

HP TruCluster Recovery Techniques

Christian Klein HP Tru64 Unix Support Hewlett-Packard

© 2004 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice

"Expect the best. Prepare for the worst...."

it's your head

Zig Ziglar

When good clusters go bad

Things we need to know to enhance our troubleshooting abilities

- The filesystem layout in a TruCluster
- Data in a CNX partition
- Layout of a member specific boot disk
- How TruClusters boot and find cluster root
- What information needs to be saved to restore our configuration and how we can make this easier on ourselves
- Voting
- How to make our life easier

The filesystem layout in a TruCluster

The filesystem layout in a TruCluster

TruCluster V5.x Minimum Disk Configuration

A four disk minimum in a two member TruCluster

(not including the original UNIX/Emergency Repair Disk)

Data in a CNX partition

Data in a CNX partition

 CNX partitions contain the logical device name of the device(s) that make(s) up cluster root

oscar# clu_bdmgr -d dsk10 # clu bdmgr configuration file DO NOT EDIT THIS FILE ::TYP:m:CFS:/dev/disk/dsk2a:LSM:47,/dev/disk/dsk103h/priv::

oscar# clu_bdmgr -d dsk3 # clu_bdmgr configuration file # DO NOT EDIT THIS FILE ::TYP:q:CFS:/dev/disk/dsk2a:LSM:47,/dev/disk/dsk103h|priv::

 m is for member disk •q is for quorum disk

Layout of a member specific boot disk

Layout of a member specific boot disk

- Each cluster member has its own boot disk
- The "a" partition is AdvFS, the "b" partition is swap, and the "h" partition is cnx (Connection Manager)
- There is a vmunix, sysconfigtab, rc.config, and parts of the hwmgr database on the boot partition (a)

Disklabel of a member boot disk

disklabel -r dsk5
/dev/rdisk/dsk5c:
type: SCSI
disk: HSG80

•••

8 partitions:

#	size	offset	fstype	fsize	bsize	cpg	#	~Cyl values
a:	262144	0	AdvFS				#	0 - 77*
b:	4355579	262144	swap				#	77*- 1366*
C:	4619771	0	unused	0	0		#	0 - 1366*
d:	0	0	unused	0	0		#	0 - 0
e:	0	0	unused	0	0		#	0 - 0
f:	0	0	unused	0	0		#	0 - 0
g:	2113277	393216	unused	0	0		#	116*- 741*
h:	2048	4617723	cnx				#	1366*- 1366*

How TruClusters boot and find cluster_root

How TruClusters boot and find cluster root

- An AlphaServer boots the disk (bootdef_dev or specified)
- Loads the vmunix which recognizes the hardware
- vmunix parses sysconfigtab
- The sysconfigtab file contains the major and minor numbers of the h partitions on both the member boot disk and the quorum disk

clubase:

```
cluster_seqdisk_major=19
cluster_seqdisk_minor=96 ←boot disk
cluster_qdisk_major=19
cluster_qdisk_minor=160 ←quorum disk
cluster_qdisk_votes=1
```


How TruClusters boot and find cluster root

- vmunix parses the hwmgr database on the boot disk
- vmunix reads the CNX partition on the boot disk.
- The data inside the CNX partition is used to find cluster root (member disk and quorum disk)
- Once cluster root is found, the /etc/fstab is used to find what filesystems to mount.
- AdvFS filesystems are resolved to actual devices via the /etc/fdmns hierarchy.

Voting

Voting

- Quorum is a majority of votes (greater than 50%).
- If you have an even number of voting members, you need a voting quorum disk
- If you have an odd number of voting members, you do not need a quorum disk
- Every member can have one or zero votes so check the output of clu_quorum

Making our life easier

Making our life easier: Quorum Disk

 You can also use the disklabel command to look for a quorum disk. All partitions in a quorum disk are unused, except for the h partition, which has fstype cnx.

oscar# disklabel -r dsk3 # /dev/rdisk/dsk3c: type: SCSI disk: HSV110 (C)COMPA label: Quorum Disk flags:									
•••									
8 part	itions:								
#	size	offset	fstype	fsize	bsize	cpg	# ~Су	'l values	
a:	131072	0	unused	0	0		#	0 - 7	
b:	262144	131072	unused	0	0		#	8 - 23	
с:	4194304	0	unused	0	0		#	0 - 255	
d:	0	0	unused	0	0		#	0 - 0	
e:	0	0	unused	0	0		#	0 - 0	
f:	0	0	unused	0	0		#	0 - 0	
g:	1900544	393216	unused	0	0		#	24 - 139	
h:	2048	4192256	cnx				#	255*- 255	

Making our life easier: Storage controllers

- Each LUN on an HSG or HSV controller should have the identifier set
 - -HSG80_TOP> set D62 IDENTIFIER=62
 - Use the San appliance to set the OS Identifier for the **HSV110**

judy # HWID:	hwmgr -v d Device Name	Mfg	Model	Location
108:	/dev/disk/dsk5c	DEC	HSG80	IDENTIFIER=57
140:	/dev/disk/dsk7c	COMPAQ	HSV110 (C)COMPAQ	IDENTIFIER=31

Making our lives easier: Disklabels

- The cluster software edits the disklabel's "label:" field for the Quorum disk and the member boot disks
- One can edit this 16 character field with "disklabel –e dskX" and make changes to it even when the disk is in use.
- You can be creative within the 16 character boundary

Making our lives easier: Disklabels

skipper # /dev/ type: S disk: H	r# disklabel - 'rdisk/dsk5c: SCSI ISG80	-r dsk5						
label:	clu_member1	←(16 charac	ter field th	at can l	be used t	o ider	ntif	y disks)
•••								
8 parti	tions:							
#	size	offset	fstype	fsize	bsize	cpg	#	~Cyl values
a:	262144	0	AdvFS				#	0 - 77*
b:	4355579	262144	swap				#	77*- 1366*
C:	4619771	0	unused	0	0		#	0 - 1366*
d:	0	0	unused	0	0		#	0 - 0
e:	0	0	unused	0	0		#	0 – 0
f:	0	0	unused	0	0		#	0 - 0
g:	2113277	393216	unused	0	0		#	116*- 741*
h:	2048	4617723	CNX				#	1366*- 1366*

Making our lives easier: Disklabel Example

On the following cluster_root disk,

- The diskname is dsk2
- cluster_root is on the "a" partition
- -cluster_usr is on the "g" partition
- -cluster_var is on the "e" partition

calvin# disklabel -r dsk2 | grep label

label: dsk2_CRa_CUg_CVe

Making our life easier: Documenting the Configuration

- Make a spreadsheet with device names, identifiers, World Wide Ids, size in blocks, etc. (You can use sys check's storage map or the quick script on the next slide for a start)
- Run "sys check –escalate" periodically. Save off the output somewhere else
 - sys_check --escalate also saves off disklabels in /var/recovery
- Run "volsave" after every LSM configuration change no matter how small
 - sys_check —escalate also does a volsave into /var/recovery
- Back up the operating system to local tape (if available) using vdump

Example script

#!/usr/bin/ksh -p for h in `hwmgr -v d | grep dsk | sed s/://g | awk '{print \$1}'` do echo " BEGIN the record for HWID # \$h " echo " IDENTIFIER and WWID info " echo "-----" hwmgr -v d -id \$h hwmgr -sh scsi -full -id \$h echo " DISKLABEL INFO " echo "-----" d=`hwmgr -sh scsi -id \$h | grep dsk | awk '{print \$8}'` disklabel -r \$d echo " /etc/fdmns info " echo "-----" find /etc/fdmns -name "\$d*" echo " END the record for HWID # \$h "

Making our life easier: Backing up the correct data

The following filesystems should be backed up

cluster_root#root on / type advfs (rw) cluster_usr#usr on /usr type advfs (rw) cluster_var#var on /var type advfs (rw) root1 domain#root on /cluster/members/member1/boot partition type advfs (rw) root2 domain#root on /cluster/members/member2/boot partition type advfs (rw)

 The member boot partitions are often forgotten, perhaps it's because they do not appear in /etc/fstab

•We will **not** be able to boot without them!

 Avoid keeping user data in OS filesystems as it will prolong backup and recovery times

Making our life easier: Emergency **Repair Disk**

- Keep the original UNIX disk around
- This is the disk you ran clu create from
- It would not hurt to create another copy of this disk on shared storage if it is local to a particular member

Example of Restoring a Cluster to Totally Different Hardware

Restoring a cluster

- Boot the operating system cdrom and get a UNIX shell.
- Create the tape device(s)
 - /sbin/dn_setup –install_tape
- You will need disks with the same names as the old disks, so get out your records
- Use dsfmgr –m (move) and dsfmgr –e (exchange) to rename disks appropriately, for example:

С

f

а

d

g

# dsimgr -m ds	k4 dsk12	
dsk4a=>dsk12a	dsk4b=>dsk12b	dsk4c=>dsk12
dsk4d=>dsk12d	dsk4e=>dsk12e	dsk4f=>dsk12
dsk4g=>dsk12g	dsk4h=>dsk12h	dsk4a=>dsk12
dsk4b=>dsk12b	dsk4c=>dsk12c	dsk4d=>dsk12
dsk4e=>dsk12e	dsk4f=>dsk12f	dsk4g=>dsk12
dsk4h=>dsk12h		

- Label disks as necessary with the disklabel or diskconfig commands
 - Make sure that the member boot disk has an "a" partition (the default size is fine), "b" partition (that starts at the end of the a partition and goes to the end of the disk minus 2048 blocks), and that the "h" partition starts 2048 blocks from the end of the disk and is exactly 2048 blocks in size
- Remake the cluster root filesystem
 - -mkfdmn -o /dev/disk/dskNy cluster_root
 - -mkfset cluster_root root

Mount and restore the new cluster root

- mount cluster_root#root /mnt
- cd /mnt
- vrestore -x

Make the new member1's boot partition

- mkfdmn -o -r /dev/disk/dskNa root1_domain
- mkfset root1_domain root
- Mount and restore the new member1's boot partition (note where we are mounting it)
 - mount root1_domain#root /mnt/cluster/members/member0/boot_partition
 - cd /mnt/cluster/members/member0/boot_partition
 - vrestore -x

 Copy the hwmgr database pieces from /var/etc (a) memory filesystem when booted from cd) to cluster root and the member boot disk

# cd /var/etc			
# ls			
cfginfo	dec_devsw_db.bak	dec_hwc_ldb.bak	dfsc.dat
dccd.bak	dec_hw_db	dec_scsi_db	dfsl.bak
dccd.dat	dec_hw_db.bak	dec_scsi_db.bak	dfsl.dat
dcdd.bak	dec_hwc_cdb	dec_unid_db	
dcdd.dat	dec_hwc_cdb.bak	dec_unid_db.bak	
dec_devsw_db	dec_hwc_ldb	dfsc.bak	

cp d* /mnt/etc/ # mkdir -p /mnt/var/etc cp d* /mnt/var/etc/

 We need to write the cnx partition on the member boot disk, but **clu bdmgr** is not on the OS CD, so we'll have to work around that with chroot

#	chroot	/mnt	/sbin/sh
#	dsfmgr	-K	(make device special files for sure
#	dsfmgr	-vVF	(make sure everything is in order)
#	dsfmgr	-vVF	(run it again if they are not)

Now restore the CNX partition with clu bdmgr

clu_bdmgr -h dsk1 /cluster/members/member0/boot_partition/etc/clu_bdmgr.conf

(to exit the chroot sh) # exit

 We need to find the minor number of the h partition of your member boot disk and quorum disk (if you have one)

```
# file /dev/disk/dsk*h
# cd /cluster/members/member0/boot_partition/etc
# vi sysconfigtab and correct the following:
  clubase:
        cluster_seqdisk_minor=96
```

```
cluster_qdisk_minor=160
```


- Please also note that if you have a LAN interconnect cluster, you may need to change the cluster interconnect devices in /etc/sysconfigtab. "hwmgr –show name" and "ifconfig –a" are ways to show you the adapters in the system.
- There will not be an interconnect related sysconfigtab change for a memory channel cluster
- You may want to change IP addresses for the members and cluster aliases in /mnt/etc/hosts at this time. Else, you should bring up this cluster on a LAN disconnected from the same LAN as the cluster the backups came from

- Boot the machine with cluster_expected_votes=0
 >>> boot dwhatever -fl i
- When prompted for the kernel to boot, enter genvmunix clubase:cluster_expected_votes=0
- You will boot up to single user mode
- Executing "/sbin/bcheckrc" will mount local filesystems
- You should build a customized kernel for this platform with the "doconfig" command
- Executing "/sbin/init 3" will take you to multiuser

- At this point you can
 - Restore another member's boot disk
 - clu_bdmgr –c dskX N (where N is the memberid)
 - mount rootN domain#root /mnt
 - cd /mnt
 - vrestore -x
 - Delete and add back the additional members with the clu delete member or clu add member commands
 - Delete and readd the quorum disk with the clu quorum command
 - Customize the system to tailor it to the different hardware

Resources

TruCluster 5.1b Documenation

http://h30097.www3.hp.com/docs/pub_page/cluster51B_list.html

IT Resource Center

http://itrc.hp.com/

Questions?

