

OpenVMS SAN/Storage Technical Directions

Andy Schneider

OpenVMS Business Management Hewlett-Packard


hp OpenVMS Storage Technology

- V7.3-2 Storage Features
- V8.2 Storage Features
- Itanium® Based Systems IO Plans
- Storage Arrays
- Tape Products
- SAN Infrastructure
- Post V8.2 Projects
- Longer Term Storage Interconnects

Typical FibreChannel Configuration

hp OpenVMS V7.3-2 Storage Features

hp OpenVMS V7.3-2 Storage Features

- -LP10000 Support
- Dynamic Volume Expansion
- -Shadowing of dis-similar volumes
- Mount Verification Filtering
- Smart Array Fast Path
- Fabric Management Enhancements

LP10000 Support

- LP10000 is a new dual channel 2gb FibreChannel Adapter (FCA2404DC)
 - Consumes a single PCI slot
 - PCI-X capable
 - 40K IO/sec per port
 - 200MB/sec per port (needs PCI-X slot)
- Should ship in Q3 CY 2004
 - V7.3-2 fibre_scsi V300
 - V7.3-1 fibre_scsi V600
 - V7.2-2 fibre_scsi V600

Dynamic Volume Expansion (DVE)

- Storage arrays today can dynamically expand volumes
- OpenVMS could not utilize the expanded volume without re-initializing
- OpenVMS dynamic volume expansion allows allocation of extra bitmap space at init time and then later enables volume size expansion while the device is mounted

```
•$ init /limit $1$dga100: name ! Allocates 1TB bitmap
•$ mount/cluster $1$dga100: name ! Mount and use volume
```

\$ mount/cluster \$1\$dga100: name ! Mount and use vo
 (expand physical volume size using management tools)

•\$ set volume \$1\$dga100: /size=xxxxxx ! Set new size

- For volumes already initialized

```
•$ dismount/cluster $1$dga100: ! Dismount volume
```

•\$ mount \$1\$dga100: name ! Privately mount volume

•\$ set volume \$1\$dga100: /limit ! Allocate new bitmap

•\$ mount/cluster \$1\$dga100: name ! Cluster mount volume

• (expand physical volume size using management tools)

•\$ set volume \$1\$dga100: /size=xxxxxx ! Set new size

Dissimilar Device Shadowing (DDS)

- Prior to V7.3-2, shadowed volumes had to be identical in size
 - This made it impractical to shadow between different types of storage arrays
- Different sized volumes can now be shadowed
 - The size of the smallest volume determines the size of the shadow set
 - The shadow set can only be mounted on V7.3-2 nodes
 - The size of the shadow set can be grown using DVE

Quieter Mount Verification

- In a SAN there are many reasons for "normal" mount verifications
 - Path switch by another cluster node
 - Dropped FC packets (not a norm, but it does happen)
 - Transient command timeout to a busy storage device
- These result in mount verification messages that alarm system managers
- "Quiet" mount verification will allow infrequent, immediately recovered mount verifications to be suppressed from operator logs
- Sysgen parameters (setting either of these to 0 results in previous behaviour)
 - Mvsupmsg_intvl (default 1 hour)
 - Mvsupmsg_num (default 5)
- Mount verification messages are suppressed unless that are more than "Mvsupmsg_num" mount verifications within "Mvsupmsg_num" seconds to a single device

Smart Array 5300 Fastpath

- Fastpath is now available for the Smart Array 5300
 - Sysgen parameter fast_path_ports bits (set to zero to enable fastpath)
 - Fastpath enabled for all devices by default
 - bit 0 Controls Fast Path for PKQDRIVER (for parallel SCSI).
 - bit 1 Controls Fast Path for FGEDRIVER (for Fibre Channel).
 - bit 2 Controls Fast Path for PKADRIVER (for Ultra3 SCSI).
 - bit 3 Controls Fast Path for PEDRIVER (for LAN).
 - bit 4 Controls Fast Path for PKRDRIVER (for SMART Array 5300).
 - -\$ set dev pkx /pre=x ! Changes preferred CPU

Fabric Management Enhancements

- Removed FC port reset on RSCN
 - Prior versions of VMS have reset the FC port (KGPSA adapter), on receipt of fabric RSCN (most common cause would be a re-zone of a switch)
 - This caused all I/O to be aborted and resulted in many device path switches (and mount verification messages)

PLOGI retry

- For any device on the SAN that fails PLOGI, VMS will now re-attempt PLOGI every 5 minutes
- Allows configuration of some class of devices without a reboot (HSG with full host table, or an XP array which had no VMS LUNs at VMS boot time)

Fabric Management Enhancements

- Fabric name table scan
 - VMS now scans the fabric name table every 5 seconds
 - This allows device configuration of a device in the event that we loose the RSCN message associated with adding a device to the fabric
- Verbose FibreChannel device configuration
 - Boot flags of 10000/30000
 - Define iogen\$verbose prior to running "sysman io auto"
- New fibre_scan utility
 - \$ mc sys\$etc:fibre_scan
 - Scans the entire fabric for configured and non-configured devices
 - Used as a diagnostic tool for SAN configuration problems

hp OpenVMS V8.2 Storage Features

hp OpenVMS V8.2 Storage Features

- Host-Based MiniMerge
- -SCSI Immediate Error Reporting
- Configurable IO Queue Management

invent

Host-Based MiniMerge

- CI storage used controller-assisted history log to keep track of writes. No such assists available with FC controllers
- Currently in Beta test of host-based MiniMerge solution, based on Write Bit Map technology (from MiniCopy)
- Will support ALL FC types (HSG, HSV, MSA, XP)
- Does NOT require any storage firmware assists
- Supported in H2 CY2004 on V7.3-2 via remedial kit
- Supported on V8.2 when it ships in H2 CY2004

SCSI Immediate Error Reporting

- Some SCSI errors are reported asynchronously via "unit attention" responses on the next SCSI command
- On idle paths errors can be reported days or weeks after they happen
 - This can confuse the user because a mount verification can occur for no apparent reason
 - This can cause field service to swap a part that was previously swapped when the error was reported earlier on a different path
- VMS will now scan all paths once per hour for errors
 - Sysgen scsi_error_poll = 1 (on) by default
 - We'll backport this new feature to V7.3-2

Configurable IO Queue Management

- Prior to V7.3-1 VMS implemented a variable IO queue depth per LUN (3-16 based on recent IO sizes)
 - This caused severe performance problems on raid luns for large IO sizes
- In V7.3-1 we moved to a scheme where the host didn't limit IO queue depths until the storage subsystem asked us to back off (via qfull response)
 - Upon receiving qfull we issue no more IO until ½ of the outstanding IO completes (on a given storage subsystem port) and then we again allow the queue size to build until we get another qfull

Configurable IO Queue Management

- Unfortunately due to the large number of commands that can be inflight in a SAN, we find that the existing algorithm is still too aggressive.
 - Many mount verification messages can result when the same IO gets a qfull response several times in a row
 - Performance suffers badly on the HSG when it has to return qfull responses
 - In extreme cases, the HSG can crash if it receives more IO after signaling qfull

Configurable IO Queue Management

- In V8.2, we'll move to a default qfull algorithm that drains ½ of existing io requests and then allows the queue depth to increase by 1 enter every 5 seconds.
 - This combined with HSG ACS 8.8 will solve the HSG80 qfull problems
 - There will also be user control of IO queues
 - Hard queue limit per storage sub-system port
 - Variable queue growth limits based on time or load
 - We strongly suggest leaving the default behavior unless the customer can't upgrade to HSG ACS 8.8
- The V8.2 qfull algorithm will be backported to V7.3-2

Living with HSG qfull problems

Living with HSG qfull problems

- The HSG80 can queue up to 240 commands per port (4 ports on an HSG80)
 - When the command queue is exceeded you'll see performance problems, excessive mount verification messages and possibly HSG controller crashes
- The EVA can queue 2048 commands / port
- The MSA can queue 512 commands / port

Checking qfull responses

0001E 5008.05F3.0001.AF19 | 0001 0001 0000 0000

SDA> fc stdt /all

SDA>

PGA0 SPDT	8157A04	0 STDTs														
			STDT	PRLI	Port	Dev	Cred Act		Cnf	Rst	PRLO	Cls	QF	Tgt	Ill	Seq
STDT	FC-LA	Port Name	Stat	Stat	I/Os	I/Os	I/Os Sus	Sus	Pnd	Act	Pnd	Pau	geen g	Rsts	Frms	Tmo
			+				+					+	· <i> </i> \			
816AC880	0000E	5000.1FE1.0001.84D1	0001	0001	0000	0020	0007 000	000	000	000	000	000	0913	0000	0000	00A9
816C4840	0000F	5000.1FE1.0001.84D3	0001	0001	0000	0009	000B 000	000	000	000	000	000	00FC	0000	0000	0278
81A6EC00	00025	5000.1FE1.5001.A3E8	0001	0001	0000	0000	0000 000	000	000	000	000	000	0000	0000	0000	0000
81A6F0C0	00026	5000.1FE1.5001.A3EC	0001	0001	0000	0000	0000 000	000	000	000	000	000	0000	0000	0000	0000
816DF640	00012	5006.0E80.034E.9B00	0001	0001	0000	0028	0000 000	000	000	000	000	000	0000	0000	0000	3D97
817BCF40	00023	5008.05F3.0001.AF11	0001	0001	0000	0000	0000 000	000	000	000	000	000	0000	0000	0000	0000
PGB0 SPDT	817C674 	0 STDTs														
			STDT	PRLI	Port	Dev	Cred Act	Cmd	Cnf	Rst	PRLO	Cls	QF	Tgt	Ill	Seq
STDT	FC-LA	Port Name	Stat	Stat	I/Os	I/Os	I/Os Sus	Sus	Pnd	Act	Pnd	Pau	Seen	Rsts	Frms	Tmo
			+				+									
818A8F40	00010	5000.1FE1.0001.84D4	0001	0001	0000	0012	0001 000	000	000	000	000	000	00DC	0000	0000	0152
81864140	0000B	5000.1FE1.0001.84D2	0001	0001	0000	001D	000B 000	000	000	000	000	000	0869	0000	0000	0128
81AB3E00	00020	5000.1FE1.5001.A3E9	0001	0001	0000	0000	0000 000	000	000	000	000	000	0000	0000	0000	0000
81AB4300	00022	5000.1FE1.5001.A3ED	0001	0001	0000	0000	0000 000	000	000	000	000	000	0000	0000	0000	0000
818D6B80	00012	5006.0E80.034E.9B14	0001	0001	0000	002D	0000 000	000	000	000	000	000	0000	0000	0000	0B96

Living with HSG qfull problems

- Balance IO across all HSG ports
 - set dev \$1\$dgaxxx /switch/path=FGA0.5000-1FE1-5001-A3E1
- Reduce IO load by migration hot luns to other storage arrays if possible
- Reduce DIOLM on accounts running hot IO jobs
- Backup is often the culprit behind HSG qfull problems
 - Backup will attempt 100s of concurrent IOs to try to keep ahead of streaming tape devices
 - Backup one lun at a time per HSG
 - Run backup in a captive account with diolm of 32-64 (testing shows that performance doesn't suffer)

Integrity Server Systems IO Plans

OpenVMS Integrity Server Systems IO Plans

- SCSI
 - A6829A U160 controller (lvd only)
 - U320 controller (lvd only)
 - No plans for multi-host SCSI
 - MSA30 storage shelf
- Host Based Raid
 - Smart array family (6400)
- FibreChannel
 - 2gb 2-channel adapter
 - -A6826A (qlogic)
 - -Storage (V8.2) & Cluster Interconnect (V8.3)
 - -Full boot support
 - Storage Arrays
 - -HSG / EVA / MSA / XP
 - Tape Libraries
 - -ESL / MSL
 - Connect via MDR or NSR variants

Storage Arrays

Storage Products EVA 5000

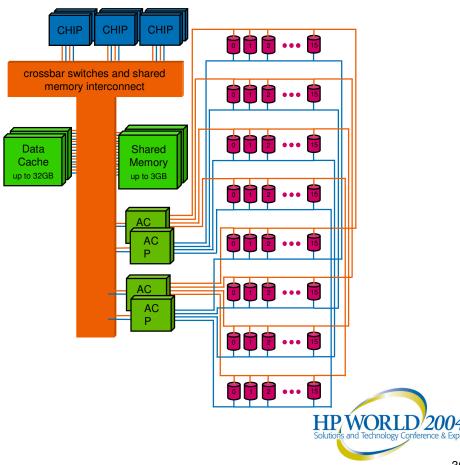
- –4 2gb host ports
- 4 2gb FC disk ports (2 redundant loops)
- -240 disks / 35TB max
- 1GB mirrored cache
- Multi-level snapshots
- Dynamic LUN expansion
- CA/DRM for OpenVMS
- SSSU host based control utility

Storage Products EVA 3000

- 4 2gb host ports
- 2 2gb FC disk ports(1 redundant loop)
- 56 disks / 8TB max
- 1GB mirrored cache
- Multi-level snapshots
- Dynamic LUN expansion
- CA/DRM for OpenVMS
- SSSU host based control utility

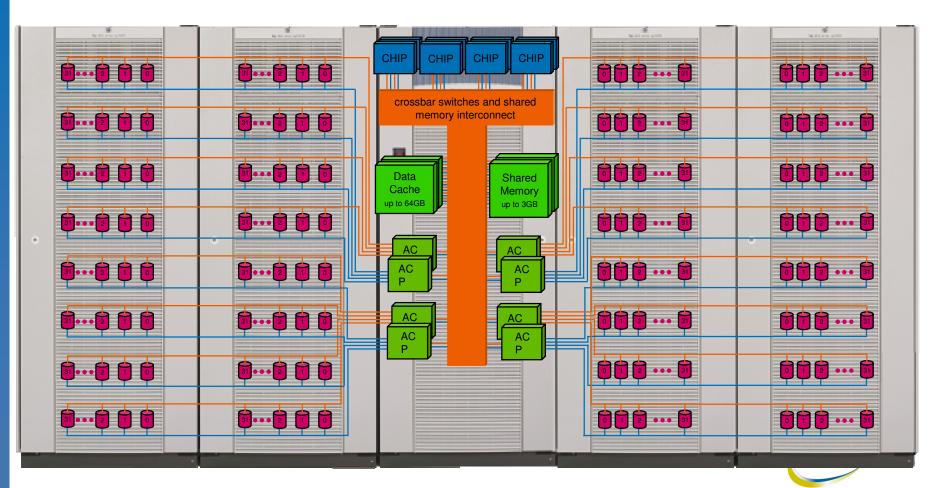
xp128						
Max Disk Drives	128					
May Capacity	18 TB raw					
Max Capacity	16 TB usable					
Max Aggregated	7.5 GB/s total					
Crossbar	5 GB/s data					
Throughput	2.5 GB/s control					
	1.1 GB/s sustained					
Max Sequential Data Transfer Rate						
Dala Hansiel hale	2.4 GB/s peak from cache					
Max Random IOPS						
from Cache	375,000					
Max LDEVs	8192					

Enterprise Performance, Capacity, and Reliability in a Small Footprint



Start at the size you need, scale as your needs grow, staying in the same small footprint

xp1024					
Max Disk Drives	1024				
May Canacity	149 TB raw				
Max Capacity	129 TB usable				
Max Aggregated	15 GB/s total				
Crossbar	10 GB/s data				
Throughput	5 GB/s control				
May Cognostial	2 GB/s sustained				
Max Sequential Data Transfer Rate	3.2 GB/s peak				
	from cache				
Max Random IOPS from Cache	500,000				
Maximum LDEVs	8192				


Unprecedented Performance, Scalability, and Reliability for the Enterprise

Start at the size you need, scale to the highest usable capacity of any array on the planet

Storage Products

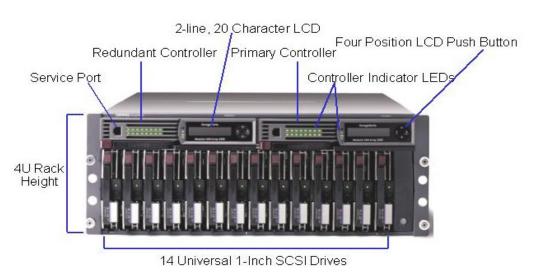
Modular Storage Array 1000

- 2gb FibreChannel front-end
- 4 U160 SCSI backend ports
- 4u rackmount with 14 drives
- 28 additional drives with
 2 external storage shelves
- Works in existing SANs
- Low cost 2 node clusters
 with embedded 3 port FC-AL hub
 (V7.3-2 only, Release TBD)
- Supported with
 - V7.2-2
 - V7.3
 - V7.3-1
 - V7.3-2

Storage Products

Modular Storage Array 1000

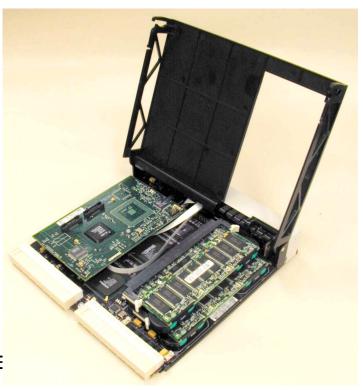
- V4.24 firmware supports all OS
- -Minimum Tima kits
 - OpenVMS V7.2-2 VMS722_FIBRE_SCSI-V0400
 - OpenVMS V7.3 VMS73_FIBRE_SCSI-V0500
 - OpenVMS V7.3-1 VMS731_MSA1000-V0100
- FC-AL release in future



MSA1000 SAN Solution

FC Connection Options

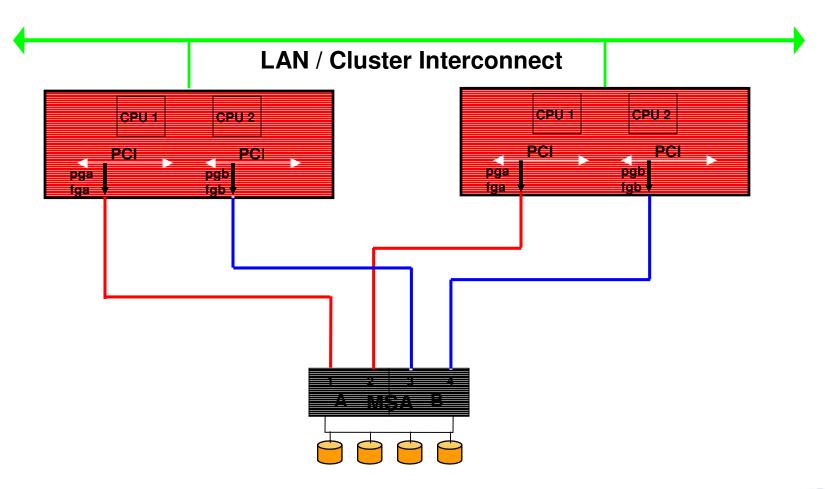
Single 2Gb port for external switch 3 port 2Gb Hub (Future for VMS) 8 port 2Gb switch (Brocade)



Storage Products

Modular Storage Array 1000

- High Performance Architecture
 - 200MB/sec throughput
 - 25,000 I/O per second
- Redundant controller support
 - Active/Standby in initial product
 - Active/Active in future
- RAID 0, 1, 0+1, 5 and ADG
- LUN Masking (SSP)
- 2Gb/1Gb auto-sense host ports
- Dual Cache Modules
 - Upgradeable to 512MB (per controlle
- Serial line config and management



(Not Yet Available)

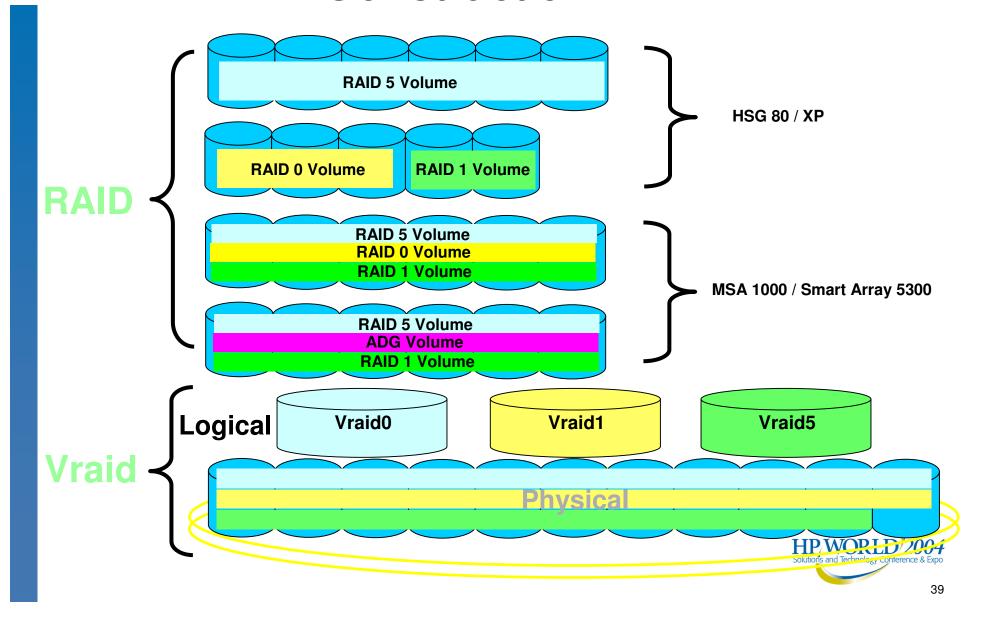
Storage Products

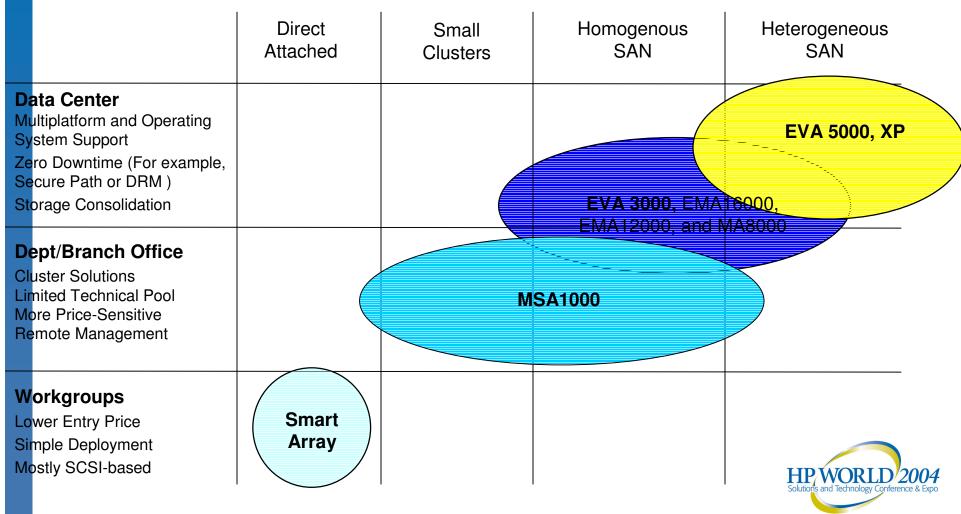
Smart Array 5300

- Smart Array 5300
 - 2/4 U160 SCSI Channels
 - Up to 56 drives (4TB)
 - Raid0/1/5/ADG
 - Up to 256MB cache
- Supported on V7.3-1
 - 300MB/sec
 - 20K io/sec
- Fastpath with V7.3-2
- Shadowing:

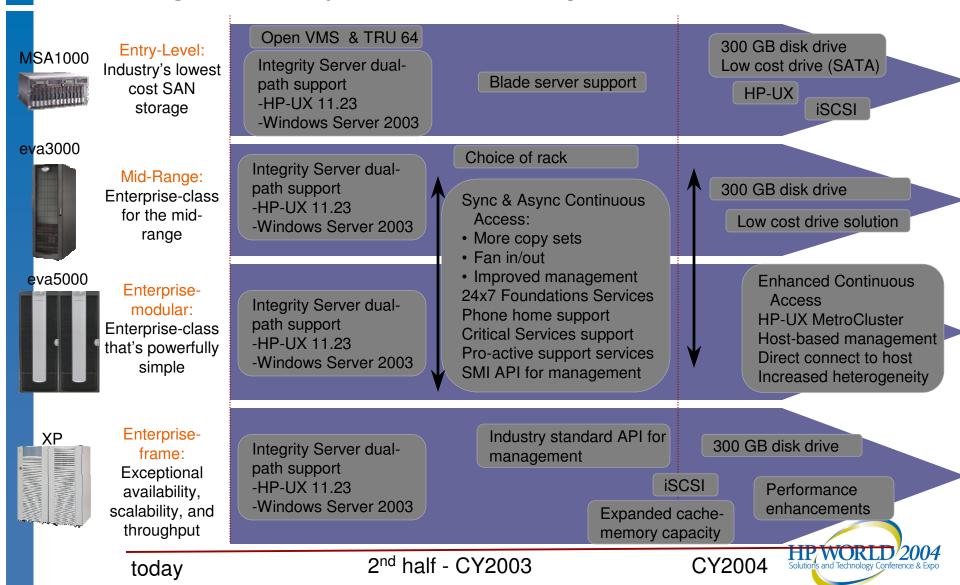
Doesn't support forced error commands so full shadowing support is an issue. Shadowing works fine but a member will be ejected if an unrecoverable disk error occurs on one member and an error cannot be forced on the shadow copy

- Smart Array 5400 (U320), due in late 2004




HSG / MSA / EVA Volume Construction

Storage Positioning


StorageWorks Array Specs

Array	MSA1000	VA7110	VA7410	MA / EMA	EVA3000	EVA5000	XP 128	XP 1024
controllers	2	2	2	2	2	2	6	8
host interface	FC	FC	FC	FC	FC	FC	FC	FC
host ports	1 to 16	2	4	4	4	4	24	32
drive interface	SCSI	FC	FC	SCSI	FC	FC	FC	FC
drive enclosure density	14	15	15	14	14	14	32	32
max. raw capacity	6 TB	6.5 TB	15 TB	6.1 TB/ma8k 18.3TB/ema12k	8TB	35TB	18 TB	149 TB
disk sizes	All Ultra3 / Ultra 320 drives (18 to 146 GB)	146GE/10k 73GB/151,10k 36GB/15L10k		146GB/10k 73GB/15K,10k 36GB/15k,10k	146GB/10k 73GB/10k 36GB/15k,10k	146GB/10k 73GB/10k 36GB/15k,10k	146GB/10k 73GB/10k 36GB/15k,10k	146GB/10k 73GB/10k 36GB/15k,10k
max. no. of drives	42	45	105	42/ma8k 126/ema12k	56	240	128	1024
peak iops from cache	30	16,5k	31k	21k	105k	168k	375k	500k
peak iops from disk	ND	ND	10k	ND	13k	55k	27k	57k
peak sustained throughput	202 MB/s	160 MB/s	330 MB/s	ND	337 MB/s	525 MB/s *	2400 MB/s (front- end)	3200 MB/s (front- end)
cache capacity	512MB	2 GB	2 GB	512MB	2GB	2GB	32 GB	64 GB
snap/clone		Business Copy		Snapshot	BC	BC	BC	BC
RAID configurations supported	RAID 0, 1, 3/5, 0+1, partitioning	RAID10, 5DP, AutoRaid	RAID10,5DP, AutoRaid	RAID 0, 1, 3/5, 0+1, partitioning	Vraid0, Vraid1, Vraid5	Vraid0, Vraid1, Vraid5	RAID1 (2+2), 1 (4+4), 5 (3+1), 5 (7+1) HPWO	RAID1 (2+2), 1 (4+4), 5 (3+1), 5 (7+1) RLD 2004
replication		CASA	CASA	DRM (sync + async)	CA (3Q2003)	CA (2Q2003)	CA (synowosyno)	©A (sync-+ async)

Storage Arrays Roadmap

Tape Products

Tape Libraries

- ESL 712e / 630e
 - Up to 24 SDLT / LTO drives
 - 712 LTO cartridges / 630 SDLT cartridges
 - Embedded FC ports (1:2 drives)
 - Dedicated FC port for robot
 - VMS testing underway now
- ESL 9595/9322/9326
 - Up to 16 SDLT / LTO drives
 - Up to 4 2gb FC ports
 - Up to 595 cartridges
 - -95TB of uncompressed data
 - –900GB/hour uncompressed backup rate SDLT 160/320
 - –1.7TB/hour uncompressed backup rate LTO-2
- MSL 5052
 - 4 SDLT drives / 52 cartridges
- MSL 6060
 - 4 LTO drives / 60 cartridges
- MSL 5026
 - 2 SDLT drives / 26 cartridges
- MSL 6030
 - 2 LTO drives / 30 cartridges

Network Storage Router M2402

- 1U Fibre Channel-to-SCSI router
 - 2Gb FC Support
 - 4 module slots
 - -2x 2gb Fibre Channel
 - -4x LVD/SE SCSI
 - -4x HVD SCSI
 - Web Based Management
 - Embedded product for tape libraries (E2400-160)

Power Side

Port Side

Network Storage Router N1200

- 1U Fibre Channel-to-SCSI router
 - High Performance 2Gb FC Support
 - -200 MB/s of information throughput
 - 1 2Gb Fibre Channel port
 - 2 U160 LVD SCSI ports
 - Web Based Management
 - Embedded product for tape libraries (E1200-160)

LTO Tape Drives

- VMS will never support Ultrium 1 drives
 - No support of odd byte transfers
- VMS supports the Ultrium 2 (LTO460) drives
 - Testing completed on all current AlphaServer systems
 - Supported in both direct-attach SCSI and behind the FC Bridges (NSR, MDR)
 - Now supported in ESL/MSL libraries

Recent Backup Performance Measurements

No compression	Highly compressed
12MB/sec	49 MB/sec
10MB/sec	33 MB/sec
18MB/sec	49 MB/sec
18 MB/sec	55 MB/sec
32MB/sec	60MB/sec
	12MB/sec 10MB/sec 18MB/sec 18 MB/sec

Tape and Optical roadmap

Available with Ultrium LTO, SDLT. DLT and DAT technologies

Autoloaders

Entry level

Available with LTO, SDLT, DLT1

Tape Libraries

MSL series

ESL

series

Mid-range:

Enterprise features for the mid-range

Available with LTO. **SDLT**

Enterprise

Mission-critical: redundancy, highavailability

Exceptional Long-term archiving solutions

Today

2nd half - CY2003

5th generation DDS -DAT72 and DAT72h (hot

Filling the niche for entry level libraries support on both Windows and HP-UX environments with full ProLiant support

Integrity Server support: HP-UX Windows Linux Open VMS

plug) drives

ESL9000 series Extended tape library architecture (ETLA) Embedded interface & controller Tape mirroring Path fail-over Secure-path

Ultrium 3 DDS 6 **SDLT 600** Ultrium Tape WORM

SDLT 600 Autoloader

DAT 72 Autoloader

MSL5000/6000 series ETLA

Full mixed LTO/SDLT media support

ESL e series

ESL/MSL series with SDLT600

Enterprise library with Ultrium 460 native fibre drives

Ultra Density Optical (UDO) drive integration into optical libraries

CY2004+

SAN Infrastructure

SAN Infrastructure product portfolio

Infrastructure alternatives that span the enterprise

director 2/64

director 2/140

MDS-9509

Business mid-range

edge 2/32

MDS-9216

Business entry

edge 2/24

MDS-9120 & 9140

B-Series

blade 2/8

M-Series

New SAN Features

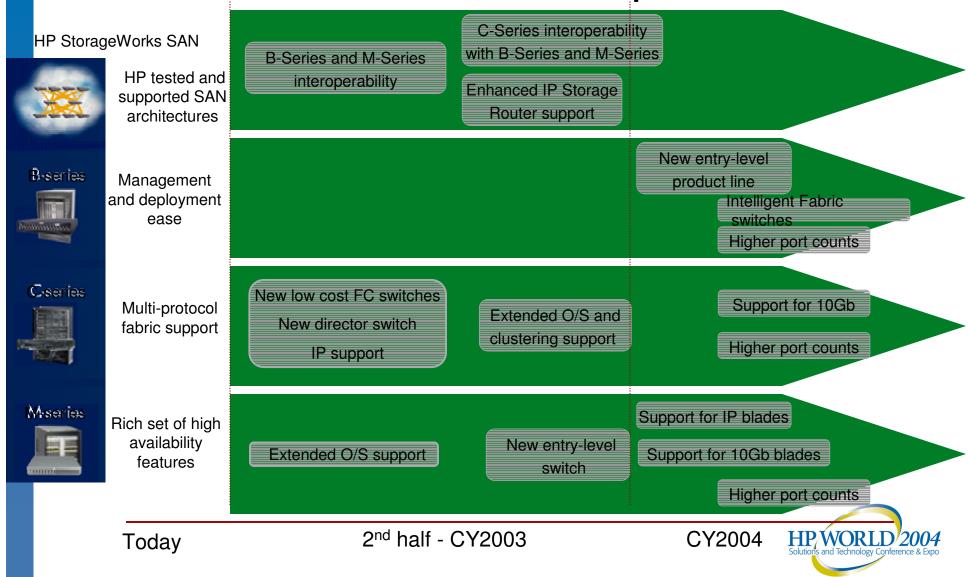
Bigger SAN Switches

- SAN Switch 2/32
 - 32 port monolithic switch
 - -4 port 8Gb/sec ISL trunking available
- Core Switch 2/64
 - 2 x 64 port blade type switch
 - -16 ports per blade
 - -Total of 128 2gb ports
 - –4 port 8Gb/sec ISL trunking available
- SAN Director 2/128
 - 128 port blade type switch
 - -Non-blocking
 - -16 ports per blade
 - –4 port 8Gb/sec ISL trunking available

New SAN Features

Cisco Switches

- •OpenVMS now qualified with the full line of Cisco Fibre switches
 - •9120/9140
 - •20/40 port edge switches
 - •9216
 - •16 ports + 1 plug in (16/32 ports)
 - •9506/9509
 - •Director class switches with 4/7 plug in modules
 - •Up to 224 ports



SAN Infrastructure roadmap

Post V8.2 Projects

Post V8.2 Projects

Fibre Channel Cluster Interconnect

- Development project underway to send SCS traffic over FibreChannel
 - Provides LAN over FC
 - Use PEDRIVER to provide SCS communication
 - Goal is to provide stretch clusters without requiring additional cluster interconnect
 - May also have "cleaner" failure characteristics because SCS and storage will fail as a single unit
 - -CI/MC class latency is not a goal (and not possible)
 - It is a non goal to provide general TCP/IP or DECNET over FC links (but we'll probably get it for free)
 - Prototype currently being tested
 - Release commitment is OpenVMS V8.3

Post V8.2 Projects

SATA / SAS Connectivity

- Next generation host attached storage is moving towards SATA/SAS (serial ATA / serial SCSI)
- Currently support is planned for Integrity based platforms only
- Expect both motherboads based controllers as well as PCI based controllers

Longer Term Storage Interconnects

Long Term Storage Interconnects

- 4Gb FibreChannel
 - 2005
 - Gaining momentum for SAN usage
- 10Gb FibreChannel
 - 2006???
 - Very expensive infrastructure costs at first
 - Probably most interesting as inter-switch links

-iSCSI

- Industry has stagnated some in recent years
- Has some promise as a low-cost way to connect PCs to a SAN
- Host performance overhead is the main issue today
- OpenVMS will track development and consider support when native iSCSI storage is available and TCP/IP Offload Engines (TOEs), are available.

Co-produced by:

