
An Introduction to .NET
for MPE People
Rich Trapp
Senior Consultant
Managed Business Solutions

2

Introduction
• In the HPe3000 community, organizations have
been running business critical applications on the
HPe3000 over the last 20 years

• HP announced the sunset of the HPe3000 in 2001

• The organizations in the HPe3000 community have
been developing a transition plan for migrating their
applications off the HPe3000

3

Introduction
• The options for transition are:

− STAY: Remain on the existing HPe3000 platform with the
existing application(s)

− PORT: Move the existing application(s) as is to a new
platform

− BUILD: Re-write or re-engineer the application(s) on a
new platform, often enhancing the applications
significantly

− BUY: Purchase an off-the-shelf application package to
replace the functionality of the existing applications

4

Introduction
• .NET may be involved if the organization chooses:

− PORT: Some Port tools convert the existing applications
into .NET; further enhancements may involve .NET
development

− BUILD: The application(s) may be re-written or re-
engineered in a .NET development environment

− BUY: Many off-the-shelf packages are now implemented
in a .NET development environment; customizations and
interfaces may best be written in .NET

• .NET is likely to be in your organization’s future

5

Introduction
• In the HPe3000 community, the current IT staff is skilled in:

− COBOL
− 4gl’s, such as COGNOS or Speedware
− Image
− MPE

• This staff will likely need to transition their skill set to .NET
− VB.NET
− C#
− ADO.NET
− SQL Server or other relational databases
− .BAT files and the Windows scheduler

6

Agenda
• This presentation discusses

− The major differences between the HP3000 and .NET
− The benefits of .NET
− Getting started with .NET

7

Major Differences Between the HP3000
and .NET
• The major differences between the HP3000 and
.NET development environment are
− The IDE
− Object Oriented Design (OOD)
− Relational Databases
− Jobs and Job Scheduling

8

Integrated Development Environments
(IDE)
• An Integrated Development Environment (IDE) is
an application that allows for comprehensive
development of application source code

• For .NET, this is Visual Studio.NET

• The IDE replaces the role of
− QEDIT
− The COBOL compiler
− The 4gl compiler / interpreters
− Screen designers, such as VPlus
− Debuggers

9

Integrated Development Environments
(IDE)
• Features of Visual Studio.NET

− Visual Screen Layout: draw the screen instead of typing
characters on a 24 x 80 screen

− Code Generation: the drawn screens automatically
create code behind the scenes to support itself

− Objects Library:
• File management
• Date / Time
• Array objects
• Hash tables
• Lots and lots of other routines

− Source Level Debugging:
• Call stack: keeps track of all of the method calls
• Step-by-step view of source code execution

10

Integrated Development Environments
(IDE)
• Features of Visual Studio.NET

− Auto Formatting: automatically formats your source
code

− IntelliSense: if working with a reserved word or object,
Auto Complete shows the valid options based on what’s
typed so far

− Integrated Help: highlight a reserved word and get a
helpful description of it

− Go To Definition: right click on a word or procedure
code and the IDE takes you to that source code

− Highlights: color coding of
• Reserved words
• Objects
• Methods

11

Integrated Development Environments
(IDE)
• Visual Studio.NET Module Structure

− Visual Studio.NET collects classes into projects
− Visual Studio.NET collects projects into solutions
− These items comprise:

• Executables (.EXE)
• Libraries (DLL’s)

− As an example, a typical project might have:
• 5 DLL’s
• 5 EXE’s
• Established as 1 solution and 10 projects

12

Integrated Development Environments
(IDE)
• Sample Screen of Visual

Studio.NET

13

Object Oriented Design (OOD)
• The primary difference between development in an
HP3000 environment and a .NET environment is:
− The HP3000 is geared toward procedural design
− .NET is geared toward object oriented design

• Procedural Design:
− Procedures or steps are established as a sequence of

commands, acting on data structures

• Object Oriented Design:
− Developers model real-world situations and business

scenarios as objects that perform actions, have
properties, and trigger events .

14

Object Oriented Design (OOD)
• Object Oriented Design contains the following
concepts:
− Classes: Definitions of common objects (i.e. a data type),

to include the structure(s) of the data, and the procedures
that act on that data

− Methods: The procedures that act on the data
− Objects: An instantiation of a class (i.e. a variable)
− Properties: A member of a class that can implement

“get” and “set” accessors and can be used like a variable
− Shared Classes: Classes that do not require instantiation

15

Object Oriented Design (OOD)
• Classes provide inheritance

− Sub-classes belong to classes
− A sub-class inherits all data structures from its parent

class
− A sub-class inherits methods from its parent class

• Inheritance is important because
− It promotes software re-usability
− It standardizes coding approaches across the entire

application environment
− It reduces software development time

16

Object Oriented Design (OOD)
• Example: Class

inheritance—a form

17

Object Oriented Design (OOD)
• Example: Class

inheritance—a form

18

Object Oriented Design (OOD)
• Example: Class

inheritance—a form

19

Object Oriented Design (OOD)
• OOD includes the use of Events

− Events are raised by a method
− Events are handled by calling objects
− Events allow objects to focus on their own task and to

notify calling methods of issues
− Events prevent called objects from having to handle

issues that are beyond their scope
− This eliminates direct calls from one procedure to another,

when they are unrelated
− This eliminates ‘spaghetti code’

20

Object Oriented Design (OOD)
• Example: Event raising and

handling

21

Object Oriented Design (OOD)
• Example: Event raising and

handling

22

Object Oriented Design (OOD)
• Example: Event raising and

handling

23

Object Oriented Design (OOD)
• OOD includes the use of Exceptions

− Exceptions are raised by a method
− Exceptions are handled by calling objects
− Exceptions allow objects to focus on their own task and to

notify calling methods of issues
− Exceptions prevent called objects from having to handle

issues that are beyond their scope
− This eliminates direct calls from one procedure to another,

when they are unrelated
− This eliminates ‘spaghetti code’
− Unlike events, exceptions use a Try, Catch, Clean Up

code structure

24

Object Oriented Design (OOD)
• Example: Exception raising

and handling

25

Object Oriented Design (OOD)
• There are no pointers in .NET!

− (OK, there are, but you can’t see them)
− Objects are instantiated with a name
− .NET is responsible for its own garbage collection

26

Relational Databases
• Image is not readily available in a .NET
environment

• The databases used with .NET are typically
relational:
− SQL Server
− Oracle

27

Relational Databases
• Image is a Network Database

− Allows Master to Detail relationships

• Relational Databases allow
− A relationship to be established between any two (or

more) tables
• Provides greater data modeling flexibility
• Encourages normalization of the data
• Improves the maintainability of the applications

28

Relational Databases
• .NET provides classes and methods that

− Load database records into data structures
− Associate screen fields directly to database records

without having to write SQL
− Handle transactions and rollbacks

• Database Administrators are required for relational
database packages

29

Jobs and Job Scheduling
• Many kinds of job schedulers are available

− Windows
− SQL Server
− Off-the-shelf

• These schedulers can invoke .NET programs
directly, eliminating the need for ‘jobs’ in many
cases

• Script files can be created for required system
functions

• The biggest issue is tracking which schedulers are
running which jobs

30

Major Differences Between the HP3000
and .NET
• .NET is a very different environment from the
HP3000

• The biggest difference is the object oriented
environment instead of the procedural environment

• .NET is supported by very good tools
− The IDE
− Classes, methods, and objects
− Event and exception handling
− Databases
− Job schedulers

31

Getting Started with .NET
• Learning .NET requires:

− Training
− Experience

• Experience is crucial to the learning process

32

Getting Started with .NET
• Training: Good Books

− Microsoft’s "Visual Basic .NET Step by Step"
− Microsoft’s “Visual Basic .NET Core Reference”

• Books by MBS’er Kevin Hoffman:
• “Professional .NET Framework, by Wrox Press
• “Professional ADO.NET”, by Wrox Press
• “C# Programming Evolution”, by SAMS Press
• “Visual C#.NET 2003 Unleashed”, by SAMS Press (forthcoming)

• Training: Pitfalls
− The books are often geared to a VB6 audience, not an HP3000

audience
− The books often contain simplistic examples that underplay real world

complexity

33

Getting Started with .NET
• Training: Understanding The CLR

− CLR stands for Common Language Runtime
− The CLR functions in the background
− The CLR does its job; programmers do not generally have

to worry about it
− All .NET books open with a discussion of the CLR

34

Getting Started with .NET
• To gain experience with .NET, follow these steps

− Use the IDE
− Use the debugger
− Learn the libraries
− Understand OOD
− Get experience with .NET ‘quirks’

35

Getting Started with .NET
• Experience: Use the IDE

− Learning the editor and debugger is easy
− The biggest issue is that the number of modules (classes)

in an application is intimidating

• Experience: Use the debugger
− Start with a sizable application, and walk through the

execution of the source code using the Visual Studio.NET
Debugger

− The syntax is not too hard to understand
− Biggest issue is understanding ‘How did I get here?’

36

Getting Started with .NET
• Experience: Learn the libraries

− There is a tremendous number of objects provided by
Microsoft

− Help and F1 are your friends
− Internet sites, such as Google, can help programmers find

ones that are needed

37

Getting Started with .NET
• Experience: Understand OOD

− Becoming used to class inheritance
− Keeping track of the call stack
− Need to view classes and subclasses as ‘superimposed’

code
• Sometimes a parent class will call a subclass’s method
• Sometimes a subclass will call a parent class method

− Understanding that everything is an object
• For example, strings now have methods associated with them

− Understanding that events control the programs (e.g. user
events), not the procedures

− Hardest part of learning .NET

38

Getting Started with .NET
• Experience: Get experience with .NET ‘quirks’

− War Story: Literal over-written by garbage collection

39

Getting Started with .NET
• The greatest similarities between HPe3000 and
.NET will be:
− Project deadlines
− Programming and logic skills
− Problem solving skills
− Figuring out why something doesn’t work

• But otherwise, it’s a completely different
environment

• Plan on 3 – 6 months to become functional in .NET

40

Benefits of .NET
• The IDE provides efficient development, code
generation and extensive on-line help

• OOD enforces excellent programming standards

• OOD allows for localized maintenance and
enhancements in the future
− Eliminates interdependence of procedures

41

Benefits of .NET
• There is an extraordinary amount of tools and
libraries available
− Microsoft provided objects and libraries
− Free objects and libraries on the web
− Interfacing mechanisms, such as XML

• Application integration is becoming easier
− Web services
− Standardized interface formats
− There is no longer a need for fixed format files

42

Conclusion
• .NET will be a major player in the development of
applications well into the future

• There is a growing market share, resource base,
and material available for .NET development

• This is occurring because .NET provides
− Efficient development
− Well structured applications
− A large number of interfacing techniques and interfaces
− A large quantity of existing, re-usable source code

“ Wherever you go, there you are.”

- Buckaroo Bonzai

Co-produced by:

