

Quantifying the value proposition of blade systems

Anthony Dina
Business Development, ISS Blades
HP – Houston, TX
anthony.dina@hp.com

hp

© 2004 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice

Common questions

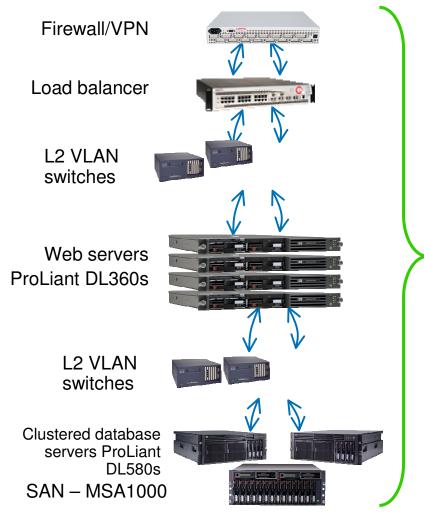
What are the benefits of blades? What is the value proposition? Why do customers buy blades?

Blades vs. standard rack-mounted

servers? When should I buy one vs.

the other?

Agenda



- What are blade systems?
- Why are they being adopted?
- Comparing blades to rack-mounted servers
 - Space, power, cabling, management, acquisition, etc.
- Sample comparisons blade systems vs. rackmounted server systems
 - Acquisition costs
 - TCO and ROI: using a customer tailorable model
- Summary

Blade systems: integration of servers, network, and storage

Rack-mounted server architecture

ProLiant BL10e

L2 VLAN switch
ProLiant BL20p
ProLiant BL40p
L2 VLAN switch

BL p-Class power

Management servers

SAN - MSA1000

Blade system architecture

HP Blades Built On Trusted ProLiant Engineering

NEWSTOTNEUSTOT and

11:50 AM 09/14/2000

11:50 AM 09/14/2000 11:50 AM 09/14/2000

11:50 AM 09/14/2000 11:53 AM 09/14/2000

redundant power

WUS101/RegFiles

Apply Configuration

9 🔝 BUS101

Cleanup Solpt Restoration Events Printer Installation

Create Disk Image Deploy Course Flestore Course Update Configuration Upload Registries ○ 05202 **○** EE301 Drago-Oxop-Events Backup Regionier Oean Cach & Temp Nes

Room 200

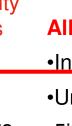
Room 200 Room 200

HP Red Hat SBF

(Standard Build Framework)

Automatic Provisioning

•Blade PXE Boot:

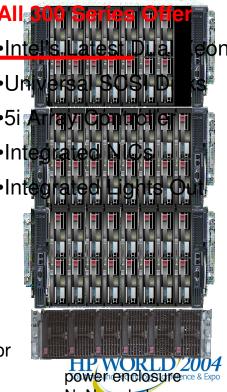

•What Is My Personal Step 2: B Red Hat SB and create server image

Pre-assigned RDP

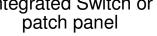
Red Hat Personality

Build Commences

•30 Minutes



Step 3: Log-On to RDP Server And **Designate Target**


Well Based Console

- **Any Device**
- **Anywhere**

Integrated Switch or patch panel

Customer needs drive a new server architecture

Rapid serviceability and continuous uptime

- Rapid deployment and redeployment tools
- Hardware and software

Centralized management

- Servers, networking, storage, and applications
- Centrally manage your data center: 1 blade or 1000s ... anywhere ... anytime

Improve efficiency in data center management

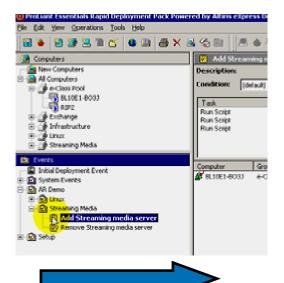
- Move to '000s of devices managed by each administrator
- Improve server utilization

Flexibility and adaptability

Dynamic resource allocation

HP Blades Optimized for Installation & Change A catalyst to enabling an Adaptive Enterprise

Save people time in installation, upgrades, and maintenance

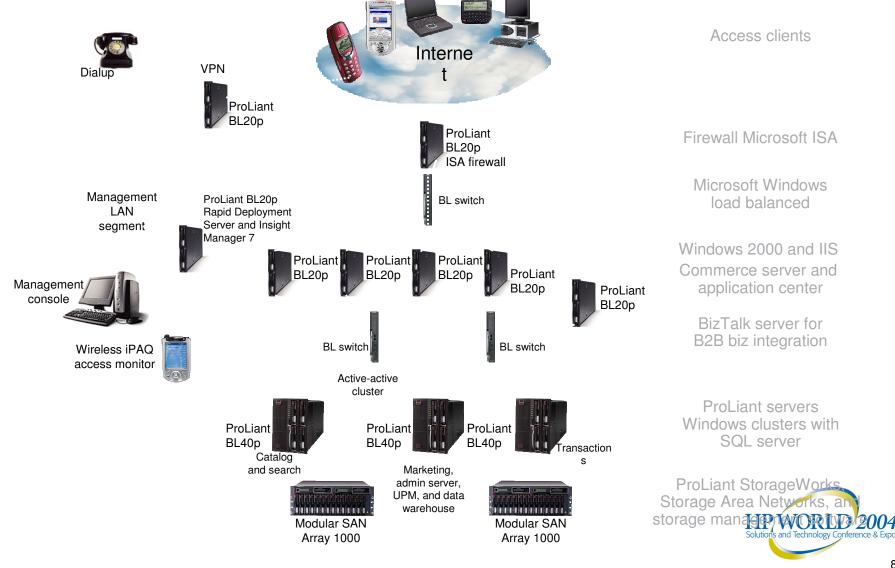

Rack & wire once

Configure and re-configure with software tools

 Move from days to minutes to add and re-configure servers, network ports, cables, and disk capacity

Virtual presence to manage any blade, from anywhere

Automatic failover to spare servers



e-Commerce storefront example application of ProLiant BL servers

invent

What are the benefits?

- Saving data center space and power
- Lower connectivity costs and simplified cabling
- Fewer spare parts
- Save time in installation, upgrades, and maintenance
- Higher system availability
- Improve data center efficiency
 - Remote access for centralized management
 - Automated deployment and provisioning
- Equal or lower acquisition costs

Blade System TCO Calculator

(the spreadsheet model is available from your HP sales representative)

3 Year TCO Calculation

Summary

Number of Servers Compared 8

= # of servers x # of events per year x time to remove and install x labor rate

Scenario	BL20P G2		1U Server		BL20p G2 Savings	
TCO / NPV	\$	44,661	\$	(115,473)	\$	160,133
3 year TCO per server	\$	5,583	\$	(14,434)	\$	20,017
Acquisition Cost	\$	(79,926)	\$	(97,212)	\$	17,286
Installation Cost	\$	(2,333)	\$	(8,653)	\$	6,320
Yearly Operational Value	\$	53,176	\$	(4,000)	\$	57,176

1 14	~ <i>†^</i>	110
	-14	IIIS
$\boldsymbol{-}$, iu	"

1U Server Scenario	,	Year 0	Year 1	Yea	r 2	Year 3
Acquisition Costs						
Server Acquisition cost	\$	44,528				
=from Step 4 includes FC HBA cost						
Infrastructure Acquisition Costs from Step #4	\$	52,684				
Installation Costs						
Racking costs	\$	5,600				
=rackable items x time to rack one x labor rate						
Additional Power related installation	\$	2,000				
=from Step #1 input value						
Cabling Costs	\$	1,053				
=number of cables x time to install one x labor rate						
Maintenance/Upgrade Costs			\$ 4,00	0 \$	4,000	\$ 4,000

Blade TCO tool

- The BL20p TCO tool is a spreadsheet-based model that creates a 3-year TCO (based on an NPV) for 2P blade servers and a comparative value for 1U rack mounted servers (example: DL360).
- The tool uses customer-specific data (labor rates, pricing, power costs, etc.) combined with rack configuration rules to create a specific answer for each customer.
- A key benefit of the tool is its ability to create "what if" scenarios to aid in the decision making process.
- The tool is revised monthly as variables change and as additional functionality is added.
- The tool is available from your HP sales representative.

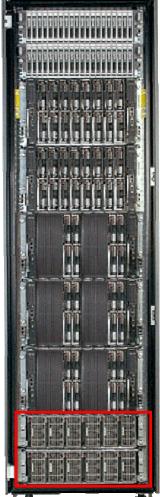
Space

Saving data center space 14% to 24%

- Cost per square foot of data center space is \$1000 -\$5000+ per year
- Practical number of servers per rack:

Blades	48 (moving to 96)
R-M servers	Less than 30

Range of data center costs:


NYC	\$5000 per sq. ft.
Houston	\$1000 per sq. ft.

Pooled Power for HP Blades

Centralized, redundant power sub-system

- 3U power enclosure, up to 6 hot plug power supplies for N+N redundancy
- Fully redundant power to the server enclosures using <u>bus bars</u>
- High voltage (208-250VAC) @ 30A inputs or facility DC input, Single- and three-phase
- Power & Cooling calculator for planning

No. of	Better F	Power Ef	ficiency
Servers	BL20p	DL360 G3	Savings
8	2,494	3,328	25%
16	4,987	6,656	25%
24	7,896	9,072	13%
32	9,691	13,312	27%
40	12,114	16,640	27%
48	14,536	18,144	20%

All power consumption shown in Watts

Paramparison data based on ProLiant Power Calculators

2P 3Ghz/512mb, 1Gb Mem, 2x18Gb Hdd, Dual Fiber per server

Power

- Centralized Power subsystem provides better power efficiency
- •Blade systems eliminate the need for PDUs in the rack (up to \$4000 per rack)
- Reduced cabling & power centralization lowers BTUs and improves heat dissipation
- ProLiant power calculators
 - Calculates wattage and BTUs for various ProLiant servers
 - http://h18001.www1.hp.com/partners/microsoft/utilities/power.html

Example:

• 8 DL360

• 8 BL20p G2

8 DL360s	326w per server
8 BL20p G2s and enclosure	307w per blade

Cabling and network connectivity costs

- Lower connectivity costs and simplified cabling
 - Significantly fewer cables!
 - Up to 25% of system admin's time is spent in cable management, and cable failures are a prime cause of downtime – Giga Group

Network connectivity costs:

Fewer cables

10-100 ports

Gigabit ports

8 R-M servers	8 ProLiant BL blades
16-32 downlink cables	2-4 uplink cables
\$40-\$150 copper \$65-\$385 fibre per port	\$54 per switch port (copper or fibre)
\$180-\$1060 per switch port	\$92 per switch port

Fewer parts & simpler maintenance

Fewer spare parts; simpler daily management

- Blades have fewer options memory and disks
- Blade architectures are designed for shared storage ... all user changeable data should be on NAS and SANs
- Blade servers run OS and applications only ... facilitates standard server builds/images
- Back-ups are needed for NAS and SANs; not every server.
- Blade disks are managed by software deployment tools, such as RDP ... benefits: fewer errors in OS, patch, and application maintenance

Installation and changes

Save time in installation, upgrades, and maintenance

- Rack and wire once! ... re-configure with software tools
- Move from days to minutes to add and re-configure servers, network ports, cables, and disk capacity
- Blade systems are a catalyst to improving data center ratios (devices managed per administrator)

invent

Availability

- Higher system availability; no need to plan for availability
- Blades are fully redundant
 - Dual VLAN switches per blade enclosure
 - Redundant and shared power systems across all blades in a rack
 - Redundant backplane data paths (Ethernet and FC SAN)
 - Redundant local disks (RAID 1)
 - Redundant fans
 - Rip and replace server maintenance (via enclosure slot, and via software deployment tools like RDP)

Blade systems are a <u>catalyst</u> to improving data center ratios (devices managed per administrator)

- Reduce the need to touch every device in the data center
- Adopt new management tools (configuration, software deployment, automated provisioning, etc.)
- Centralize the management of multiple data centers
- Merge separate management domains (servers, network, storage)

Today 900 devices	15 to 1	\$6M per year
Tomorrow	30+ to 1 100 to 1* * some ISPs are at this ratio	\$3M per year

Acquisition Costs – what is compared?

 BL20p Blade servers (2P Xeon 3.06 GHz) 1 GB memory 2 internal disks FC Interconnect module Blade enclosures and power subsystem Blade Interconnect L2 VLAN switches - GbE Cables, racks FC switch - external DL360 servers (2P Xeon 3.06 GHz) 1GB memory 2 internal disks KVM switches and cables PDUs in the rack External L2 VLAN switches – GbE Cables, racks FC switch - external 	Blade System	1U Rack-mounted servers
	 3.06 GHz) 1 GB memory 2 internal disks FC Interconnect module Blade enclosures and power subsystem Blade Interconnect L2 VLAN switches - GbE Cables, racks 	 •1GB memory •2 internal disks •KVM switches and cables •PDUs in the rack •External L2 VLAN switches – GbE •Cables, racks

Acquisition Cost Summary (8 servers)

g	SAN connected	No SAN connectivity
<u>10/100 Network</u>	Blade systems are ~7% less costly	Blade systems are ~1% more costly
GbE Network	Blade systems are ~19% less costly	Blade systems are ~17% less costly

Note: The above summary ignores blade system savings from datacenter space, power & cooling, installation & operational efficiencies.

Revised 4/23/2004

BL20P Scenari	0	Total Cost \$	90,302	1U Server	Total Cost \$	104,388
Server	S	\$	45,944	Servers	\$	51,704
<u>-</u>	Servers	\$	37,952	Servers	\$	33,312
	Total FC Ports	\$	7,992	Total FC Ports	\$	18,392
Infrastructu	re	\$	44,358	Infrastructure	\$	52,684
	Total Racks	\$	2,718	Total Racks	\$	2,718
	Blade Enclosures	\$	2,932			
	Power Enclosures	\$	4,252			
	Bus Power Box	\$	341			
	Mini-Bus Bar	\$	-			
	Scalable Bus Bar	\$	-			
	PDUs	\$	-	PDUs	\$	872
Switching	C-Gbe Switch Pair	\$	-	Network Switches	\$	13,440
	Network Patch Panel Pair	\$	-	KVM switches	\$	6,350
	C-Gbe Switch/FC Patch Panel Pa	air \$	6,098	KVM Cables	\$	1,215
	FC Patch Panel Pair	\$	-			
	FC Switches	\$	28,000	FC Switches	\$	28,000
	Cat5 Cables	\$	17	Cat5 Cables	\$	89

Summary

- Blades are often less expensive than rackmounted servers! (acquisition costs)
- In comparison to rack-mounted servers, blade systems are easily justified by space, power, and operational efficiencies!
- Use blade systems as a catalyst to an adaptable
 & flexible datacenter infrastructure!

So, Why Not Blades?

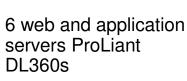
HP Blades Reduce Hard Costs

	Traditional 1U Servers	ProLiant p-class blades
Acquisition Costs (based on 8 servers)	ProLiant DL360G3 w/ Ethernet and SAN	up to 19% savings
Cabling Connectivity (based on 40 servers)	40x3 network + 40x2 power = 200 cables	5x2 network + 4 power = 14 cables 93% reduction
Data Center space (density per 42U rack)	36 servers + Ethernet switches	48 - 96 servers + Ethernet switches 25 - 60% reduction
Power and Cooling (based on 40 servers)	16.6kW*	12.1kW 27% savings
Installation, provisioning, & re-purposing	8 hrs. per server	10 - 30 min. per blade 94% - 98% reduction
Productivity of datacenter management (ratio of devices managed by each admin.)	15 to 1	At least 30 to 1 >100% improvement HPWORLD 2004 Solutions and Technology Conference & Expo

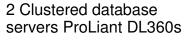
Questions?

Back-up slides

hp

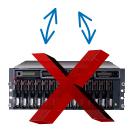

Acquisition Cost Comparison

(8 servers, 2 switches, and SAN connectivity)



L2 VLAN switch

L2 VLAN switch



SAN - MSA1000

Rack-mounted server architecture

Blade system architecture

Acquisition Cost Comparison (8 servers, 10/100 Network, no SAN)

HP ProLiant BL20p G2 versus 1U Servers

Revised 6/12/2004

Step #4 - Acquisition Cost

BL20P Scenario	,	Total Cost \$	46,734	1U Server	Total Cost \$	46,317
Server	S	\$	37,952	Servers	\$	33,312
	Servers	\$	37,952	Servers	\$	33,312
	Total FC Ports	\$	-	Total FC Ports	\$	-
Infrastructur	e	\$	8,782	Infrastructure	\$	13,005
	Total Racks	\$	1,359	Total Racks	\$	1,359
	Blade Enclosures	\$	2,039			
	Power Enclosures	\$	2,619			
	Bus Power Box	\$	149			
	Mini-Bus Bar	\$	-			
	Scalable Bus Bar	\$	-			
	PDUs	\$	-	PDUs	\$	872
Switching	C-Gbe Switch Pair	\$	2,599	Network Switches	\$	3,120
	Network Patch Panel Pair	\$	-	KVM switches	\$	6,350
	C-Gbe Switch/FC Patch Panel Pa	air \$	-	KVM Cables	\$	1,215
	FC Patch Panel Pair	\$	-			
	FC Switches	\$	-	FC Switches	\$	-
	Cat5 Cables	\$	17	Cat5 Cables	\$	89

Solutions and Technology Conference & Expo

Revised 6/12/2004

BL20P Scenario	0	Total Cost \$	48,534	1U Server	Total Cost \$	56,637
Server	S	\$	37,952	Servers	\$	33,312
	Servers	\$	37,952	Servers	\$	33,312
	Total FC Ports	\$	-	Total FC Ports	\$	-
Infrastructui	re e	\$	10,582	Infrastructure	\$	23,325
	Total Racks	\$	1,359	Total Racks	\$	1,359
	Blade Enclosures	\$	2,039			
	Power Enclosures	\$	2,619			
	Bus Power Box	\$	149			
	Mini-Bus Bar	\$	-			
	Scalable Bus Bar	\$	-			
	PDUs	\$	-	PDUs	\$	872
Switching	C-Gbe Switch Pair	\$	-	Network Switches	\$	13,440
	Network Patch Panel Pair	\$	-	KVM switches	\$	6,350
	C-Gbe Switch/FC Patch Panel Pa	air \$	4,399	KVM Cables	\$	1,215
	FC Patch Panel Pair	\$	-			
	FC Switches	\$	-	FC Switches	\$	-
	Cat5 Cables	\$	17	Cat5 Cables	\$	89

Revised 6/12/2004

BL20P Scenari	0	Total Cost \$	87,584	1U Server	Total Cost \$	94,068
Server	s	\$	45,944	Servers	\$	51,704
	Servers	\$	37,952	Servers	\$	33,312
	Total FC Ports	\$	7,992	Total FC Ports	\$	18,392
Infrastructui	re	\$	41,640	Infrastructure	\$	42,364
•	Total Racks	\$	2,718	Total Racks	\$	2,718
	Blade Enclosures	\$	2,039			
	Power Enclosures	\$	2,619			
	Bus Power Box	\$	149			
	Mini-Bus Bar	\$	-			
	Scalable Bus Bar	\$	-			
	PDUs	\$	-	PDUs	\$	872
Switching	C-Gbe Switch Pair	\$	-	Network Switches	\$	3,120
	Network Patch Panel Pair	\$	-	KVM switches	\$	6,350
	C-Gbe Switch/FC Patch Panel Pa	air \$	6,098	KVM Cables	\$	1,215
	FC Patch Panel Pair	\$	-			
	FC Switches	\$	28,000	FC Switches	\$	28,000
	Cat5 Cables	\$	17	Cat5 Cables	\$	89

Revised 6/12/2004

BL20P Scenario	<u> </u>	Total Cost \$	87,584	1U Server	Total Cost \$	104,388
Servers	S	\$	45,944	Servers	\$	51,704
	Servers	\$	37,952	Servers	\$	33,312
	Total FC Ports	\$	7,992	Total FC Ports	\$	18,392
Infrastructur	e	\$	41,640	Infrastructure	\$	52,684
	Total Racks	\$	2,718	Total Racks	\$	2,718
	Blade Enclosures	\$	2,039			
	Power Enclosures	\$	2,619			
	Bus Power Box	\$	149			
	Mini-Bus Bar	\$	-			
	Scalable Bus Bar	\$	-			
	PDUs	\$	-	PDUs	\$	872
Switching	C-Gbe Switch Pair	\$	-	Network Switches	\$	13,440
	Network Patch Panel Pair	\$	-	KVM switches	\$	6,350
	C-Gbe Switch/FC Patch Panel Pa	air \$	6,098	KVM Cables	\$	1,215
	FC Patch Panel Pair	\$	-			
	FC Switches	\$	28,000	FC Switches	\$	28,000
	Cat5 Cables	\$	17	Cat5 Cables	\$	89

Co-produced by:

