

Session 3419: ATA and Serial Attached SCSI

Levi Norman Server Storage Marketing Hewlett-Packard hp

© 2004 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice

Overview

- Enterprise and desktop drive design and features
- Parallel to Serial Transition
- Segmentation

Anatomy of a disk drive

Actuator
Magnet
Assembly

Filtration

Enterprise versus desktop devices

Robust Head Stack Assembly

- Rigidity to stay on track
- More heads
- Performs well in multi-drive environment

Smaller Diameter Disk

- Improves Seek
- Stable surface assuring reliability
- More platters

Performance Mechanics

- · Larger magnets improve seek times
- Performs well in multi-drive environment
- Stiff top cover minimizes susceptibility to Rotational Vibration

Electronics

- Components handle higher data rates
- Maximize performance via SCSI firmware
- Dual processors

Motor

- Higher RPM
- Tighter Runout (variation)

Disk Drive Design Trade-offs

RPM

- The higher the RPM, the better the access times due to lower rotational latency
- The higher the RPM, the smaller the media size to minimize power consumption

Media Size

- Larger media provides greater capacity
- Larger media requires a lower maximum RPM to maintain rotational stability
- · Larger media means longer seek times due to greater seek distances and smaller

magnets

Actuator assembly

• The larger the actuator, the longer the seek time due to increased inertia

Actuator magnet

The larger the magnet, the better the seek performance

Disk Parameter Comparisons

	Enterprise	Enterprise	Desktop
Form Factor	3.5"	2.5" (SFF)	3.5"
Interface	SCSI/FC/SAS	SCSI/FC/SAS	PATA/SATA
Spin RPM	15K / 10K	10K	7.2K
Capacity	36 – 300GB	36 – 73GB	40 – 250GB
Seek time	3.5ms / 4.7ms	<4.5ms	9.5ms
Random I/O	~300 / ~220	~240	~70
RVI rads^2	21	21	5
MTBF	1.5M/hr 24x7	1.5M/hr 24x7	600K /hr 8hr/d
	100% duty	100% duty	20% duty
Error rate	1 in 10^16	1 in 10^16	1 in 10^15
Warranty	3 years	3 years	1 year

Have richard verify if desktop capacity needs to increase to 500GBHPWORLI

Hard Drives Features

Enterprise	Desktop	
High IOP's	Low cost	
High Availability	Capacity	
Multi-user	Single User	
Performance	Low Acoustics	
Scalability		
High Temperature		
Manageability		
24x7 reliability	8-10hr/day reliability	
100% duty cycle	20% duty cycle	

Disk Drive Reliability

There is a significant difference in how MTBF is specified with respect to temperature, usage, and work load between **desktop** and **enterprise** disk drives

- Enterprise drives MTBF is based on 24 x 7 and continuous operation
- Desktop and Mobile are based on 8 hour per day use and low duty cycles

If used 8760 hours
100% duty cycle WORLD 2004
Solutions and Technology Conference & Expo

Summary of disk differences

- ATA drives are designed to meet the needs of PC and consumer applications
 - These apps demand the lowest cost per gigabyte
 - Best \$/GB trading off performance and reliability
- SCSI drives are designed to meet the needs of mainstream servers, workstations, and RAID storage applications
 - These apps require the lowest \$ per IOPS and high availability
 - Best \$/IOP, best multi user performance, with highest reliability

ATA Disks: Best Cost-Per-Gigabyte

SCSI Disks: Best Price-For-Performance

Parallel to Serial Transition

SCSI Trade Association Roadmap

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

What is Serial?

- Replacement parallel ATA and parallel SCSI
 - 100% SW compatible "drop-in"
- "Star" topology (point-to-point, no hubs)
 - Each device gets full bandwidth
 - No bus arbitration/collision overhead
- Serial ATA (SATA) and Serial Attached SCSI (SAS) have attributes and features that extend its capabilities
 - Provides additional capabilities such as hot plug and 1st party DMA
 - SAS provides for using SAS and SATA in the same box

features and benefits

Toutaios and bo	TOTALO	
serial attached SCSI feature	serial attached SCSI benefit	
thinner cable & fewer signals	improved chassis airflow & cooling resulting in easier cable routing for density	
	faster HDD access times and improved IOPS	
disk/backplane interoperability	customer flexibility and scalability	
	simplifies IT support	
	higher bandwidth per pin	
leverages industry standards &	faster time to market and ease of transition	
current software stack	improved interoperability performance	
3 Gb/s (300MB/sec) performance improved overall bandwidth		
	growth roadmap to 6 Gb/s resulting in investment protection	
smaller connectors	small form factor drives	
	dual-ported hard disk drives	
point to point topology	dedicated, scalable throughput resulting in improved IOPS	
	support for 1096 devices	
HDD failure indication	system uptime and reliability	
	50% improvement in MTBF to 1.5 million hours	
cyclical redundancy checking	improved data integrity	
LVD signaling less cross talk and power		

Serial Technology Enables Choice

One backplane accommodates either SAS or SATA HDDs

- High-performance & highly-reliable serial attached SCSI disk drives can be used for mission critical and performance-oriented applications
- High-capacity SATA drives can be used for disk enhanced backup of non-mission critical reference data

i n v e n t

SAS Delivers Scalable Performance

- Four link, SAS controller provides scalable back-end bandwidth for up to 24Gbps data transfers with full duplex communications.
- Point-To-Point connections eliminate the shared bus bottleneck.
 - Bandwidth aggregated over multiple, low-cost Serial Attached SCSI links
 - Rate matching supports 1.5Gbs SATA and 3.0Gbs SAS drives for performance

Summary Parallel to Serial Transition

What's the Same

Builds off the SCSI protocol no new drivers same software SATA is entry level SCSI is enterprise level SATA is 8 to 10 hours, 5 days a week SCSI is 24x7x365

What's New

Point-to-point
dedicated bandwidth
between controller
and HDD
Smaller, thinner cables for better
airflow and cooling
Greater flexibility
mix SATA and SAS
on same backplane
Ability to connect more devices

Datacenter storage segmenting

today: Fibre Channel

Parallel SCSI

tomorrow: SAS and small form factor HDD

Parallel ATA

today: SATA

Mission critical Network storage

Mission critical High density

Mission critical Server storage

Near line or reference data

Lowest cost Server storage

HDD Market Segmentation

Networked
Server
High Density Storage

Mission Critical Storage

Critical To Customers

- Transactional Performance
- Guaranteed Availability
- Mission Critical Reliability

Driving Metrics

- IOPS per GB (Performance/Cap.)
- IOPS per U (Performance Density)

Platforms For Products

FC, SAS, SCSI 10K - 15K RPM

Access time: < 5.7ms

Duty Cycle: 24 x 7x 365

Access time – is it average seek 3.5 to 4.5 ms; access time 5.5 to 5.7

HDD Market Segmentation

Near-line or Reference data Low Cost Server	Non-mission Critical Enterprise	
Critical To Customers	Sequential PerformanceHigh Capacity9-5, 5 days a week reliability	
Driving Metrics	\$ per GB (TB solutions)\$ per GB (Small Capacities; Cost)	
Platforms For Products	Near-line or Reference data & Low Cost Server Access time: 7.2K RPMDuty Cycle:	
	8 to 10 hours, 5 days a week	

Technology Comparison

	SATA	SAS	Fibre Channel Arbitrated Loop
	Half-duplex	Full-duplex with	Full Duplex
 Performance		Link Aggregation	
Periormance	1.5 Gb/s Introduction	3.0 Gb/s Introduction	2.0 Gb/s
	3.0 Gb/s in 2004	6.0 Gb/s in 2006	4 Gb/s in 2005
Connectivity	1.5 m internal cable	> 8 m internal and	15 m external cable
	> 8 m external cable	external cables	
	One device	>128 devices	127 devices
	(fan-out devices demonstrated)	(16,384 max)	
	No peer-to-peer	Peer-to-peer	Peer-to-peer
Availability	Single-port HDDs	Dual-port HDDs	Dual-port HDDs
	Single-host	Multi-initiator	Multi-initiator
D		0.0	
Driver	Software transparent	Software transparent	Software transparent
Model	with Parallel ATA	with Parallel SCSI	with Parallel SCSI
Driver	Software transparent	Software transparent	Software transparer

Drive Usage Summary

	SATA	SAS
Drive	Capacity	Reliability
Strengths	Lowest Cost Per GB	Best Price for Performance
Applications	Reference Data	Transactional Data
	Non-Mission Critical Applications (near-line storage, data tubs)	Mission Critical Applications (on-line transactions, banking)
	Entry level servers and bulk storage	Main stream servers and storage
Reliability	Desktop Class Architecture	Enterprise Class Architecture
	8 to 10 hours, 5 days a week 20% Duty Cycle	24x7x365 100% Duty Cycle
		Solutions and Technology Conference & Exp

Co-produced by:

What is full duplex?

- •The SAS interface allows for communication in both directions on a link simultaneously.
- •SAS will ship full duplex first generation.

What is dual port?

- •The SAS interface allows for devices to have two limited full duplex links. (Limited to no more that two simultaneous data transfers.)
- Second generation SAS devices are targeted as dual ported.
- Controllers can have (n) number duplex links.

What are multiple links?

•The SAS interface allows for ganging of multiple ports together to create "wide" links. Wide links provide increased bandwidth 1x, 2x, 3x, 4x, of 300MB/s!

