State of the Linux Kernel

Timothy D. Witham

Chief Technology Officer Open Source Development Labs, Inc.

Agenda

- Process
- Performance/Scalability
- Responsiveness Usability Improvements
- Device support
- Multimedia
- Desktop
- Embedded
- What we gave up
- In process (coming soon)

Linux Kernel Development Timeline

How the Linux Kernel is Developed

Kernel Improvements from 2.4 to 2.6

- Performance / Scalability
 - Scales to 16 and higher CPU Systems
 - Pre-emptible Kernel
 - Faster Threading Support
 - Larger Memory Support
 - Enhanced Disk Drive Performance
 - Expanded Storage and Networking

Kernel Improvements from 2.4 to 2.6

- Responsiveness Usability
 - Power Saving Features for Laptops
 - Broad Embedded Chip Support
 - Improved Plug-n-Play on the Desktop
 - Smoother Multimedia Performance
 - Studio Quality Sound Processing
 - Enhanced USB, Firewire and Wireless Support

Linux 2.6

Performance / Scalability Improvements

Scalable Performance

- Scalable to 16 and higher CPU Systems
- Support for NUMA Servers (Non-Uniform Memory Access)
 - Faster Server Performance

Improved simultaneous multithreading

- Better performance on CPUs with hyperthreading Support _
- Ongoing work to improve scheduler for HT

O (1) Scheduler

- Improves scalability to 16 or more CPUs
- Less kernel overhead for process switching

Scalable, Secure Networking

Linux NFS - faster, scalable and more secure

- More secure authentication (with cryptography)
- 64 times as many concurrent users
- ext3 support more reliable data storage and faster recovery from major failures
- NFSv4 protocol support

Ipsec Support

- IPsec (IP Security) networking protocol support
- Cryptographic security at the network protocol level

Enhanced high-bandwidth networking support

- TCP segmentation offload to network device
- Route and neighbor cache
- Higher network traffic and multitasking many users

Scalable Storage

 File systems up to 16 terabytes on common 32-bit hardware

- 8x improvement from 2.4 kernel
- 64 GB of RAM on newer 32-bit x86 systems
 - Support for Intel PAE (Physical Address Extension)
 - Larger databases are now supported on Linux

Support for more Devices

- 4095 major devices
- Over 1 million subdevices per type
- 2.4 Kernel limited to 255 major devices and 255 sub-devices

Linux 2.6

Responsiveness / Usability Improvements

Responsiveness

Pre-emptible Kernel

- 2.6 Kernel interruptible mid-task
- Smoother performance running multimedia applications

Improved Input/Output Scheduler

- Optimized process used to read/write to devices
- Applications run smoother under heavy disk loads

Support for Futexes (Fast User-Space Mutexs)

- Eliminates contested system resources conflicts from multiple process threads
- Better application performance

Device Support

- Full Plug-and-Play OS
- Unified Device Model
 - Centralizes system resource control
 - Enables Hot Plug, PC Cards, USB and Firewire devices

Modularized Driver Model

- Support multiple sound cards
- Native support for USB 2.0

Multimedia

- ALSA Support (Advanced Linux Sound Architecture)
 - Completely thread and SMP-safe
 - Enables merging of sound devices, full duplex audio, hardware mixing

Improved Joystick support

- Force-feedback
- Many new device drivers

Desktop Usability

Wireless Support

- Subsystems merged into a central wireless API
- Native support for Bluetooth communications

Laptop Power Savings

- Software-suspend-to-disk functionality for laptops
- Ability to change processor speed based on power profile

Native mounting of Windows-style filesystems

- Linux integrates even more easily with Windows networks
- Includes CIFS Support (Common Internet file system)
 - Upgraded superset of the SMB protocol

Embedded Linux

uCLinux code acceptance and merging

 Unifies the development environments for the first time between embedded and desktop Linux

Supports more MMU-less processors for PDA's

Embedded Profile support

 Kernels can be easily developed for embedded devices/Consumer Electronics

Shortcomings compared to 2.4

- Vendor drivers not updated
 - some vendors wait for stable distro's
- Worsened throughput under heavy swapping
- CPU bound process 1% slowdown - due to HZ increase from 100Hz to 1000 Hz
- Somewhat larger memory footprint
- Scheduler worsened some (bad) benchmarks

Coming Soon to 2.6.6

- Asynchronous I/O for files
 - Both direct and normal I/O
- Hyperthread aware scheduler
 - single queue per physical processor
- Performance scaling
 - more network DOS prevention
 - sysfs support large number of devices
- Complete Fair Queuing disk I/O scheduler

Kernel Improvements Summary

• **Servers** (Performance – Scalability)

- Scalable to 16 and higher CPUs
- Higher Throughput
- NUMA support for SMP Machines
- **Desktop/Laptop** (Responsiveness Usability)
 - Improved Audio/Multimedia Performance and Drivers
 - Improves interactive applications (Pre-emptible Kernel)
 - Power Management

Embedded

- Support for new architectures and processor types
- MMU-less processor support
- UCLinux
- www.osdl.org/newsroom/press releases/2003/2003 12 18 beaverton 2 6 new.html

Kernel Benchmarks Summary

- Apache
 - 500% improvement in complex Web/App server environment
 - IBM developerworks test
 - 59% improvement in simple small web page
 - Internal OSDL test
- MySQL
 - 19.2% speed up SELECT, 14.5% Update
 - Linux Kernel Comparison: 2.6.4 vs. 2.4.25 2cpu.com

- SAP DB

- -8% improvement cached, 20% non-cached
 - DBT-2 transaction workload (Linux World presentation)

HP/WORLD/2

How to get involved with OSDL

Join the public information list - for announcements and updates

- cgl_info, dcl_info, dtl_info
- Join the public discussion lists
 - cgl_discussion, dcl_discussion, dtl_info
- Participate in OSDL technical groups
 - Carrier Grade Linux mika@osdl.org
 - www.osdl.org/lab activities/carrier grade linux
 - Data Center Linux maryedie@osdl.org
 - www.osdl.org/lab activities/data center linux
 - Desktop Linux wookie@osdl.org
 - www.osdl.org/lab_activities/desktop_linux
- Corporate OSDL Sponsorship
 - Active technical and financial support of OSDL
 - Contact bgrega@osdl.org for more information

Testing 2.6

- How to run 2.6 kernel
 - get new distributions supporting 2.6 :
 - Mandrake 10, Fedora Core 2, Suse 9.1, Debian
 - or read before doing it yourself
 - http://kerneltrap.org/node/view/799
 - http://www.codemonkey.org.uk/docs/post-halloween-2.6.txt
- Reporting problems
 - Find system owner in /usr/src/linux/MAINTAINERS
 - Send mail with description and configuration to owner and mailing list

OSDL Testing of 2.6 Kernel

- Automated test runs provide early warning detection for kernel regressions
- Provide performance results and analysis of complex usage models for released kernels
- Find and report kernel defects work with developers to resolve defects
- Provide tests for developers to try out their patches

Automated kernel testing smooths development

Developer Support - Regression Tests

Interactive Testing for the Developer

trying alternate patch solutions and analyzing results

Co-produced by:

