration change caused the problem:
 If your backup configuration hasn�t been updated since the bad change:
 Load the backup configuration with kconfig –l backup.
 If your backup configuration also has the problem in it:
 Try to reverse the change using kcmodule or kctune.
 Always specify the –K flag to preserve the backup configuration.
 If you don�t know what change caused the problem, or the above didn�t work:
 Load a known good configuration using kconfig –l.
 Try the backup configuration first.

If your system is down:
 If you have had a hardware failure and now the system won�t boot or if you need to preserve
 the bad configuration:
 Try booting in failsafe mode (see above).
 Repair the configuration or the hardware, then reboot.
 If no hardware failure, no need to preserve bad configuration:
 Try booting a known good configuration, such as backup.

Of course, depending on the level of your support contract with HP, you can call on HP field-service
personnel to perform these steps, if needed.

If you get to a point where you cannot boot any of your saved configurations, even in failsafe mode,
your last resort is to boot from the HP-UX installation media. If that succeeds, you do not necessarily
have to reinstall HP-UX; you can open a shell and try to repair your system.

41

Kernel configuration example
demo [HP Release B.11.23]
Console Login: root
Password:
Please wait...checking for disk quotas
...
WARNING: YOU ARE SUPERUSER!!

kconfig -C "Save initial installation config" -s installed
 * The current configuration has been saved to
 'installed'.
kconfig -t installed "Initial installation"
 * The title of the configuration 'installed' has
 been set to "Initial installation".

kctune enable_idds maxdsiz
Tunable Value Expression Changes
enable_idds 0 Default
maxdsiz 0x40000000 Default Immed

kctune -d semmni shmmni
Tunable Value Expression Changes
 Description
semmni 2048 Default
 Maximum number of semaphore sets on the system

shmmni 400 Default Immed
 Maximum number of shared memory segments on
 the system

kctune -C "Tunable settings for Prophet" "enable_idds=1" \

> "maxdsiz>=512000000" "semmni=3000" "shmmni+=50"

WARNING: The requested changes cannot be made
 to the running system.
 They will be held until next boot.
 * The automatic 'backup' configuration has
 been updated.
NOTE: No change to 'maxdsiz' was needed.
 * The requested changes have been saved,
 and will take effect at next boot.

Tunable Value Expression Changes
enable_idds (now) 0 Default
 (next boot) 1 1
maxdsiz 0x40000000 Default Immed
semmni (now) 2048 Default
 (next boot) 3000 3000
shmmni (now) 400 400 Immed
 (next boot) 450 450

kcmodule -d idds
Module State Cause
 Description
idds unused
 Intrusion Detection Data Source

kcmodule -C "Add Intrusion Detection to the kernel."
idds=best
WARNING: The requested changes cannot be made to the
 running system.
 They will be held until next boot.
 * The automatic 'backup' configuration has
 been updated.
 * Building a new kernel for configuration
 'nextboot'...
 * Adding version information to new kernel...
 * The requested changes have been saved, and
 will take effect at next boot.
Module State Cause
idds static best

kconfig –D
Module State Cause
idds (now) unused
 (next boot) static best
Tunable Value Expression Changes
enable_idds (now) 0 Default
 (next boot) 1 1

semmni (now) 2048 Default

In this example, Susie Admin is setting
up a new HP-UX system to run a
database server called �Prophet.� It
has just finished booting after the
initial install.

The first thing Susie does is save a
copy of the initial kernel configuration
in case she needs it later. She puts
comments on all of her changes (with
�C). She also puts a title on the saved
configuration to remind her what it
contains.

The manual for �Prophet� tells Susie to
set maxdsiz to at least ½ TB, to set
semmni to 3000, and to add 50 to
whatever value she�s using for
shmmni. Being a security-minded
system administrator, she knows she
also wants to turn on Intrusion
Detection by setting the
enable_idds flag. Susie starts by
looking at the current values of these
tunables and the descriptions of ones
she�s unfamiliar with.

Having done that, she sets the values
as directed. She sets them all on the
same command line so that they will
all take effect at the same time.
Since two of the changes cannot be
made immediately, all of the
changes are held for next boot.

To use Intrusion Detection, Susie
knows she needs to have the idds
module in her kernel configuration.
She checks and sees that it is
currently unused, so she adds it to her
configuration.

idds needs to be built into the kernel
executable itself, so a new kernel is
built and marked for use at next boot.

Susie checks a summary of all of her
changes that will take effect when
she reboots.

42

 (next boot) 3000 3000
shmmni (now) 400 Default Immed
 (next boot) 450 450

shutdown –r
...
 * The kernel registry database has been saved to disk.
 * The configuration changes that were being held for
 next boot have been applied.
...
The system is ready.

demo [HP Release B.11.23]
Console Login: root
Password:
Please wait...checking for disk quotas
...
WARNING: YOU ARE SUPERUSER!!

kconfig -C "Good configuration for Prophet" -s good
 * The current configuration has been saved to 'good'
kconfig -t good "Good configuration for Prophet"
 * The title of the configuration 'good' has been set
 to "Good configuration for Prophet".

kctune -C "Bigger buffer cache for better performance"
dbc_max_pct=20
WARNING: The automatic 'backup' configuration currently
 contains the configuration that was in use before
 the last reboot of this system.
 ==> Do you wish to update it to contain the current
 configuration before making the requested change?
 yes
 * The automatic 'backup' configuration has been
 updated.
 * The requested changes have been applied to the
 currently running system.

Tunable Value Expression Changes
dbc_max_pct (before) 10 Default Immed
 (now) 20 20
kconfig -C "Putting buffer cache back; performance was
 worse." -l backup
 * The configuration 'backup' has been loaded.
kctune dbc_max_pct
Tunable Value Expression Changes
dbc_max_pct 10 Default Immed

kctune -d executable_stack
 Tunable Value Expression Changes
 Description
executable_stack 0 Default Immed
 Enables execution of code on a stack (0 = no, 1 = yes,
 2 = yes but warn)
kctune -C "Nightly billing s/w needs execute-on-stack"
executable_stack=1
 * The automatic 'backup' configuration has been
 updated.
 * The requested changes have been applied to the
 currently running system.
Tunable Value Expression Changes
executable_stack (before) 0 Default Immed
 (now) 1 1
kcmodule -d rng
Module State Cause Notes
 Description
rng unused loadable, unloadable
 Strong Random Number Generator

kcmodule -C "Random Number Generator needed for nightly
 billing jobs" rng=best
 * The automatic 'backup' configuration has been
 updated.
 * The requested changes have been applied to the
 currently running system.
Module State Cause Notes
rng (before) unused loadable, unloadable
 (now) loaded best

kconfig -C "Settings for nightly billing jobs" -s night
 * The current configuration has been saved to

Satisfied, she reboots. The system
confirms that her changes will be
applied.

After the reboot, Susie saves the new
kernel configuration under the name
�good� so she can go back to it if
needed. She gives it a title to help
recognize it later.

After some time, one of her users asks
here to increase the size of the buffer
cache, hoping to speed up the
application. She complies�after all, it
doesn�t need a reboot, so she can
do it without disturbing anyone. Since
it�s the first change after boot, the
system asks whether to make
automatic backups.

It�s a good thing she said �yes.� The
larger buffer cache actually slowed
things down�but all she has to do is
restore the automatic backup.

While Susie�s on vacation, her
colleague Fred decides to use the
machine for billing software during
the night. This software needs to
execute code on the stack (a
security risk), so he enables that
behavior (which is prohibited by
default). No reboot is needed to do
so.

The billing software also uses the
kernel Random Number Generator
module. Fred checks and sees that
it�s not in use, but since it�s loadable
he doesn�t need to reboot to use it.

He goes ahead and loads the
module.

43

 'night'.

kconfig -t night "Nightly billing jobs"
 * The title of the configuration 'night' has been
 set to "Nightly billing jobs".

kconfig -r good day
 * The configuration 'good' has been renamed to
 'day'.
kconfig
Configuration Title
backup Automatic Backup
day Good configuration for Prophet
installed Initial installation
night Nightly billing jobs

kconfig -l day
 * The automatic 'backup' configuration has been
 updated.
 * The requested changes have been applied to the
 currently running system.

kconfig -l night
 * The automatic 'backup' configuration has been
 updated.
 * The requested changes have been applied to the
 currently running system.

kclog 5
==
Change to configuration 'current'
at 21:49:08 PST on 02 February 2003 by root:
Module 'rng' set to loaded state.

Random Number Generator needed for nightly billing jobs
==
Change to configuration 'night'
at 21:53:03 PST on 02 February 2003 by root:
Configuration saved from currently running configuration.

Settings for nightly billing jobs
==
Change to configuration 'day'
at 21:53:26 PST on 02 February 2003 by root:
Configuration created by renaming 'good'.
==
Change to configuration 'current'
at 21:55:49 PST on 02 February 2003 by root:
Configuration loaded from 'day'.
==
Change to configuration 'current'
at 21:56:09 PST on 02 February 2003 by root:
Configuration loaded from 'night'.

kconfig -e night /tmp/system.night
 * The configuration 'day' has been exported
 to /tmp/system.night.

kconfig -C "Move nightly billing jobs" -iV night
 /tmp/system.night
 * /tmp/system.night has been imported to 'night'.

kconfig -l night
 * The automatic 'backup' configuration has been
 updated.
NOTE: The configuration being loaded contains changes
 that cannot be applied immediately. The changes
 will be held for next boot.
shutdown –r
...
 * The kernel registry database has been saved to
 disk.
 * The configuration 'night' will be used at next
 boot, as requested.

Fred saves these new configuration
settings under the name �night� (with
a descriptive title).

Since �good� isn�t a very helpful
name for Susie�s configuration
anymore, Fred renames it to �day�.
He checks the list of configurations to
make sure everything looks OK.

Finally, he tries loading first the �day�
configuration, and then the �night�
configuration, to make sure he can
move back and forth at will.

When Susie returns from her vacation,
the first thing she does is check the
automatically maintained log file to
see what Fred has done.

She can see that Fred has put a new
application on her server, and worse,
an insecure one. At least he tested
and documented his changes.

Susie doesn�t want to leave her
system the way Fred changed it, so
she moves the nightly billing job to
another system. First, she exports his
�night� configuration to a text file.

Moving the file over to another
machine, she imports the
configuration there, using the –V flag
to ensure that exactly the same
kernel software is in use. Then she
loads the configuration. Something
about the configuration can�t be
changed immediately�probably a
tunable setting�so she has to reboot
the machine. As intended, the
machine uses Fred�s �night�
configuration when it comes back
up.

44

Kernel configuration quick reference card

Working with kernel configurations

Choose the configuration to boot:

 before the reboot7 kconfig [-f] �n configname

 at the boot loader prompt (Itanium Processor
Family)

boot configname

 at the boot loader prompt (PA-RISC) hpux configname/vmunix

List all kernel configurations kconfig [-v]

Save the currently running configuration kconfig [-f] �s new-name

Copy a saved configuration kconfig –c src dest

Rename a saved configuration kconfig –r old new

Delete a saved configuration kconfig [-f] �d configname

Load a saved configuration kconfig [-f] �l configname

Set the title of a configuration kconfig –t configname "title"

Working with system files

Create a system file:

 for a saved configuration kconfig –e configname filename

 for the currently running configuration8 kconfig –e filename

Create/update a configuration from a system file:9

 create/update a saved configuration kconfig –i configname filename

 update the currently running configuration kconfig [-fhV] �i filename

Working with changes held for next boot

kconfig –i, kcmodule, and kctune hold their changes until next boot if they can�t be applied immediately, or if
–h is specified.

List all changes being held for next boot kconfig –D

Discard all changes being held for next boot kconfig –H

Working with tunables

List tunables and their values: kctune [tunable...]
 verbose output -v

 only tunables with changes held for next boot -D

 include derived tunables set to default values -a

 group by module name -g

 in a saved configuration -c configname
Set a tunable value kctune tunable="expression"
Set a tunable to default kctune tunable=default
Increment a tunable value kctune tunable+=value
Make sure tunable value is at least n kctune "tunable>=n"
 Hold change until next boot -h

 Apply change to saved configuration -c configname

 Create user-defined tunable -u

7 If this option is used, there is no need to interrupt the boot process to select the new kernel configuration.
8 Includes any changes being held for next boot.
9 mk_kernel can also be used for this purpose.

45

Working with kernel modules

List modules and their states: kcmodule [module...]

 verbose output -v

 only modules with changes held for next boot -D

 include required modules -a

 in a saved configuration -c configname

Add a module to the configuration:

 in default state kcmodule module=best

 statically bound into the kernel executable kcmodule module=static

 dynamically loaded, now and at each boot kcmodule module=loaded

 autoloaded at first use kcmodule module=auto

Remove a module from the configuration kcmodule module=unused

 Hold change until next boot -h

 Apply change to saved configuration -c configname

Working with the kernel configuration log file

The log file is located at /var/adm/kc.log. The kc* commands add a log entry for every change.

Add a comment to the log file:

 while making a change with a kc* command add -C "comment" to the change command

 without making a configuration change kclog –C "comment"

View the last n entries in the log (default 1) kclog n

 counting only changes to a configuration -c configname

 counting only changes of a particular type -t module|tunable|device

 counting only changes to a particular item -n modulename|tunablename|hwpath

 counting only log entries containing a string -f �string�

Kernel configuration file locations

Saved configurations are stored at /stand/configname

 Kernel executable is at /stand/configname/vmunix

 System file is at /stand/configname/system

Currently running configuration is at /stand/current

 Kernel executable is at /stand/current/vmunix

 System file is at /stand/current/system

Never directly manipulate any of the files in a kernel configuration directory, except the system file. Always use
the kc* commands.

Transition from previous HP-UX releases
Experienced administrators of previous releases of HP-UX will find some aspects of the 11i v2 kernel
configuration mechanisms unfamiliar. However, many of the underlying concepts are unchanged.
The tables in this section give information to help administrators translate from the old kernel
configuration mechanisms to 11i v2.

46

Older HP-UX technique HP-UX 11i v2 See page
Use SAM to configure the kernel Use kcweb to configure the kernel
Look at /stand/system to see the
current configuration

Same 25

Run an unsupported command to
make sure /stand/system is up to date

Not needed; /stand/system is automatically kept up
to date

25

Make configuration changes by editing
/stand/system and running mk_kernel

Same; changes will be applied to the running system
(no reboot) if possible

25

Make configuration changes by running
kmtune or kmsystem, then running
mk_kernel

Make the changes with kctune or kcmodule (no
mk_kernel), or edit /stand/system manually and
then run mk_kernel

8, 14, or 25

Make configuration changes by editing
/stand/system and running config

Use mk_kernel instead 25

Manage DLKMs with the kminstall,
kmsystem, kmmodreg, kmadmin,
kmupdate, and config commands

Manage DLKMs using kcmodule 8

View or change tunables using kmtune Use kctune instead (see note below) 14

Older HP-UX command/option HP-UX 11i v2 See page
config (without –M) mk_kernel 26
config –M no longer needed
kmadmin –b no longer needed
kmadmin –k kcmodule 8
kmadmin –L modulename kcmodule modulename=loaded 8
kmadmin –U modulename kcmodule modulename=unused 8
kmadmin –u module_id kcmodule modulename=unused 8
kmadmin –q module_id kcmodule �v modulename 8
kmadmin –Q modulename kcmodule �v modulename 8
kmadmin –s kcmodule 8
kmadmin –S kcmodule –v 8
kminstall no longer needed
kmmodreg no longer needed
kmpath (no options) kcpath –x (see note below)
kmpath –k kcpath –b
kmpath –c kcpath –d
kmpath –i no longer needed
kmsystem (no options) kcmodule 8
kmsystem –b no longer needed
kmsystem –c y –l y modulename kcmodule modulename=loaded 8
kmsystem –c y –l n modulename kcmodule modulename=static 8
kmsystem –c n modulename kcmodule modulename=unused 8
kmsystem –q modulename kcmodule –v modulename 8
kmtune (no options) kctune (see note below) 14
kmtune –l kctune –v 14
kmtune –q tunable kctune tunable 14
kmtune –r tunable kctune tunable=Default 14
kmtune –u –s tunable=value kctune tunable=value 14
kmtune –u –s tunable+value kctune tunable+=value 14
kmtune –s tunable=value kctune –h tunable=value 14
kmupdate (no options) kconfig –n hpux_test 25
kmupdate kernel kconfig –n configuration 25
kmupdate –M module no longer needed
kmupdate –d kernel kconfig –d configuration 25
mk_kernel (without �M) mk_kernel 26
mk_kernel –M no longer needed

47

Older HP-UX file/directory HP-UX 11i v2 See page
Currently running kernel /stand/vmunix /stand/vmunix
Backup kernel /stand/vmunix.prev Backup configuration backup 30
Test kernel /stand/build/vmunix_test
(default output of mk_kernel)

Test configuration hpux_test 25

Primary system file /stand/system /stand/system 25
Module system files /stand/system.d/* No longer used; the data is now in the primary

system file /stand/system.
25

Master files /usr/conf/master.d/* No longer used; the data is embedded into
the kernel code, and is available through the
kcmodule and kctune commands

8, 14

Note: HP-UX 11i v2 contains compatibility stubs for kmpath and kmtune, but they will be removed in a future release
of HP-UX.

HP-UX 11i release names and release identifiers

With HP-UX 11i, HP delivers a highly available, secure, and manageable operating system that meets
the demands of end-to-end Internet-critical computing. HP-UX 11i supports enterprise, mission-critical,
and technical computing environments. HP-UX 11i is available on both PA-RISC systems and Itanium-
based systems.

Each HP-UX 11i release has an associated release name and release identifier. The uname (1)
command with
the -r option returns the release identifier. The following table shows the releases available for HP-UX
11i.

Table 1. HP-UX 11i releases

Release name Release identifier Supported processor

architecture

B.11.11 HP-UX 11i v1 PA-RISC

B.11.20 HP-UX 11i v1.5 Intel® Itanium

B.11.22 HP-UX 11i v1.6 Intel Itanium

B.11.23 HP-UX 11i v2 Intel Itanium and PA-RISC

© Copyright 2003-2004 Hewlett-Packard Development Company, L.P. The information
contained herein is subject to change without notice and is provided �as is� without
warranty of any kind. The warranties for HP products and services are set forth in the
express warranty statements accompanying such products and services. Nothing
herein should be construed as constituting an additional warranty. HP shall not be
liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation in the
U.S. and other countries and are used under license. UNIX is a registered trademark of
the Open Group.

05/03

5981-7111EN

