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Introduction 
In order to increase performance, storage controllers often employ cache memory to reduce the 
effect of mechanical disk accesses. The amount of cache that is offered is a decision that is made 
during the initial design stages, and varies widely between different controllers. It also depends 
greatly on the operating system environment. That is, mainframe IO applications are typically 
cache-hit intensive and will benefit from larger caches in the storage subsystem. Open operating 
system applications, on the other hand, typically cache the IO requests in the server memory, 
resulting in cache-miss intensive IO requests to the storage subsystem. As such, open system 
applications do not benefit from large caches (where the accesses must wait to be satisfied by actual 
reading from the physical back-end disks).  

An oft-asked question is how the EVA can perform so well with only 2 GB of cache memory. The 
answer to this question is that EVA is designed exclusively for open systems environments, having 
roots in the previous industry-leading generation of storage controllers. The HSG-80 controller, 
with only 1 GB of cache memory, routinely outperformed competitive storage controllers that had 8 
or 16 GB of cache in environments with open systems workloads. 

The reason behind this surprising fact is a combination of how typical applications access storage, 
coupled with the caching algorithms embedded in the HSG80. These algorithms have been 
substantially enhanced in the EVA HSV-1x0 controllers, providing even more performance with 
minimal amounts of cache memory. The result of these algorithms is the common statement that 
“it’s not size that counts; it’s how you use it!” 

The remainder of this paper discusses in slightly more detail how applications access the underlying 
storage, and how the EVA can use this information to maximize cache efficiency while minimizing 
the size of cache. 

Cache functions 
The primary purpose of controller cache is to mask the relatively long service times associated with 
the mechanical nature of disk accesses. Today’s disk drives have an average access time measured 
in milliseconds, while cache access times for high performance controllers are typically less than 
200 microseconds. Since a disk access can take 30 to 40 times longer than a cache access, efficient 
cache algorithms can have a dramatic affect on overall storage performance. 

Controller cache algorithms can be divided into four main areas of functionality based on I/O 
workload: random reads, sequential reads, random writes, and sequential writes. The amount of 
cache necessary for good performance depends on whether or not there are algorithms that are 
specific to each of these areas, and how well these algorithms are designed and implemented. 

To understand why these four workloads differ so much and why the need for separate cache 
algorithms, some time will be spent delving into the individual I/O workloads and the specific EVA 
algorithms developed for those workloads. 
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Random reads 
Read cache is used to cut down on disk accesses that repeatedly access the same data. When a disk 
block is accessed, the data is placed in cache on the assump tion (or hope) that it will be accessed 
again. If the host accesses that data again, it can be returned directly from cache, thereby avoiding a 
disk access. Although this seems like a good approach, there are a few problems from a realistic 
standpoint: 

1. Random access to a disk drive implies a very low probability of a cache hit. If the 
application randomly accesses a 1 TB file, for example, the controller would need 1 TB of 
cache. Most interactive database applications are random access, so read cache does very 
little to help, since nearly all accesses are cache misses. As a result, large amounts of read 
cache provide little or no benefit for a random access workload. 

2. As data is read from disk, room must be made in cache for that new data, so older data will 
be removed. With the high cache miss probability associated with random accesses and 
high I/O rates of databases, this means extra overhead for the controller, as well as 
additional latency. Additionally, any data in cache that might have been accessed will 
probably be removed due to the other random read miss activity.  

3. Modern databases have their own internal caches (the SGA in Oracle, for example). Since 
the database knows best what data should be cached, any data that is accessed repeatedly 
is kept within the host memory (the SGA), and the storage will never see the I/O. This is 
yet another reason that large amounts of cache provide very little benefit at the controller 
level. 

In spite of this, there are times when the random access cache can be beneficial. The most common 
case is when there is a “hot spot” on the disk. This may be due to a specific file or portion thereof 
that that is repeatedly accessed, but is not cached by the application or operating system. A good 
example would be the index area of a database. Although this access pattern could benefit from a 
random access read cache, there is a problem in realistic environments, which we will now discuss. 

In addition to the I/O that repeatedly accesses data within a small area, there are usually other 
ongoing I/O operations on other disks that are completely random. If these other accesses occur at a 
high rate and are read into cache, there is a possibility that they will displace the data from the hot 
spot area. The result will be cache misses for the hot spot data. One common way to overcome this, 
which is both costly and inefficient, is to simply increase the amount of cache memory in the hope 
that having a sufficiently large amount of cache will allow the hot spot data to be retained in cache. 
The problem with this is, of course, that it is mainly a matter of luck, depending on the relationship 
between the random access stream and the hot spot I/O. The end result can be tens of GB of cache 
memory required just to ensure cache hits on tens of MB of hot data. 

A second approach is to disable read cache on the LUNs that have no cache hits, thereby preventing 
their data from polluting cache. Although this will certainly help the hot spot data to remain in 
cache, it suffers from the disadvantage that it requires manual monitoring and intervention. Not 
only that, if the workload to a LUN that has read caching disabled suddenly develops hot spots in 
the data, the potential for improved performance via caching is lost, since cache has been disabled 
on that LUN. 

Rather than spending unnecessarily large amounts of cache memory in an inefficient manner or 
requiring continuous manual monitoring, the EVA has an advanced algorithm that can handle cases 
such as this with minimum cache memory. Within the EVA, there is  code that monitors cache hits, 
and if the hit rate for a LUN drops below a certain level, will automatically disable read cache for 
that LUN. As a result, the random access stream will not be read into cache, and will not displace 
other data. The EVA will  continue to monitor accesses for that LUN via data structures however, 
and if the access pattern is such that cache would help, the EVA will re-enable read cache for that 
LUN. This dynamic enabling and disabling of read cache based on changing I/O workloads is one 
of the many reasons the EVA doesn't need large amounts of read cache (it uses existing cache 
extremely effectively). 
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Sequential reads 
Sequential reads are quite common with many applications, but are usually mixed with the I/O 
streams from other applications. Additionally, many applications issue sequential I/O requests with 
very small transfer sizes, which is extremely inefficient. A simplistic way of handling this is to 
simply fetch large amounts of data with every read request. The thinking (or lack thereof) behind 
this is that by reading in more data than is requested, the next sequential request for data will 
already be in cache. The fallacy with this thinking is twofold. First, only a very small percentage of 
requests are sequential in nature, so the additional time taken to read in the “extra” data 
significantly reduces performance on all accesses, sequential or not. Second, this unneeded data is 
stored in cache, once again causing other data to be purged from cache. This unnecessary cache 
purging is typically handled by once again adding massive amounts of (unnecessary) cache. 

A much more advanced (and patented) algorithm is used by the EVA for prefetching data. The 
EVA continuously monitors the I/O stream, searching for sequential access patterns. A sequential 
I/O stream can be detected even if there is intervening, non-sequential I/O. As an example, if a 
request stream requested logical blocks 100, 2367, 17621, 48, 101, 17, 2, 15, and 102, the EVA 
would recognize that there is a single sequential request stream present (blocks 100, 101, and 102). 
Since the EVA was designed to handle large numbers of LUNs, the prefetch algorithm has been 
designed to recognize up to 512 simultaneous sequential streams for different areas of different 
LUNs. Because of this, the EVA can not only handle simultaneous I/O from disparate applications 
in a heterogeneous operating system environment, but can also initiate parallel prefetch operations 
on numerous LUNs as required. 

Once a sequential stream has been detected and the originally requested data returned to the host, 
the EVA will request additional data from the LUN. By waiting until the original data has been 
returned before prefetching more data, no additional latencies are imposed on the host I/O. If the 
EVA  prefetches the data before the host requests it, the algorithm concludes that the prefetch is 
working fast enough to keep up with the host, and the process continues (another prefetch after the 
host asks for the data). If, on the other hand, the host requests the data before the EVA has 
prefetched it, it is an indication that either the EVA is too slow, or the host is too fast. To handle 
this, the EVA will increase the size of the prefetch and continue. As the sequential read from the 
host proceeds, the EVA will dynamically increase the size of the prefetch as needed to stay ahead 
of the host requests. 

After returning the data to the host, the EVA will purge the data from cache, since sequentially 
accessed data is rarely, if ever, requested again. Because this data is purged from cache, it takes up 
almost no room. As a result, a host can sequentially read an entire LUN, get 100% cache hits from 
the EVA, and use only a few hundred KB of cache. This result of this algorithm is that there is no 
penalty for randomly accessed data (no prefetch is triggered), prefetch will only occur when needed 
and only at the size that is needed (the size is dynamically adjusted), and minimal cache will be 
used (prefetch data is flushed after being returned to the host). Thus, EVA’s pre-allocated 1GB of 
read cache is more than sufficient to sustain high performance simultaneous random and sequential 
read workloads. 

Random writes 
Write cache is used primarily as a speed-matching buffer. For random writes, completion is 
signaled to the host as soon as the data is in cache, resulting in very low latency. As the cache 
buffers start to fill, the EVA will initiate a background flush operation, writing that data to disk. 
With the large number of disks in the EVA, there is a very low probability of ongoing host reads 
colliding with a flush operation, so there is no noticeable performance loss as a result of the flush. 

Interestingly enough, the size of write cache has very little impact on random workloads beyond a 
few hundred MB. As long as the incoming host write rate is lower than the rate at which cache 
flushes to disk, the cache will never fill, and the application will always see microsecond write 
response time. If, however, the host write rate is greater than the rate at which the data can be 
flushed to disk, then cache will eventually fill, no matter how large the cache is, and the host write 
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rate will be reduced to that of a disk. This is very similar to a bucket with a hole in it being filled 
with a hose. Increase the inflow rate past the outflow rate, and the bucket fills completely and 
overflows. 

If the controller flush algorithms are poorly implemented, then it is quite possible that there will be 
times when cache becomes full and the application I/O must slow down to allow time for the cache 
to flush. This behavior is relatively easy to notice, since the application response time will have a 
tendency to fluctuate as the write speeds are based on cache or disk times. 

The amount of write cache therefore only needs to be sufficiently large to accommodate transient 
bursts of write I/O activity without completely filling. Cache sizes larger than this offer no 
advantage, since they will never fill. By the same token, if the sustained write rate is greater than 
the write cache flush rate, no amount of cache memory will prevent cache completely filling and 
becoming ineffective. 

Sequential writes 
Sequential write streams are typically associated with log files, and are usually one of the more 
critical I/O streams from a performance standpoint. These writes usually involve small transfer 
sizes, such as 8 or 16 KB, and as such, are very inefficient from a storage standpoint. Furthermore, 
they are quite often associated with database “checkpoint” or “commit” operations; so other 
application I/O is gated on completion of these writes. 

In addition to detecting sequential read streams, the EVA will also detect sequential write streams. 
Multiple sequential write requests will be aggregated in cache and, when time comes to flush the 
data, will be sent to the underlying disk storage as a single, large request instead of many small 
requests. A clear advantage of this approach is that a much higher data rate can be obtained at the 
disk level, increasing the efficiency of the transfer, as well as minimizing the impact on any other 
I/O requests that may have been directed to that particular disk drive. 

When the size of the write data reaches what is known as a “strip”, the EVA will flush this data to 
the disks. A “strip” is 512 KB in size, and is associated with the underlying virtualization 
technology. Although a discussion of virtualization technology is beyond the scope of this paper, 
writing a strip at a time means that for VRaid 5 LUNs, a single large write will encompass all 
members of a VRaid 5 redundancy group, and parity can be calculated and written on the fly, 
thereby eliminating the need for the typical read/modify/write operation. This action means that 
VRaid 5 sequential writes can achieve performance approaching that of VRaid 1. Flushes for 
VRaid 1 LUNs also occur at a size of 512 KB, so all members of a VRaid 1 redundancy group are 
involved in parallel transfers, making the flush extremely efficient. 

Larger I/O sizes to disk would not increase performance, so the strip flush not only optimizes data 
rate performance, it also ensures that massive amounts of write data are not kept in cache, once 
again eliminating the needs for huge amounts of cache memory. As with reads, the EVA’s pre-
allocated 1GB of write cache (512 MB mirrored) is more than sufficient to sustain high IO 
performance simultaneously for both random and sequential write workloads. 

Reasons for large caches 
With all the above, a reasonable question to ask is if there is ever a good reason to have 
substantially larger caches than the EVA  currently offers. There are several reasons, listed below: 

1. Large caches make a customer feel good. This is strictly a matter of perception, but if the 
price of extended cache is justified by the “warm and fuzzy” feeling, it may be desirable to 
have large caches. 

2. Cache memory has a very good profit margin, so large caches contribute substantially to 
the vendor’s bottom line. Clearly not in the best interests of the customer, and a reason 
why the EVA only implements enough cache to meet the performance goals . 
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3. The controller has very poor caching algorithms, and masks this deficiency with large 
amounts of cache. Unfortunately, this is a very common occurrence, and results in 
unnecessarily high costs to the end customer. A good example of this is the “prefetch” 
algorithm that translates each and every read request, no matter how small, into a 64 KB 
read to disk. This not only wastes large amounts of cache memory, it also results in much 
slower disk performance since so much unneeded data has to be read. 

4. Data structures and code are stored in cache memory. Although this does result in fast 
access from a controller firmware standpoint, the cost of cache memory is much higher 
than that of program memory, and gives a false sense of what can be expected from cache. 
The EVA contains sufficient “private” memory for the purposes of storing the code and 
data structures, so additional cache memory is not needed for this purpose. 

5. Creating a LUN that is entirely resident in cache (often called cache or LUN binding 
intelligence). This is perhaps the only good reason for large caches. There are instances 
where the speed of an electronic disk is desired, and having the ability to carve up a 
segment of cache and present it to the host as a LUN is worth the high cost. 

With the exception of item 5, a cache that is sized appropriately to the underlying storage and 
implements advanced caching algorithms does not need to be excessively large to perform well. In 
fact, larger caches impose additional restrictions in the form of increased battery size (for write data 
retention) and cache search time (which may lower performance). 

 


