
© 2004 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

Hyper-Threading Performance
with Intel CPUs for Linux SAP
Deployment on ProLiant Servers

Session #3798

Hein van den Heuvel
Performance Engineer
Hewlett-Packard

Topics
� Hyper-Threading Intro
� Implementation details Intel, IBM, Sun
� Linux implementation
� My own tests
� SAP (SD) benchmark
� Benchmark Results
� Conclusions: (18% improvement for SAP 2-tier)

Intel Hyper-Threading Overview
“Hyper-Threading Technology is a form of simultaneous
multithreading technology (SMT), where multiple threads of
software applications can be run simultaneously on one
processor.

This is achieved by duplicating the architectural state on each
processor, while sharing one set of processor execution
resources. The architectural state tracks the flow of a
program or thread, and the execution resources are the units
on the processor that do the work: add, multiply, load, etc. “
http://www.intel.com/business/bss/products/hyperthreading/server/ht_server.pdf

http://www.intel.com/technology/hyperthread/

Intel HT in a picture

To-be-updated
Hyper-Threading Versus Dual Core
� HP (PA + ipf) opted for �dual core� technology.
−Each processor has full set of resources
−Only limitation is shared �system� connection.
−Allows for dense (8p � 4u � 4640)
− minimally constrained systems

� Software licensing impact (Oracle!)
� Hyper-Threading technology effectiveness will

depend on application

IBM P5 SMT Summary
Enhanced Simultaneous Multi-Threading features

To improve SMT performance for various workload mixes and provide robust quality of

service, POWER5 provides two features:

• Dynamic resource balancing

– The objective of dynamic resource balancing is to ensure that the two threads executing on
the same processor flow smoothly through the system.

– Depending on the situation, the POWER5 processor resource balancing logic has a different
thread throttling mechanism.

• Adjustable thread priority

– Adjustable thread priority lets software determine when one thread should have a greater (or
lesser) share of execution resources.

– The POWER5 supports eight software-controlled priority levels for each thread.

(http://www.redbooks.ibm.com/redpapers/pdfs/redp9117.pdf)

(http://www-1.ibm.com/servers/eserver/iseries/perfmgmt/pdf/SMT.pdf)

IBM P5 Picture

A single die contains two identical processor cores, each supporting two logical threads.
This architecture makes the chip appear as a four-way symmetric multiprocessor to the
operating system. The POWER5 processor core has been designed to support both
enhanced simultaneous multi-threading (SMT) and single-threaded (ST) operation modes.

IBM P5 Picture

In the p5-570 system, the POWER5 chip has been packaged with the L3 cache chip into a
cost-effective Dual Chip Module (DCM) package. The storage structure for the POWER5
processor chip is a distributed memory architecture that provides high-memory bandwidth.
Each processor can address all memory and sees a single shared memory resource.
As such, a single DCM and its associated L3 cache and memory are packaged on a single
processor card.
Access to memory behind another processor is accomplished through the fabric buses.
The p5-570 supports up to two processor cards (each card is a 2-way) in any building block.
Each processor card has a single DCM containing a POWER5 processor chip and a 36 MB L3
module.

IBM P5 Picture

SUN Summary
“Starting with the ability to run two concurrent threads in the
UltraSPARC IV processor, support for multi-threading at the chip level
will eventually enable single processors to process tens of threads
simultaneously.”

“ Each Sun Fire Enterprise server supports multiple chip multi-threaded
UltraSPARC IV processors with each processor capable of running up to
two concurrent threads, providing up to twice the throughput of
previous-generation UltraSPARC III processors. Up to 72
UltraSPARC IV processors are supported in the high-end Sun Fire E25K
server for support of up to 144
concurrent threads.”

http://www.sun.com/servers/highend/whitepapers/ -
Sun_Fire_Enterprise_Servers_Performance.pdf

SUN Scheduling Picture

SUN Picture

Linux Scheduler

�A Hyper-threaded CPU is seen by the kernel
as two different CPUs so Linux does not have
to be explicitly made aware of it.

�Eprom config

�Linux breaks the �oldest idle rule� and forces
immediate rescheduling when it discovers that
a hyper-threaded CPU is running two idle
processes

�Oldest idle = Among the idle processors that can execute a
given runnable process, the scheduler selects the least
recently active�

LINUX /proc/cpuinfo example
SuSE SLES 8(UnitedLinux 1.0)(i586) Kernel 2.4.21-138-smp (0).

cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 15
model : 2
model name : Intel(R) Xeon(TM) MP CPU 3.00GHz
stepping : 6
cpu MHz : 2990.372
cache size : 512 KB
physical id : 0
:
processor : 1
physical id : 0
:
processor : 2
physical id : 1

processor : 3
physical id : 1
:

:
processor : 4
physical id : 2
:
processor : 5
physical id : 2
:
processor : 6
physical id : 3
:
processor : 7
physical id : 3

LINUX /proc/cpuinfo example 2.4.19
SuSE SLES 8 (UnitedLinux 1.0) (i586)\nKernel 2.4.19-64GB-SMP (2)"

cat /proc/cpuinfo

:

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca

cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm

and NO HT shows:

processor : 0
physical id : 0
processor : 1
physical id : 0
processor : 2
physical id : 0
processor : 3
physical id : 0

LINUX cpu busy indication

�CPU time no longer behaves linearly.

�Example for 4 CPU HT system: 8 virtual processors.

�Start executing 4 tasks each 100% cpu busy.

�Scheduler will push those to run on 4 physical processors

�TOP and VMSTAT will show 50% CPU busy (1/2 processors!)

�But adding 4 more tasks will NOT give 2x throughput

What would benefit from Xeon HT?
� Yes:
−Multi Threaded apps.
−Concurrent single threaded
−Need some (low level) STALLs that would otherwise

have CPU essentially unused.
� BTW� a CPU waiting for memory to come in while really �idle�

for the application is 100% CPU busy for the OS.

� No:
- Single threaded application
- CPU intense, L1/L2 Cache effective apps.

Linux processor binding tools
�int sched_setaffinity (pid_t pid, unsigned int len,

unsigned long *new_mask_ptr)

�int sched_getaffinity (pid_t pid, unsigned int *user_len_ptr,
unsigned long *user_mask_ptr)

� Tool by Robert Love: affinity-run.c

� http://www.kernel.org/pub/linux/kernel/people/rml/cpu-affinity/affinity-run.c

� My variation on that tool with get/setpriority included

�.H file in case your distribution has improperly exported syscalls.

C File H File

My own tests
� Process 10 loops over 100 MB Array
−10,000 x 10,000 so �outer� jumps physical memory pages

� Measure run-time in milliseconds, Lower is Better
� 5 sub-test
− Inner loop first, read-only.
−Outer loop first, read-only.
− INNER loop first, read + write
−OUTER loop first, read + write
−No cell change in loop, read-only

C File

1-12 streams on 4 CPUs NO HT
(Average time. Less is better)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 2 4 6 8 10 12 14

none
inner
outer
INNER
OUTER

1-12 streams on 4 CPUs HT
(Average time. Less is better)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 2 4 6 8 10 12 14

none
inner
outer
INNER
OUTER

DL760 with 8 real CPUs
(Average time. Less is better)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 2 4 6 8 10 12 14

none
inner
outer
INNER
OUTER

1-12 streams on 4 CPUs (mixed)
(Average time. Less is better)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 2 4 6 8 10 12 14

none-ht
inner-ht
outer-ht
INNER-ht
OUTER-ht
none
inner
outer
INNER
OUTER

Hyper-Threading and BAD Affinity
(Average time. Less is better)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 2 4 6 8 10 12 14

none
inner
outer
INNER
OUTER

1-12 streams on 4 CPUs (relative)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 2 4 6 8 10 12 14

none
inner
outer
INNER
OUTER

1-12 streams on 4 CPUs HT
(relative)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1 3 5 7 9 11

none
inner
outer
INNER
OUTER

Hyper-Threading and BAD affinity
(relative)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 4 8 12 16

none
inner
outer
INNER
OUTER

Inner-loop first test

inner

0

5000

10000

15000

20000

25000

30000

35000

4-streams 8-streams 12-streams

4p-10-ht-even.txt

4p-10-ht-mask.txt

4p-10-ht-odd.txt

4p-10-ht.txt

4p-10-noht.txt

Outer-loop first test

outer

0

5000

10000

15000

20000

25000

30000

35000

4-streams 8-streams 12-streams

4p-10-ht-even.txt

4p-10-ht-mask.txt

4p-10-ht-odd.txt

4p-10-ht.txt

4p-10-noht.txt

No array access test

none

0

5000

10000

15000

20000

25000

30000

35000

4-streams 8-streams 12-streams

4p-10-ht-even.txt

4p-10-ht-mask.txt

4p-10-ht-odd.txt

4p-10-ht.txt

4p-10-noht.txt

Raw data from tests

Procs none-ht none inner-ht inner outer-ht outer INNER-ht INNER OUTER-ht OUTER
1 4685 4684 9357 9363 17241 17169 15365 15387 25719 26922
2 4686 4684 9362 9365 17225 17163 16386 16172 26647 27303
3 4685 4684 9358 9363 17243 17467 16405 16179 28268 27263
4 4690 4709 9362 9398 24127 17303 40 16498 16376 28248 28386
5 6561 5697 16 16234 11070 47 22123 20600 8 19370 19271 43312 32998
6 7862 6132 29 15093 12188 24 26422 22396 18 19031 21293 10 66050 36426
7 8647 7397 17 16741 14568 15 28906 26626 9 20199 25256 20 97666 43635
8 9336 9312 17975 18587 3 30993 34305 9 20389 32615 37 128282 56479
9 9801 9833 18689 19571 4 32239 35939 10 22002 34129 35 134646 59248

10 10561 10716 19284 20968 8 35280 38625 8 23587 36634 35 133578 63651
11 11252 11918 5 21481 23853 9 37648 44695 15 25051 41777 40 157133 72568
12 12186 14025 13 23383 27890 16 40542 51671 21 26521 48869 45 166529 84976

SAP Architecture overview
� Each application �Instances� maintains own

task(dispatch) queue:
� DIAlogue, UPDate, ENQue, SPOol,�

� Multiple Instances is just fine, even on single box
� Less contention on local resources (buffers)

� Dispatch Queue goes to first free worker (�disp+work�)
starting at first worker.

� First worker only idle waiting for database (Oracle) or if
there simply is no more new work.

� Used �affinity� to force that critical processes did not share
same physical processor. (Update!)

SAP SD Benchmark Overview
� Official measurements is �SAPs� which

corresponds to a certain throughput
(Dataprocessing Steps / Hour)

� Practical measurement is in Users
− Each user executes a fixed (20) number of DS steps in

a loop with 10 second think time and 2.0 second
Response Time requirement.

� http://www.sap.com/benchmark/BM_description.htm#SD
� http://www.sap.com/benchmark/sd2tier.asp

Response time Knee (Mock up)

Mock up Response Time

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0% 20% 40% 60% 80% 100%
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 100 200 300 400 500 600 700
0

2

4

6

8

10

12

CPU Busy Response time

And now finally
for the real work
we did�

SAP SD Result Matrix

X

1.99

1.99

0.3

Resp
Time

100%650Off

Off

On

On

Hyper-
Threading

80%550

99%550

99%650

CPU timeUsers

System Under Test: DL560
� DL560
� 3.0 Ghz Processor
� 4GB Memory
� Sap 4.7 (620 kernel)
� Oracle as DB

Benchmark Conclusions
� Hyperthreading gives 18% performance boost.
� Must takes extra steps to exploit fully
� Why not enable? Just do it.
� Not Dual Core.

Resources
� Linux�
� HP�
� Intel�
� IBM�

Co-produced by:

