

A Case Study of Real-World Porting to the Itanium Platform

Jeff Byard

VP, Product Development RightOrder, Inc.

Agenda

- RightOrder ADS Product Description
- Porting ADS to Itanium 2
- Testing ADS on Itanium 2

RightOrder ADS product description

- Query accelerator for enterprise applications running on Oracle databases
 - Utilizes Index Fabric[™] technology
 - Deployed as an Oracle Cartridge user defined index (ODCI)
- Transparent, simple deployment:
 - No change to existing applications
 - No change to schema / data
 - No additional hardware required
- Substitute and add to Oracle indexing capabilities with a faster, scalable, and richer in functionality index

Typical performance improvement

 RightOrder ADS accelerates the most resource consuming queries for a typical business intelligence / data warehouse application

Porting ADS to Itanium 2

 ADS is a server-side, high-performance, mission-critical product

ADS is mostly Java (some PL/SQL)

Itanium 2 JVM performance and stability are critical

Tested version 1.4.1_03 of the Itanium 2 JVM

Components of ADS

Server

- Primary component; evaluates query constraints and joins using ADS indexes
 - Communicates with Cartridge via TCP/IP and RMI
 - Communicates with Oracle proper via JDBC
- All Java

Cartridge

- Interface between ADS server and Oracle
- Java and PL/SQL

Components of ADS (contd.)

Proxy

- Intercepts traffic between the client(s) and the Oracle listener, at the packet level
- All Java

Installer

Graphical InstallAnywhere utility

Scripts

- Supporting scripts / tools
- Unix shell scripts and PL/SQL

Java on Itanium 2: Works out of the box!

- Since ADS is almost entirely Java, no changes were required to:
 - ADS server
 - ADS cartridge
- No changes were necessary for any of the supporting scripts / tools
- InstallAnywhere 6.1 supports HP-UX on Itanium 2

Changes done for Itanium 2

- Platform-specific functionality
 - ADS proxy intercepting packets on a 64-bit OS
- Platform-specific optimization and tuning
 - Sorting during index creation was optimized for 64-bit platform
 - Do 64-bit comparisons (long) instead of 32-bit comparisons (int)
 - JVM garbage collection
 - -XX:+UseParallelGC -XX:+UseAdaptiveSizePolicy

Testing plan for ADS on Itanium 2

- Performance testing (ADS main "feature")
 - Index build performance
 - Query performance
 - Single user
 - Multi-user
 - Increasing amounts of data
 - Scalability
- Functionality testing
 - ADS proxy platform-specific changes

Testing ADS on Itanium 2: A "TPC-R-like" benchmark

- TPC-D, TPC-H, and TPC-R
 - A "family" of similar decision support benchmarks
- Tested:
 - 1GB, 10GB, 30GB, 100GB, and 300GB
 - Single-user and Multi-user
 - Cold cache and warm/hot cache
 - Time, I/O, and "consistent gets" statistics

Schema and database size

Several data sizes tested, up to 300 GB of raw data (= 2 TB database)

(#) – number of rows for each table SF - Scale Factor, which is 1 for 1 GB, 10 for 10 GB, 30 for 30 GB, and so on.

The largest table had 1.8 billion rows in the 300 GB run!

Porting and testing system specifications

- Earlier tests were done on HP PA-RISC platform
- HP provided an Itanium 2 machine at the Cupertino Global Solution Center
 - System specifications:
 - rx5670
 - 4 CPUs (Itanium 2 1.3GHz)
 - 16GB RAM
 - HP-UX 11.22
 - RDBMS and ADS were both installed on this machine
- Testing/Porting time frame: July to Sept '03,

Porting and testing system specifications (contd.)

- Disk and cache sizes:
 - ~2 TB of total usable storage (after mirroring, striping, standbys, OS, etc.)
 - 2 VA7410 (45x36GB, 2 controllers, 2GB cache on each)
 - RDBMS cache
 - 200 MB for the 1 GB runs
 - 1 GB for the 10 GB runs
 - 4 GB for the 100 GB and 300 GB runs
 - 50 MB of ADS cache

Queries

 ADS is used to accelerate some queries (typically the harder / slower ones) while leaving others untouched.

 There are 22 TPC-R queries. The same queries were tested (of these 22) on Itanium 2 as on PA-RISC.

Run design

- Single-user runs
 - Cold cache
 - Warm cache
- Multi-user runs
 - Each user had a different ordering of queries.
 - User 1 ran: Q5, Q7, Q20, Q10, Q8, Q19m, Q8m
 - User 2 ran: Q19m, Q10, Q8m, Q8, Q5, Q7, Q20
 - Etc.

Itanium 2 index build times

Raw Data Size	RDMBS Indexes (1 large and several small indexes, PKs, analyze)	ADS Indexes (6 join indexes, PKs)
1 GB	5m57s	25m44s (4m17s per)
10 GB	0h41m	4h34m (0h46m per)
100 GB	5h36m	35h25m (5h54m per)
300 GB	26h03m	78h00m (13h00m per)

- Goal: to build more complex (join) indexes in a comparable or lesser amount of time
- Result: Met or exceeded goal on the Itanium 2 platform

Itanium 2 query results: 300 GB, single user, cold cache

Query	Itanium 2 Without ADS	Itanium 2 With ADS	ADS Benefit
5	9532 sec	2052 sec	4.6x
7	9488 sec	1436 sec	6.6x
8	5733 sec	790 sec	7.3x
8m	5711 sec	1429 sec	4.0x
10	7004 sec	1967 sec	3.6x
17	10823 sec	2058 sec	5.3x
19m	3703 sec	50 sec	74.7x
20	5353 sec	3440 sec	1.6x
Total	57348 sec	13220 sec	4.3x

Itanium 2 query results: 300 GB, 10 concurrent users

Query	Itanium 2 Without ADS	Itanium 2 With ADS	ADS Benefit
5	21982 sec	4970 sec	4.4x
7	26399 sec	3318 sec	8.0x
8	14846 sec	1676 sec	8.9x
8m	16681 sec	2018 sec	8.3x
10	15269 sec	2059 sec	7.4x
19m	6457 sec	96 sec	67.3x
20	14016 sec	4757 sec	2.9x
Total	115649 sec	18895 sec	6.1x

Itanium 2 ADS scalability analysis

Summary

- Impressive query acceleration results on the Itanium 2 platform:
 - Different TPC-R queries
 - Different TPC-R data sizes (1GB, 10GB, 100GB, and 300GB)
 - Different numbers of concurrent users (1 and 10)
 - Different cache states (cold and warm)
- Excellent (sublinear) scalability from 10 GB to 100 GB to 300 GB.
- Initial runs in 3 days, entire project took 2-3 months
- The Itanium 2 JVM, written by HP, was found to be rock solid and fast!

"The performance of HP-UX 11i v2 on the Intel Itanium 2 -based architecture of HP Integrity servers, coupled with RightOrder's ADS Performance Enhancer, provides customers with a complete solution to establish and maintain increased levels of cost/performance ratios in their data centers."

Melissa Laird

General Manager, Solutions Enabling Division, Intel Corporation

Co-produced by:

