
© 2004 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

Using the Software
RAID Functionality of
Linux

Kevin Carson
Solution Architect
Hewlett-Packard (Canada) Co.

2

What this presentation IS
• Description of Linux Software RAID Functionality

• Examination of Booting from Software RAID

• Examination of Swapping failed Disks

• How to Layer RAID Levels

• How to mirror to Network Block Devices

• Issues in Choosing Between Software and
Hardware RAID Configurations

• Based upon Debian 2.4.26 and 2.6.6/7 kernels

3

What this presentation IS NOT
• Introduction to RAID concepts

• RAID kernel code discussion

• A discussion of Linux Logical Volume
Management

• Impromptu troubleshooting of any particular Linux
Software RAID implementation

Linux Software
RAID
Description

5

“md” Driver
• “md” = multiple devices

• Various configurations are called “personalities” so the
RAID levels supported each have a “personality” as well
as special groupings of devices for such as a logical
volume management and concatentation of devices.

• “md” is not loaded as a driver module, instead by each
“personality”; one does need to load every possible
personality.

• The kernel, some filesystems, and partition tables are
able to recognize some/all personalities to leverage them
for boot, file layout, auto-detection.

6

md “personalities”

Meant for union/overlay filesystems but is unused in the
kernel. Separate efforts trying to provide this facility.

Translucent

Hierarchical Storage Management – Unused in kernel tree.
Placeholder for external features?

HSM

Failover between different connections to the same device.Multipath

Kernel 2.6 only. Dual parity information. RAID 6

Distributed parity with multiple choices for the distribution.
Also implements RAID 4 (all parity on a single disk).

RAID 5

Mirrored set of devices.RAID 1

Striped set of devices.RAID 0

Concatenation of devices into one large device.Linear

7

Software RAID Concepts &
Concerns
• chunksize is more commonly known as a “stripe”. It is the

basic division of data spread out over the disks within an
array. Size ranges from 1 page to 4MB in powers of 2.

• md devices must be explicitly stopped before shutdown.
• If a spare device is assigned to the array, it will take the

place of a failed device. Later replacements of the failed
physical device will become the new spare if they are
added after the rebuild has finished.

• Spares are NOT scrubbed while idle. They are only
known to be good when a rebuild action commences.

• Most RAID personalities base their per drive disk usage
on the smallest partition/drive in the set.

• A md device will survive the physical shuffling of drives.

8

General kernel support of RAID
• Under the following conditions, the kernel will

automatically start existing md arrays during boot only:
− The RAID array consists of partitions whose type is “linux raid

autodetect”
− The partitions contain a persistent RAID superblock.
− The partition table type is recognized by the kernel.
− The appropriate RAID personality is not a dynamic module but

compiled in to the kernel.
− The driver for the IO channels to the disks is compiled in as well.

• Arrays not properly shutdown will need to be rebuilt upon
activation but this will proceed in the background.

• When multiple arrays rely on the same physical device;
only one rebuild action will be active.

9

General kernel support of RAID
cont’d
• Status through /proc/mdstat

~# cat /proc/mdstat

Personalities : [linear] [raid0] [raid1] [raid5]
[multipath] [raid6]
md3 : active raid5 sdh[2] sdf[1] sde[0]

17755392 blocks level 4, 64k chunk,
algorithm 0 [3/3] [UUU]

md2 : active raid1 md1[1] md0[0]
17755328 blocks [2/2] [_U]
[==================>..] resync = 94.5%

(16780736/17755328) finish=4.0min speed=3996K/sec
…
unused devices: <none>

10

General kernel support of RAID
cont’d

• Status through /proc/mdstat
Personalities : [linear] [raid0] [raid1] [raid5]
[multipath]

md3 : active raid5 sdf[1] sdh[3](F) sde[0]

17755392 blocks level 4, 64k chunk, algorithm 0
[3/2] [UU_]

…

md1 : active raid1 sdd[2] sdc[0]

8877696 blocks [2/1] [U_]

[>....................] recovery = 0.4%
(43392/8877696)

finish=37.3min speed=3944K/sec

…

unused devices: <none>

11

General kernel support of RAID
cont’d
• Control of rebuild through /proc/sys/dev/raid/ or sysctl.

Speed_limit_min defines the floor (minimum rebuild
speed) and speed_limit_max defines the ceiling. Usually
the floor has to be raised as any activity on any disk will
slow the rebuild dramatically.

• /proc/sys/dev/raid/speed_limit_min
− echo “10000” >speed_limit_min (default is 100
KiB/s)

− sysctl –w dev.raid.speed_limit_min=10000

• /proc/sys/dev/raid/speed_limit_max
− echo “100000” >speed_limit_max (default is 10
MB/s)

− sysctl –w dev.raid.speed_limit_max=100000

12

RAID 0 Personality
• Very little error checking on device state so

system can hang with retries.

• Maximum IO transaction to a device will be
chunksize.

• Attempts to merge adjancent IOs to a limit of
chunksize

• If devices within RAID 0 set are varying size,
remaining chunks will land on largest device

13

RAID 1 Personality
• chunksize is ignored; transactions are size of block of underlying

device (typically 512 bytes). Lower block layer would normally
merge successive requests.

• Read balancing (as of 2.4.20) based upon device with nearest
last known position with respect to RAID device. If multiple
partitions or mirrors active on the same device, then this
strategy fails as the last known head position is tracked by
mirror. For constant sequential reads, this strategy can cause
the same device to be hit constantly.

• For 2.6, a better strategy is implemented for spreading
sequential reads and tracking last known head position.
Resynchronization proceeds in 64KiB transactions.

• One can specify multiple copies to get n-way mirroring.
• To split off a mirror (eg for backup), one would set the device as

“faulty” and then remove the device from the RAID set. Adding
back causes a resynchroniziaton.

• Need a minimum of two devices.

14

RAID 5 Personality
• Upon boot/module load, several different parity algorithms

are tried and the best method chosen.

• Four choices on how parity chunks are distributed among
the devices of the RAID set: Left Asymmetric, Right
Asymmetric, Left Symmetric, Right Symmetric.

• Also handles RAID 4 functionality (dedicated parity disk
instead of distributed parity chunks). The last active disk
in the RAID set is chosen as the parity disk.

• RAID 4 shows up as a RAID 5 device /proc/mdstat but
with “level 4” noted in device line.

• Need a minimum of 3 devices.

15

RAID 6 Personality
• Only available with 2.6.x kernels.

• Two sets of parity information so will survive failure of two
devices.

• Specialized algorithms for parity calculation are only available
for x86 or x86-64 MMX/SSE capable CPUs though generic
algorithms perform well on IA64 (only ~24% decrease over
RAID 5 calculation). For very generic CPUs, results can be as
much as 5X slower over RAID5.

• Choices of parity distribution is identical to RAID5.

• Can only be manipulated with mdadm utility.

• Minimum of 4 devices.

Tools for
Software RAID

17

raidtools2
• Second version of original set of tools.
• Each different action has a different command associated (eg, lsraid,

mkraid, raidhotadd, raidhotremove, etc.)
• Expects to have a valid configuration file describing the current (or

about to be created) md devices. /etc/raidtab by default.
• Use “lsraid –R –p” to output a formatted raidtab
• Example /etc/raidtab entry:

md device [dev 9, 0] /dev/md0 queried online
raiddev /dev/md0

raid-level 1
nr-raid-disks 2
nr-spare-disks 0

persistent-superblock 1
chunk-size 0

device /dev/sda1
raid-disk 0
device /dev/sdb1

raid-disk 1

18

mdadm
• Provides all the same actions as the raidtools2 suite but with different

command line options rather than separate commands.
• Most actions don’t require a configuration file.
• Mdadm can also run in the background, monitoring the running md

devices and detect changes. An event can trigger log events, mail
notification, and the running of scripts.

• While mdadm is running as a monitor it can float a spare device
between arrays to create a global spare. Without this functionality,
spares are statically assigned per array only.

• For some operations, the monitoring action of mdadm may prevent
changes to the array’s state. Temporarily shut off the daemon.

• Use “mdadm –detail --scan” to output a formatted configuration file.
Default configuration file is /etc/mdadm/mdadm.conf

• Example /etc/mdadm/mdadm.conf entry:
ARRAY /dev/md0 level=raid1 num-devices=2
UUID=40e8c451:71a182ed:23642c05:476cf390

devices=/dev/sda1,/dev/sdb1

19

Filesystems’ support of RAID
• EXT2/3 and XFS provide parameters to tune allocation of data to the stripe

size of the RAID unit. These parameters are supplied when the filesystem is
first created on the md device.

• Ext2/3:
− use “-R stride=XXX” parameter to align data allocation. Stride should be set to

chunk size / filesystem block size.
• XFS aligns allocations for both its log and data sections using:

− “-d su=XXX” or “-d sunit=XXX”
− “-l su=XXX” or “-l sunit=XXX”

where “su=“ is specified in bytes and “sunit=“ is specified in 512 byte blocks.
Caveats:
• Its best to move journalling filesystems’ log to a separate RAID 1 device.

• Ext2/3 allocates blocks in groups of 32768 by default. The start of each block
group has the inode and block allocation bitmaps. If the group block size is
an even multiple of stripe set size (chunk size * #devices) and the “-R
stride=XXX” isn’t used, then accesses for these bitmaps will happen on the
same device. Don’t forget the “-R stride=XXX” option!

Layering
Software RAID
Personalities

21

Layering md Devices
• Simple as using other md devices as the “raid disks”. Here is an example

creating a RAID10 (striped mirrors) array:
~# mdadm -C /dev/md0 -l 1 -n 2 -a /dev/sda1 -a /dev/sdb1

~# mdadm -C /dev/md1 -l 1 -n 2 -a /dev/sdc1 -a /dev/sdd1

~# mdadm -C /dev/md2 -l 1 -n 2 -a /dev/md0 -a /dev/md1

Personalities : [raid0] [raid1]

md2 : active raid0 md1[1] md0[0]

17753728 blocks 64k chunks

md1 : active raid1 sdd1[1] sdc1[0]

8876928 blocks [2/2] [UU]

[>....................] resync = 1.3% (120704/8876928) finish=54.4min speed=2678K/sec

md0 : active raid1 sdb1[1] sda1[0]

8876928 blocks [2/2] [UU]

[>....................] resync = 1.5% (134336/8876928) finish=97.1min speed=1498K/sec

unused devices: <none>

• Raidtab order is important such that /dev/md0 and /dev/md1 entries must
appear before /dev/md2’s entry.

• One could do something similar with nested RAID5 sets to get a RAID6 like
protection in a 2.4 kernel.

• Using layers increases overhead in processing. This is a reason for
implementing true RAID6 in the kernel.

Booting from
Software RAID

23

Boot Process Conceptualized
• Most platforms implement these steps with

varying divisions of which firmware/bootloader
does what:

Firmware checks system integrity

Initial System Code determines list of bootable devices

Initial System Code attempts to handoff execution to
Boot Management presented by “first” bootable device

Boot Management hands off to an Operating System

24

Firmware Checks System Integrity

“I’m ALIVE!!!!”

Or not…

25

Initial System Code Finds Boot
Devices
• Two extremes of implementation:

− Can be a very restricted list of device types the ISC will recognize.
− EFI allows adapter to install driver from adapter option ROM.

• Different ways of making the list:
− BIOS expansion ROM presented by adapter adds entry if adapter

has been told of/detected a candidate.
− Firmware is configured with explicit list of devices.

• Depending on the Initial System Code’s flexibility, one
may have to mix device types (eg, a boot floppy and a
hard drive) to get redundancy.

• Identical setups of later stage software on each.

26

ISC to Boot Management Hand-off
• Initial System Code attempts to handoff execution to Boot

Management presented by “first” bootable device.
• Multiple methods of determining that a device has a boot

loader installed:
− Load sector 0 and look for magic bytes.
− Device contains a partition marked as bootable with a specific

filesystem.

• Boot Management may be multi stage.
• For redundancy, there must boot management on multiple

devices.
• If there is a detectable failure, then the ISC may be able

to try the next candidate. If not a detectable failure or a
Boot Management misconfiguration/corruption then boot
process stops.

27

Boot Management to OS Hand-off
• The boot partition contains last stages of boot

management.

• The boot partition has to contain a kernel that will
be able to recognize RAID partitions.

• The boot partition must be present on each
redundant device.

• For root devices (mounted by the kernel from the
boot partition), other RAID levels can be used.

28

BIOS Enhanced RAID
of HP Proliant BL30p
• If enabled, the BIOS will take special steps with

respect to any Linux Software RAID1 boot
partitions.

• Blade server has two ATA drives on a single ATA
channel.

• If the primary ATA disk has failed, it will boot off
of the secondary ATA disk if it also has a
bootable Linux Software RAID1 partition.

• If the software RAID superblocks are out of sync
on the two disks, it will choose to boot from the
one with the most recently updated superblock.

29

Lilo Support of RAID Boot
• Lilo (Linux Loader) only supports being installed on RAID

1 partitions for redundant boot.

• Using either –x command line option or “raid-extra-boot=“
lilo.conf entry, the boot management configuration is
replicated on multiple devices.

• Variants from other platforms (palo on PA-RISC, elilo for
EFI) don’t support the above handy feature.

• Lilo and variants are the only choice on several platforms.

• Partitions used as boot should be primary instead of
extended. The Master Boot Record loader expects to find
a primary partition marked as active/bootable.

30

Grub Support of RAID Boot
• Create boot partition as RAID 1 with type “Linux raid autodetect” (0xfd) on

disks. The boot partition should be marked active (or bootable).
• Create RAID root partitions also with “0xfd” type.
• Install 1st stage bootloader on MBR on both disks with GRUB’s “setup”

command.
• Make two boot entries in “menu.lst”. The two entries point to the same kernel

and root parititon (/dev/md1) but specifies different boot devices:
First entry is default entry to boot
default 0

If the default is not available boot second entry
fallback 1

Don’t wait for manual selection after 10 seconds
timeout 10

Default boot entry
title Default
kernel hd(0,0)/vmlinuz root=/dev/md1

Fallback boot entry
title Fallback
kernel hd(1,0)/vmlinuz root=/dev/md1

• (x86) Install the 1st stage bootloader in the MBR on both disks
with GRUB’s setup command.

31

Retrofit of existing system
1. Set up first system disk as usual on Linux partition.
2. Set up partition of type “Linux raid auto-detect” on second

drive.
3. Configure a RAID device where second disk is active and first

disk is specified but failed.
4. Copy contents of system on first disk to second drive.
5. Set boot management (lilo/grub) to expect to boot md device.

This may include a regeneration of initial ram disk image via
mkinitrd.

6. Reboot system so now its booting off new md device.
7. Repartition first disk to match second disk and then add it to

the md device. Resync will begin.
8. Add first drive as another boot device in boot management.
9. Wait until resync has finished

before next reboot and voila!

Swapping Failed
Disks

33

Issues for Device Hot Replacement
• Channel & Device has to support electrical

isolation (avoiding electrostatic discharges and
controlling inrush current)

• Device has to be rescanned by kernel
• Transfer partitions from old device to new device
• Old device has to be removed from md device
• New device has to be

added back
• Device will be immediately

accessible but not highly
available until resync is
finished.

34

SCSI Swap Example
• Capture disk partitions

− sfdisk –d /dev/sdc >/tmp/sdc.parts
• Remove disk (or partition) from md device

− raidsetfaulty /dev/md0 /dev/sdc
− raidhotremove /dev/md0 /dev/sdc

OR
− mdadm /dev/md0 –f /dev/sdc –r /dev/sdc

• Gather host adapter, channel, target, lun information
− cat /proc/scsi/scsi

OR
− sginfo -l

• Notify kernel’s scsi subsystem of the removal of the device via /proc pseudo filesystem
interface using host adapter, channel, target and lun numbers

− echo “scsi remove-single-device 0 0 2 0” >/proc/scsi/scsi
• Physically swap the drive with an identical replacement
• Notify kernel’s scsi subsystem of the addition of the device via /proc pseudo filesystem

interface
− echo “scsi add-single-device 0 0 2 0” >/proc/scsi/scsi

• Re-establish the partitioning
− sfdisk /dev/sdc </tmp/sdc.parts

• Add the disk (or partition) back into the md device
− raidhotadd /dev/md0 /dev/sdc

OR
− mdadm /dev/md0 –a /dev/sdc

Swapping on
Software RAID

36

How to do it
Just like any other block device:

mkswap /dev/md0

swapon /dev/md0
• But this a so-so idea

− Swap partitions on a RAID
device should work and limited
testing has been done.
However, no one is ready to
commit that kernel code paths
have been thoroughly checked
after every update.

37

Workarounds
• If RAID 0 is of interest (ie, higher performance is required)

then one can do this with just the regular swap driver. In
the /etc/fstab file:

/dev/sda none swap sw,pri=8 0 0

/dev/sdb none swap sw,pri=8 0 0

/dev/sdc none swap sw,pri=8 0 0

The matching values for priority in the option field (“pri=8”)
means that pages will be striped between the three SCSI
disks. This yields performance without loading another
kernel driver. Priorities range from 0 to 32767 with 32767
being the highest. Higher priority devices will be used
before lower priority devices.

38

Workarounds Cont’d
• Don’t use swap. Swap is a side effect of

installation but often not used in production. Out
of control processes are better handled by the
OOM (Out Of Memory) killer which often picks the
errant process correctly.

• Use filesystem swap which also allows for better
dynamic control of swap/disk resources. It uses
slightly different code paths but the extra layers
make it slower.

• Hardware RAID based swap.

Mirroring to
Network Block
Devices

40

Network Block Device with RAID
• NBD is standard in kernel. Presents a file or block device

on a server to a different client computer across a TCP
connection.

• Client can include local block device entry (eg, /dev/nbd0)
in creation of a RAID entry.

• Device can be formatted with regular filesystem. Local
caching is a side effect of the normal block cache
mechanism (not specially designed like NFS).

• References are 64 bit but underlying platform may restrict
devices to 2GB. Use multiple NBD devices to overcome
this restriction.

• Implementations of the nbd server available for Windows
and BSD as well.

41

What one might use NBD for….
• Disaster Recovery site like commercial solutions (eg, CA, SRDF,

etc…) but any temporary network loss would cause a FULL resync.
Enhanced NBD project (which ISN’T in the kernel) allows for delta
synchronization.

• Have a highly available ram disk by mirroring a local /dev/ramXX
device to /dev/nbdXX. ndbXX could be a file resident in cache or
another ramdisk to yield good performance.

• Checkpointing in High Performance Computing. When checkpointing
is all writes it makes less sense to use a protocol with a lot of caching
algorithms like NFS.

• Diskless systems. Can’t provide boot capability but can provide other
partitions and swap devices. Copy on write option for NBD server
allows sharing of read only block device among many.

• Stretch a full image backup window by mirroring over network but
using software RAID’s speed_limit_max throttling to control amount of
bandwidth used during working hours.

Choosing
Between
Hardware and
Software RAID

43

The Differences: Simplicity

If vendor doesn’t provide OS
neutral or Linux compatible
command line configuration
then manual intervention
required. Generic
configuration often harder.

Setup can invariably be
scripted. Usually generically
over many configurations.

Usually has an “Express”
setup capability.

Requires understanding of
entire chain of reliances.

Most interaction is with
logical block device
representation.

Exposes the management of
each individual device.

Hardware RAIDSoftware RAID

44

The Differences: Flexibility

Invariably a subset of RAID levels
supported.

Layering of RAID levels allow for many
permutations. Better match to specific
workloads.

Easy RAID level migration in place. Tricky RAID level migration in place.

Usually constrained to one disk type
(eg, SCSI). Mixed types and higher
capabilities available in Enterprise
gear.

Allows use or mixing of more block
device types; ATA, ESDI, /dev/ram
NBD, etc.

Higher availability choices available
now on all platforms.

RAID 6 only available with 2.6 kernels.

Tries to lock down configuration to
only supported disk types. May even
load disk firmware or do low level
reformat.

Can use many controllers and hard
disks. Including ones that have never
been qualified together.

Hardware RAIDSoftware RAID

45

The Differences: Cost

Less administrative cost for
user but cost of vendor
testing and support
amortized over installed
base of controllers.

More administrative cost due
to more exposed complexity
and testing migrated from
vendor to user.

Offload of I/O may allow
lesser SPU to fufill same
requirements. Potentially a
price already paid if
hardware RAID is standard.

Cheaper hardware due to
huge range of choices.

Hardware RAIDSoftware RAID

46

The Differences: Supportability

Component choices are constrained
so optimal use of device through
specific capabilities

No assumptions are made about
components to match the range of
possible configurations.

Logical block device is exposed that
emulates common device geometry
and behaviour.

Raw disks and partitions are exposed
so server firmware and boot
management must be able to utilize
these.

Hardware RAID can offer active spare,
disk surface scrubbing, parity
verification. Error checking goes
beyond passive detection.

Device error detection rely on the
underlying device and/or
communication channels.

High levels of support only on specific
configurations of controllers and disks.
Tests are exhaustive and include
corner cases.

Somewhat supported to the extent the
user has done testing of complete
configuration including corner failure
cases.

Hardware RAIDSoftware RAID

47

The Differences: Performance

Onboard cache allows transaction size to
suit workload. Controller handles mapping
to device characteristics.

Optimal performance means choosing
transfer sizes that are best suited to device
behaviour first and workload second.

Battery backed cache allows for quick
returns from writes over PCI bus.

Either the devices are assumed to be able
to commit remaining writes upon power
failure or the volumes are mounted
synchronously.

May yield better results in actual production
for less administrative effort/$.

With respect to capital cost, can usually
configure higher peak performance/$.

RAID 1 only requires a transaction to the
controller which handles propagation to
disks.

RAID 1 requires a transaction over every
individual IO channel and device that has a
copy of the data.

Reduces number of context switches and
interrupts flowing through system. Read-
Update-Write parity cycle does not occupy
system resources.

On benchmarks dedicated to measuring
storage subsystem only, software RAID is
usually faster.

Hardware RAIDSoftware RAID

Linux Software
RAID Resources

49

References

Linux Software RAID HowTo
http://www.tldp.org/HOWTO/Software-RAID-HOWTO.html

Boot+Root+RAID+LILO mini-HOWTO
http://www.tldp.org/HOWTO/Boot+Root+Raid+LILO.html

Kernel Linux-RAID List
linux-raid at http://vger.kernel.org

NBD and Enhanced NBD Project Sites
NBD: http://nbd.sourceforge.net/

ENBD: http://www.it.uc3m.es/~ptb/nbd/

50

Thanks to….
Dan Zink Rick Stern Karthik Prabhakar

Theodora Carson Lia Lindell

Christie Melnychuk Yizhi Wang

Co-produced by:

