

Sizing Exchange 2003 Servers

Steve Tramack
Sr. Solutions Engineering Manager
TSG Solution Alliances – Microsoft Solutions
Hewlett-Packard

© 2004 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice

Topics

Sizing / capacity planning process

Exchange server sizing and design

Basic monitoring

Summary

What's Out There?

- Benchmarks
 - -...Are not the best source of sizing data
- Mhh
 - -Single server
 - Unrealistic configuration
 - -One workload
 - No additional software or redundancies
- Intended to compare server models, not provide sizing guidelines

What Else Is Available?

- Sizing tools
 - Varying levels of complexity and comprehensiveness
 - Risk of GIGO as solution grows
- White papers
 - Source reference materials
 - Based on lab testing or "notes from the field"
- Consultants / Solution Architects

Where Do I Start?

- Know thyself
 - -Identify your definition of a "user"
 - Understand server and user workload characteristics
 - Identify best practices, business considerations, SLAs, planned architecture / topology
- Establish baselines
- Gather data
 - Personalized benchmarking
 - Understand peaks, averages, percentiles, patterns
 - -Pilot, if possible, and monitor

Identifying bottlenecks

- Response time
 - Server's reaction to load
 - Only part of the picture
- Throughput
 - -Messages/sec
 - -Transactions/sec
- What is a bottleneck
 - -High demand resource
 - -Workload dependent
 - Never really eliminate; just move

Dealing with Constraints

- Size to peak or average?
- Key System Resources
 - -CPU
 - Memory
 - -I/O
 - Disks
 - Network
- Scale up versus scale out
- SLAs

Topics

Sizing / capacity planning process

Exchange server sizing and design

Server role overview

Mailbox server sizing guidelines

I/O planning

Tools

Basic monitoring

Summary

Exchange 2003 Server Roles

- Different requirements based on role
 - Mailbox servers
 - -SMTP servers
 - -X.400 / legacy connector servers
 - Front end servers (OWA / OMA)
 - Active Directory/Global Catalog
 - Expansion servers
 - -Free/busy
 - Public folders

Sizing Exchange: CPU

- Scalability
 - Pre-2002 processors: scale through 8P
 - Xeon MP / Opteron: 4P (8P w/SP1? Affinity?)
 - Sweet spot moving down the chain?
 - -Goal: burn 80%...a challenge?
 - -Check KB 827281
- Scalability factors
 - Hyperthreading impact
 - Clock frequency
 - -L2, L3 cache
 - Front-side bus impact
 - Architecture (Xeon / Xeon MP / Opteron)

Frequency, L3 Cache And FSB

Platform: ProLiant DL360G3; 2P, Exchange 2003 RTM; identical configuration.

Workload: 3,000 MMB3. Response Time relatively consistent

Hyper-Threading Results

Platform: ProLiant DL580G2; 4P 2.0GHz/2M cache, Exchange 2003 RTM

Workload: MMB3

Opteron And Xeon MP Architecture

Xeon MP FSB architecture

All 4 procs share 64-bit connection to external North Bridge

Each proc has access to memory at 400MHz, with a max of 800 MB/s

Compensate with larger L3 cache on die

Opteron architecture

North Bridge and memory controller integrated with each processor

Each proc includes 3 point-to-point hyperlinks; 6.4GB full duplex bandwidth

Sizing Exchange: Memory

- Physical versus Virtual
 - 4GB on high-end back-end servers (2,000 mailboxes and above)
 - -No PAE / AWE
 - -64-bit extension support (Windows 2003 SP1)?
- /3GB (mbox and PF servers)
 - Boot switch when >1GB of RAM
 - Must be used with /USERVA (Windows 2003)
 2970⇔3030 (SystemPages Regkey with W2K)
 - All editions of Windows 2003, Advanced Server and Datacenter of Windows 2000
 - REMOVE on Windows 2000 Standard Edition!
 - REMOVE if DC present on same system
 - -Check KBs 815372, 810371

Sizing Exchange: Network

- Back-end
 - -Typically, 100Mbit full duplex sufficient
 - -Consider Gbit if
 - Network backup/restore
 - iSCSI or NAS storage TOE support
 - High concentration of OWA / POP / IMAP users
 - Network Teaming
 - -Consider NICs with IPSec offload if applicable
 - MAPI compression / buffer packing 70% improvement in cached mode synchronization
- Front-end
 - Dual switched 100Mbit or Gbit default

Sizing Exchange: I/O The #1 Consideration

- I/O Profiles
 - -EDB
 - -STM
- The basics
 - Split logs from databases
 - Store: RAID 0+1 (recommended) or RAID 5
 - Log files: Recommend RAID 1 with write-back caching
 - Virtualization impact?
 - -Size for capacity *and* I/O (subscribed vs. concurrent)
 - Design for Monday morning peak load

Storage Design: FE Servers

- SMTP
 - Create a single partition; ~30 small msgs / sec / spindle
 - RAID 0+1 recommended; 100% write-back cache
- X.400 and legacy connectors
 - Separate MTA (RAID 5), logs (RAID 1) and page file, if possible
- Other FE servers
 - Not I/O-intensive

Storage Design: BE Servers

- Many considerations
 - −IOPS/u rates
 - -Array / LUN design
 - RAID level comparisons and read/write mix
 - Controller cache settings
 - Architecture (direct attached vs. Network)
 - $-\dots$ To mention a few
- TEMP/TMP to "fast" drive
 - Deferred content conversion (MAPI⇔MIME)
 - -SMTP, move maibox, ISPs
 - -Check KB 317722, 329067
 - In clusters, configure the value to the Cluster Service Account profile

Database IOPS/u Rates

- Exchange 2003 IOPS/u rates (MAPI user, 200MB mailbox)
 - ISP / "light" user: <.3 IOPS/u
 Medium corporate: .5 IOPS/u
 Heavy corporate: >.75 IOPS/u
 - Microsoft: 1.2 3 IOPS/u
- Rates do not stay constant as load, mailbox sizes increase

RAID Level Comparison

Smart Array 6402 controller; 12 disks/database; 1 database/LUN/array; consistent load generated by JetStress

Controller Cache Comparison

Smart Array 6402 controller; 12 disks/database; 1 database/LUN/array; 75/25 R/W workload mix; HP WOR consistent load generated by JetStress

Array Design

- Log placement based on resiliency to failure
- Virtualization benefits (cross-referencing databases and logs in same disk groups) may outweigh penalty of mixing IO types
- Impact of Storage Groups and MDBs
 - Read/write mix, Loss of SIS ratio

Smart Array 6402; 12 disks/database; 1 DB/LUN/RAID 0+1 Array; consistent load generated by JetStress

Anatomy of a disk bottleneck

MSA1000; 16 disks/database; 1 DB/LUN/RAID 0+1 Array; increasing load to saturation generated by JetStress

Sample sizing examples

- IOPS vs Capacity
- Storage Planning Calculator
 - -(free) Active Answers download
 - -Exchange 2K vs 2003
- "Back of the Napkin"
 - -4,000 "medium" users
 - -8,000 "light" users
 - -4,000 "heavier" users

RAID Level and Capacity Planning BotN

4,000 "medium" users IOPS

- 0.8 IOPS average; 1.0 IOPS peak
 - 4,000 users * 1.0 IOPS = 4,000 IOPS
 - 3:1 ratio: 3,000 read and 1,000 write IOPS
- Backend disk IOPS: RAID 10 calculation
 - Total IOPS = 3,000 + 2 * 1,000 = 5,000
 - 42 drives @ 10K RPM or 34 drives @ 15K
- Backend disk IOPS: RAID 5 calculation
 - Total IOPS = 3,000 + 4 * 1,000 = 7,000
 - 59 drives @ 10K or 47 drives @ 15K

Capacity

- 200 MB mailboxes
 - 4,000 users * 200 MB * 1.5 (rough calc for deleted items, maintenance, etc.) = 1,172 GB
 - 1,172 GB ÷ 66 GB/drive = 18 drives
- Backend disks: RAID 10 calculation
 - 18 drives * 2 (RAID 10) = 36 drives
 - Best match to 42 drives 73GB @ 10K
 RPM
- Backend disks: RAID 5 calculation
 - 18 drives * 1.2 (RAID 5) = 22 drives
 - Poor match to 59 (10K) or 47 (15K)

RAID Level and Capacity Planning BotN 8,000 "light" users

IOPS

- 0.3 IOPS average; 0.5 IOPS peak
 - 8,000 users * 0.5 IOPS = 4,000 IOPS
 - 3:1 ratio: 3,000 read and 1,000 write IOPS
- Backend disk IOPS: RAID 10 calculation
 - Total IOPS = 3,000 + 2 * 1,000 = 5,000
 - 42 drives @ 10K RPM or 34 drives @ 15K
- Backend disk IOPS: RAID 5 calculation
 - Total IOPS = 3,000 + 4 * 1,000 = 7,000
 - 59 drives @ 10K or 47 drives @ 15K

Capacity

- 200 MB mailboxes
 - 8,000 users * 200 MB * 1.5 = 2,344 GB
 - 2,344 GB ÷ 66 GB/drive = 36 drives
- Backend disks: RAID 10 calculation
 - 36 drives * 2 (RAID 10) = 72 drives@ 73GB
 - Would match 42 drives 146GB @ 10K RPM
- Backend disks: RAID 5 calculation
 - 36 drives * 1.2 (RAID 5) = 44 drives@ 73GB
 - Would match 47 drives 73GB @ 15K

RAID Level and Capacity Planning BotN 4,000 "heavier" users

IOPS

- 1.2 IOPS average; 1.5 IOPS peak
 - 4,000 users * 1.5 IOPS = 6,000 IOPS
 - 3:1 ratio: 4,500 read and 1,500 write IOPS
- Backend disk IOPS: RAID 10 calculation
 - Total IOPS = 4,500 + 2 * 1,500 = 7,500
 - 63 drives @ 10K RPM or 50 drives @ 15K
- Backend disk IOPS: RAID 5 calculation
 - Total IOPS = 4,500 + 4 * 1,500 = 10,500
 - 88 drives @ 10K or 70 drives @ 15K

Capacity

- 400 MB mailboxes = "heavier"
 IO profile
 - 4,000 users * 400 MB * 1.5 = 2,344 GB
 - 2,344 GB ÷ 66 GB/drive = 36 drives
- Backend disks: RAID 10 calculation
 - 36 drives * 2 (RAID 10) = 72 drives@ 73GB
 - Best match 72 drives 73GB @ 10K
 RPM
- Backend disks: RAID 5 calculation
 - 36 drives * 1.2 (RAID 5) = 44 drives@ 73GB
 - Poor match to 88 (10K) or 70 (15K) drives

Network Storage Alternatives

- Storage Area Network (SAN)
 - Consolidation and availability
 - Multi-node, application fabric
 - VSS support KB 822896
 - RAIS (SAN booting, recovery)
 - Virtualization benefits (I/O performance)
- iSCSI and NAS
 - KB articles 839686 and 839687
 - Block mode access (no UNC) and WHCL required; Gbit recommended
 - Latency (Sec/read, Sec/write), additional CPU hit are key factors
 - Recommend persistent targets (iSCSI initiator)

iSCSI, SAN and DAS

Sizing Exchange: Software

- Software component impacting CPU
 - Anti-Virus
 - Exchange components
 - Content indexing
 - DDLs
 - Cached mode
- Mobile device support
 - E.G. 1 Blackberry user = 2.21 MAPI users for CPU and network, but not storage

Example Of Software Impact

Sizing Active Directory

- How many clients per Global Catalog Server?
 - 1:4 GC/Exchange processor ratio
- Outlook's use of NSPI
 - -Rule of thumb is 4,000 clients per GC
 - RPC over HTTP: Must used fixed port (registry key through W2K3 reg utility)
- Use /3GB on Global Catalog Server!
 - -> 1GB of RAM; AS/DC of W2000
 - Decrease of 20%-40% of disk I/O
 - $-512MB \rightarrow 1GB$ of ESE Cache
- Consider upgrading to Windows Server 2003
 (including 64-bit for large enterprises)

Other Important Considerations

- IS Online Maintenance
 - Checking Active Directory for deleted mailboxes
 - Minimal BE server impact
 - Scheduling important to minimize AD impact
 - Permanently remove mailboxes / messages older than retention policy – disk intensive
 - Online defrag of the data within the database disk intensive
- Backup window halts maintenance activities
- Performance impact related to business-driven factors
 - E.g. complete maintenance per SLA

Topics

Sizing / capacity planning process Exchange server sizing and design

Basic monitoring

Main Objects and Counters

Summary

Objects And Counters

- Main Exchange Objects
 - Database(s)
 - -MSExchangelS series
 - -MSExchangeMTA
 - -SMTP Server
 - -Exchange Web Mail
 - Process
 - STORE
 - MTA
 - Internet Information Server

If You Were To Pick One Counter?

- MSExchangelS Mailbox(_Total) | Send Queue
 Size
- Others
 - Process | STORE | CPU
 - -Epoxy | <xxx> Que Len
 - -SMTP Server | Categorizer Queue Length
 - Indicates if Active Directory is not handling the demanded workload
 - Process | Store | VM Largest BlockSize (>200MB)

Disk Counters

- Monitor Log drives
 - Database Instances Log Record Stalls/sec (per Storage Group)
- Monitor latency
 - PhysicalDisk(drive:)\Avg. Disk sec/Read
 - Low latency: <20ms avg
 - PhysicalDisk(drive:)\Avg. Disk sec/Write
 - Low latency: <5ms avg (caching controller)
 - <20ms avg is the goal with a few spikes that don't exceed 50-60ms.
 - -Common problems misconfigured SANS

Disk Counters

- Monitor disk queues:
 - PhysicalDisk(drive:)\Current Disk Queue
 - never = 0?
 - PhysicalDisk(drive:)\Avg. Disk Queue
 - > # spindles?
- Monitor throughput
 - LogicalDisk(drive:)\Read/sec (Write/sec)
- Disk space capacity versus I/O Capacity
 - Want to be < 80% max I/O Capacity
 - Use cache controller for low latency
 - Use RAID for high transaction rates and fault tolerance

Disk At Capacity: RPC Ops/Sec Increase (Green Line)

Disk At Capacity – Disk Latency Increases (Red Line)

Disk At Capacity – Disk Throughput Decreases (Disk\reads/Sec) (Blue Line)

Disk At Capacity – RPC Averaged Latency Increases (Red Line)

Topics

Sizing / capacity planning process Exchange server sizing and design Basic monitoring

Summary

Summary

- Benchmarking: Caveat emptor: Develop own tests / baselines / acceptance criteria
- Rules of Thumb
 - Separate roles to best consolidate users
 - Mailbox server
 - CPU: 2 4. Consider fastest FSB, larger L3 cache over CPU speed
 - Memory: 4GB
 - Network: 100Mbit; dual 100 Mbit for FE
 - I/O: Business factors drive architecture. Consider controller write cache, separate arrays when not virtualizing, split I/O types. Size for I/O *and* capacity
 - Active Directory
 - 1 GC near each Exchange server
 - 1 GC per 4,000 users

Co-produced by:

