

Chuck Hudson

Manager, ProLiant Networking Technology
Hewlett-Packard

© 2004 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice

Outline

- Introduction
- Multifunction Networking Technology
- Performance
- Application Programming Interfaces
- Matching Applications and Offload Technology
- Technology Availability

What is multifunction networking?

Local Area Network

Storage Area Network

Clustering Interconnect

Management Network

Multifunction Network

Why use a multifunction networking adapter?

- Flexibility
 - Pick and chose the capabilities you need
 - Each interface can be used for any one or more roles
- Better Networking
 - Adapters include the latest performance features
- IO Consolidation
 - Multi-use interfaces allow for fewer cables
- Enable Server Virtualization
 - -iSCSI boot
 - Flexible IO connectivity

RSS

Multifunction Networking Technology

iSCSI TOE

iser LS RDMA O RILO

Ethernet Today

- 1Gb Ethernet (10/100/1000BASE-T)
- TCP/IP Checksum Offload
- Jumbo Frames
 - Uses larger frames (typically 9K bytes)
 - Reduces TCP/IP segmentation/reassembly and interrupts
- Large Send Offload / Segmentation Offload
 - Works for transmits only
 - Similar benefits to jumbo frames
- Asynchronous Sockets
 - Avoids extra data copies (transmits)

Receive Side Scaling (RSS)

- Spreads incoming connections across the CPUs within a server.
- Overcomes the single CPU bottleneck.
- Works well in applications with lots of short-lived connections (where TOE doesn't work well).
- Supported on Windows 2003 with Scalable Networking Pack (Beta in 2H2004).

TCP/IP Offload Engines (TOE)

- TCP/IP processing moved from the host CPU to TOE NIC (TNIC)
- Improves performance
 - Reduces CPU utilization for segmentation and reassembly
 - Reduces interrupts and context switches
 - Allows for zero-copy receives to kernel memory buffers
- Supported on Windows 2003 with Scalable Networking Pack (Beta in 2H2004).

Remote DMA NIC (RNIC)

- Provides direct communication between application buffers in separate servers
- Bypasses the OS kernel
 - Avoids protocol processing
 - Avoids context switches
 - Avoids interrupt processing
 - Yet, preserves kernel protections
- Improves both
 - Throughput scaling
 - Message latency

iSCSI standard for SCSI over TCP/IP

direct attached block storage using SCSI/SAS

remote block storage using iSCSI

iSCSI & iSER

- iSCSI Standardized by the IETF
 - By the Internet Engineering Task Force (IETF) IP storage working group (RFC 3720)
 - http://www.ietf.org/html.charters/ips-charter.html
- iSCSI Microsoft software initiator available today
 - http://www.microsoft.com/windows/storage/iscsi.mspx
- Linux iSCSI initiator available
 - 'UNH' and 'Cisco' iSCSI sourceforge projects
- iSCSI Extensions for RDMA (iSER)
 - Specified by the RDMA consortium
 - iSER provides better performance by allowing the storage device to control the data transfers

Multifunction Network Adapters...

Local Area Network
Clustering
Interconnect
Storage Area Network
TOE iSCSI

...include protocol offload technology

- One card
- One cable
- Multiple functions

Performance

Performance Dimensions

- Throughput
- CPU Utilization
- Latency
- Memory Bus Usage (data copies)

CPU Efficiency

- IOs per second (IOPS)
- IO Size
- Connection Lifetime
- Transmit vs. Receive
- Cost

Throughput and latency

Infiniband

Throughput and IO Size

Connection Duration

- TCP/IP Offload*
- RDMA

- Receive Side Scaling
- Jumbo Frames
- Large Send Offload

Short-lived Connections (e.g., HTTP 1.0)

Long-Lived Connections (e.g., Backup)

Connection Duration

HP WORLD 2004
Solutions and Technology Conference & Expo

Transmit / Receive

Large Send Offload Receive Side Scaling

TCP/IP Offload Jumbo Frames RDMA

Improves Transmit Performance

Transmit vs. Receive

Improves Receive Perfomance

Performance Benefits Summary

Technique	Benefit	Where?	
Jumbo Frames	Reduces CPU utilization (segmentation and reassembly) and interrupts for large transfers.	Requires equipment that supports jumbo frames all through the network.	
Large Send Offload	Reduces CPU utilization (segmentation and reassembly) and interrupts for large transmits.	Only helps transmits.	
Receive Side Scaling	Distributes connections and receive processing across CPUs. Improves scaling, but not efficiency.	Works well for short-lived connections where other techniques will not work well.	
TOE host-based connections	Reduces CPU utilization and interrupts for large transfers. Zero copy on transmits (receives with pre-posted buffers).	Needs long-lived connections.	
RDMA via Sockets	TOE benefits plus zero copy on receives. Reduced latency.	Long-lived connections. Passing information from point to point.	
RDMA via APIs	Benefits as above PLUS ability to post once for many reads. Best low-latency messaging.	Long-lived connections Multiple nodes (single posted buffer can be read by many).	

Applications & Programming Interfaces

Multifunction Networking builds on Standard Interfaces

Socket Applications use of offload technologies

Best for this Connection Type

Short-lived connections

Application Examples

Web servers (Server to web client)

Long-lived connections.

Larger message sizes.

NAS, backup, 19831

Long-lived connections. Any message Size

Databases, HPC, Grid, MS Exchange, NAS, backup, iSCSI/iSER

FELTIF OF CHOOSE THE DEST

transport for sockets applications

- If both sides have matching RDMA
 - the OS will connect with RDMA (SDP or WSD).
- If not,
 - Long-lived TCP/IP connections will be offloaded
 - Short-lived can make use of existing partial offload
 - TCP/IP Checksums
 - Large Send Offload
 - Receive Side Scaling
 - Jumbo Frames

Clustering APIs

- Message Passing Interface (MPI)
 - Used by most HPC applications
 - Runs on Ethernet, RDMA over TCP/IP, and other RDMA media (Infiniband).

IT-API

- Open Group's Transport API for RDMA over TCP/IP/Ethernet
- uDAPL is Infiniband version
- Used by applications that want to manipulate buffers and queue pairs directly.

Sockets Direct Protocol

- Allows sockets transfers over the RDMA protocol.
- Usable by any sockets application
- Requires SDP on both and Technology Conference & Exposides of the wire.

Multifunction Networking Technology Timeline

10Gb Ethernet Adoption

- Current 10Gb Ethernet adapters are expensive
- CX4 will lower the cost a bit
- Lower prices require higher volumes
- Volumes will be limited until customers can
 - 'future-proof' (using RJ45 connector)
 - at a reasonable cost (10x perf for 3x cost)
 - blade servers may be exception
- 10GBASE-T is not easy
 - Pressing against the cable theoretical limits
 - Affordable and low-power interface may be a while

10Gb Ethernet Timeline

Ethernet or Infiniband?

Fabric	Strengths	Weaknesses	Outlook
Ethernet	Ubiquitous; Standard Affordable adapters and switches. Minimal training costs. Extends beyond the datacenter. Mature foundation	CPU utilization Memory bandwidth utilization Latency 10Gb cost	Already the default choice for most applications. Overcoming its weaknesses (with TOE, RDMA, iSCSI, and CX4)
Infiniband	Lowest latency. Most affordable 10Gb link (today).	Expensive adapters, switches. Unique fabric and fabric management. Bridges needed to go to storage and Ethernet fabrics.	Good in niche applications where performance advantages outweigh disadvantages. HPWORLD 2004 Solutions and Technology Conference & Expo

Why use offload with 1Gb NICs?

- Some applications now need more than 1Gb
- Multiple 1Gb ports are more affordable than 10Gb
- 1Gb Ethernet interfaces need offload to scale
 - but must retain cost advantages
- Many applications need reduced latency
 - Scale out applications (e.g., HPC)
 - Controlled latency across data center

Affordable offload

TOE

- Parts now becoming available without external RAM
- Microsoft has announced timeline for OS support

- RDMA

- Standards completed in 2003
- Some vendors have announced components & boards

iSCSI

- Software initiators available for Windows/Linux
- Release of iSCSI targets slowed by availability of affordable TOE

Conclusion

Multifunction Networking

Affordable TOE

Affordable iSCSI Initiators

Low-latency RDMA

Scalability with RSS

Realistic Multifunction Network

Co-produced by:

