

OpenVMS Cluster LAN Interconnect Monitoring

Keith Parris System/Software Engineer Hewlett-Packard

© 2004 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice

Topics

OpenVMS and LAN redundancy How OpenVMS detects LAN failures

LAVC\$FAILURE ANALYSIS facility

- Theory of operation
- Setup and use
- Maintenance
- Available Freeware tools
 - EDIT LAVC.COM
 - SIFT LAVC.COM
 - LAVC\$FAILURE_OFF.MAR

OpenVMS and LAN Redundancy

- PEDRIVER is the code supporting SCS communications over LANs
- Since OpenVMS version 5.4-3, use of multiple LAN adapters for SCS has been supported
 - Allows cluster to continue operating despite LAN adapter, bridge, or cable failures
- While hardware redundancy allows one to survive a failure,
 - Failures must be detected and promptly fixed, or a subsequent second failure could cause an outage

PEDRIVER 'Hello' Packets

- Sent approximately every 1.5 to 3 seconds "Dithered" to avoid packet "trains" forming
- PEDRIVER expects to receive Hello packets regularly on each possible path

Network Troubleshooting

- Locating the offending component in a network failure can be difficult
- OpenVMS provides a tool to make failure detection and failed-component identification easier in a LAVC environment: it's called the LAVC\$FAILURE_ANALYSIS facility

Template Program

- Template program is found in SYS\$EXAMPLES: and called LAVC\$FAILURE ANALYSIS.MAR
- Written in Macro-32
 - but you don't need to know Macro to use it
- Documented in Appendix D of OpenVMS Cluster Systems Manual
 - Appendix E (subroutines the above program calls) and Appendix F (general info on troubleshooting) LAVC LAN problems) are also very helpful

Using LAVC\$FAILURE_ANALYSIS

- To use, the program must be:
 - 1. Edited to insert site-specific information
 - 2. Compiled (assembled on VAX)
 - 3. Linked, and
 - 4. Run at boot time on each node in the cluster

Maintaining LAVC\$FAILURE ANALYSIS

- Program must be re-edited whenever:
 - The LAN used as a Cluster Interconnect is reconfigured
 - A node's MAC address changes
 - e.g. Field Service replaces a LAN adapter without swapping MAC address ROMs
 - A node is added or removed (permanently) from the cluster

How Failure Analysis is Done

- OpenVMS is told what the network configuration should be
- From this info, OpenVMS infers which LAN adapters should be able to "hear" Hello packets from which other LAN adapters
- By checking for receipt of Hello packets, OpenVMS can tell if a path is working or not

How Failure Analysis is Done

- By analyzing Hello packet receipt patterns and correlating them with a mathematical graph of the network, OpenVMS can tell what nodes of the network are passing Hello packets and which appear to be blocking Hello packets
- OpenVMS determines a Primary Suspect (and, if there is ambiguity as to exactly what has failed, an Alternate Suspect), and reports these via OPCOM messages with a "%LAVC" prefix

Getting Failures Fixed

- Since notification is via OPCOM messages, someone or something needs to be scanning OPCOM output and taking action
- ConsoleWorks, Console Manager, CLIM, or RoboCentral can scan for %LAVC messages and take appropriate action (e-mail, pager, etc.)

Gathering Info

- Data required:
 - Local Area Network configuration:
 - OpenVMS Nodes
 - LAN adapters in each node
 - Bridges
 - Hubs
 - Links between all of the above

Network Information

- OpenVMS considers LAN building blocks as being divided into 4 classes:
 - NODE: The OpenVMS systems
 - ADAPTER: LAN host-bus adapters in each OpenVMS system
 - **COMPONENT:** Hubs, bridges, bridge-routers
 - Cloud: Combinations of components that can't be diagnosed directly (more on this later)

HP WORLD 2004 Solutions and Technology Conference & Expo

OpenVMS Node 2	Gigabit Ethernet	
	FDDI	
	Fast Ethernet	

Handling Network Loops

- The algorithm used for LAVC\$FAILURE_ANALYSIS can't deal with loops in the network graph
 - Yet redundancy is often configured among LAN components
 - The bridges' Spanning Tree algorithm shuts off backup links unless and until a failure occurs
 - Hello packets don't get through these backup links, so OpenVMS can't track them
 - For these cases, you replace the redundant portion of the network with a "network cloud" that includes all of the redundant components
 - Then OpenVMS can determine if the network "cloud" as a whole is functioning or not

Handling Redundancy

 Multiple, completely separate LANs don't count as "loops" and OpenVMS can track each one separately and simultaneously

Gathering Info

- Data required (more detail):
 - Node names and descriptions
 - LAN adapter types and descriptions, and:
 - MAC address
 - -e.g. 08-00-2B-xx-xx, 00-F8-00-xx-xx-xx
 - plus DECnet-style MAC address for Phase IV
 - -e.g. AA-00-04-00-yy-zz

Getting MAC address info

```
$!
   SHOWLAN.COM
$!
$
       write sys$output "Node ",f$getsyi("nodename")
$
       temp_file := showlan_temp.temp_file
$
       call showlan/out='temp_file'
$
       search 'temp_file' "(SCA)", "Hardware Address"
              /out='temp_file'-1
       delete 'temp file';*
$
$
       search/window=(0,1) 'temp file'-1 "(SCA)"
$
       delete 'temp file'-1;*
$
       exit
$!
$
  showlan: subroutine
$
        analyze/system
show lan/full
exit
$
       endsubroutine
```


Editing the Program

- Once the data is gathered, you edit the LAVC\$FAILURE ANALYSIS.MAR program
- There are 5 sections to edit, as follows:

- In Edit 1, you can give descriptive names to Nodes, Adapters, Components, and Clouds
- These names become names of macros which you'll create invocations of later in the code

; ;

;

; ; Edit 1.

Define the hardware components needed to describe the physical configuration.

NEW_COMPONENT	SYSTEM	NODE
NEW_COMPONENT	LAN_ADP	ADAPTER
NEW_COMPONENT	DEMPR	COMPONENT
NEW_COMPONENT	DELNI	COMPONENT
NEW_COMPONENT	SEGMENT	COMPONENT
NEW_COMPONENT	NET_CLOUD	CLOUD

- In Edit 2, you create "ASCII art" to document the LAVC LAN configuration
- This has no functional effect on the code, but helps you (and others who follow you) understand the information in the sections which follow
- In the drawing, you choose brief abbreviated names for each network building block (Node, Adapter, Component, or Cloud)
 - These abbreviated names are only used within the program, and do not appear externally

- In Edit 3, you name and provide a text description for each system and its LAN adapter(s), and the MAC address of each adapter
 - The name and text description will appear in OPCOM messages indicating when failure or repair has occurred
 - The MAC address is used to identify the origin of Hello messages

- For DECnet Phase IV, which changes the MAC address on all circuits it knows about from the default hardware address to a special DECnet address when it starts up, you provide both:
 - The hardware MAC address (e.g. 08-00-2B-nn-nn-nn) and
 - The DECnet-style MAC address which is derived from the DECnet address of the node (AA-00-04-00-yy-xx)
- DECnet Phase V does not change the MAC address, so only the HW address is needed

Edit 3.

	Label	Node 	Description	LAN HW Addr	DECnet Addr
SYSTEM	A,	ALPHA,	< - MicroVAX II; In the Computer room>		
LAN_ADP	A1,	,	<xqa; -="" alpha="" computer="" ii;="" microvax="" room="">,</xqa;>	<08-00-2B-41-41-01>,	<aa-00-04-00-01-04></aa-00-04-00-01-04>
LAN_ADP	A2,	,	<xqb; -="" alpha="" computer="" ii;="" microvax="" room="">,</xqb;>	<08-00-2B-41-41-02>	
SYSTEM	в,	BETA,	< - MicroVAX 3500; In the Computer room>		
LAN_ADP	в1,	,	<xqa; -="" 3500;="" beta="" computer="" microvax="" room="">,</xqa;>	<08-00-2B-42-42-01>,	<aa-00-04-00-02-04></aa-00-04-00-02-04>
LAN_ADP	в2,	,	<xqb; -="" 3500;="" beta="" computer="" microvax="" room="">,</xqb;>	<08-00-2B-42-42-02>	
SYSTEM	D,	DELTA,	< - VAXstation II; In Dan's office>		
LAN_ADP	D1,	,	<xqa; -="" dan's="" delta="" ii;="" office="" vaxstation="">,</xqa;>	<08-00-2B-44-44-01>,	<aa-00-04-00-04-04></aa-00-04-00-04-04>
LAN_ADP	D2,	,	<xqb; -="" dan's="" delta="" ii;="" office="" vaxstation="">,</xqb;>	<08-00-2B-44-44-02>	

- In Edit 4, you name and provide a text description for each Component and each Cloud
 - The name and text description will appear in OPCOM messages indicating when failure or repair has occurred

Edit 4.

Label each of the other network components.

DEMPR MPR_A, , <Connected to segment A; In the Computer room> DELNI LNI_A, , <Connected to segment B; In the Computer room>

SEGMENT Sa, , <Ethernet segment A> SEGMENT Sb, , <Ethernet segment B>

NET_CLOUD BRIDGES, , <Bridging between ethernet segments A and B>

- In Edit 5, you indicate which network building blocks have connections to each other
- This is a list of pairs of devices, indicating they are connected

; ; ; ;

Edit 5.				
Descr	ibe the net	work connect	ions.	
CONNECTION	Sa,	MPR_A		
CONNECTION		MPR_A,	A1	
CONNECTION			A1,	A
CONNECTION		MPR_A,	B1	
CONNECTION			в1,	В
CONNECTION	Sa,	D1		
CONNECTION		D1,	D	
CONNECTION	Sa,	BRIDGES		
CONNECTION	Sb,	BRIDGES		
CONNECTION	Sb,	LNI_A		
CONNECTION		LNI_A,	A2	
CONNECTION			A2, A	
CONNECTION		LNI_A,	B2	
CONNECTION			B2, B	
CONNECTION	Sb,	D2		
CONNECTION		D2,	D	

EDIT_LAVC.COM Tool

A DCL command procedure is available to gather all the information and create an example LAVC\$FAILURE_ANALYSIS.MAR program customized for a given cluster. See:

 This tool is in the V6 Freeware for OpenVMS under directory [KP_CLUSTERTOOLS]. Grab EDIT_LAVC.COM and EDIT_LAVC_DOC.TXT from the Freeware CD itself or from the HP OpenVMS website at:

http://h71000.www7.hp.com/freeware/freeware60/kp_clustertools/

These are also available at http://encompasserve.org/~parris/

Copy EDIT_LAVC.COM to a directory on a clustercommon disk, accessible from all nodes.

 If there is no disk accessible from all cluster nodes, instead pick a username and copy EDIT_LAVC.COM to the default directory for that username on each node in the cluster.

HP/WORLD/2004

Using the EDIT LAVC.COM Tool

To create a customized version of LAVC\$FAILURE ANALYSIS.MAR and deposit it into your default directory, do:

\$@EDIT LAVC

To examine the resulting program:

\$ EDIT / READ LAVC\$FAILURE ANALYSIS.MAR

Look for the sections entitled "Edit 1" through "Edit 5"

To compile/assemble and link the resulting program:

\$ @EDIT LAVC BUILD

To enable viewing of any OPCOM messages generated:

```
$ REPLY / ENABLE=CLUSTER
```


OPCOM Messages Generated

- On a failure, LAVC\$FAILURE ANALYSIS identifies at least one Primary Suspect: -%LAVC-W-PSUSPECT, <device description>
- If there is more than one device whose failure might produce the same symptoms, LAVC\$FAILURE ANALYSIS can also identify one or more Alternate Suspects:

-%LAVC-I-ASUSPECT, <device description>

• When the repair of a Suspect device (either Primary or Alternate) is detected, this is reported: -%LAVC-S-WORKING, <device description>

Customization with EDIT LAVC.COM

• EDIT LAVC.COM tries to make up reasonable default descriptions for nodes, adapters, and network segments. You can override these with logical names. For example:

\$!

\$! Create LAVC\$FAILURE_ANALYSIS.MAR file customized for XYZ cluster \$!

```
$ DEFINE EDIT LAVC DESC CLUSTER "XYZ"
```

```
$ DEFINE EDIT LAVC DESC NODE ABC ", Alphaserver ES45 in XYZ cluster"
$ DEFINE EDIT LAVC DESC NODE ABC ADAPTER EWA "Device EWA, Node ABC, DEGPA"
$ DEFINE EDIT LAVC DESC NODE ABC ADAPTER EWB "Device EWB, Node ABC, DE500"
$ DEFINE EDIT_LAVC_DESC_NODE_ABC_ADAPTER_FWA "Device FWA, Node ABC, DEFPA (left)"
$ DEFINE EDIT LAVC DESC NODE ABC ADAPTER FWB "Device FWB, Node ABC, DEFPA (right)"
```

\$ DEFINE EDIT LAVC DESC VLAN 1 "Cisco VLAN 123 (Fast Ethernet); XYZ cluster" \$ DEFINE EDIT LAVC DESC VLAN 2 "GIGAswitch A (FDDI); XYZ cluster" \$ DEFINE EDIT LAVC DESC VLAN 3 "Cisco VLAN 456 (Gigabit Ethernet); XYZ cluster" \$ DEFINE EDIT_LAVC_DESC_VLAN_4 "GIGAswitch B (FDDI); XYZ cluster" \$@EDIT LAVC

Correlating Error Messages Between Nodes

- %LAVC OPCOM messages from each node show the failure from the viewpoint of that specific node
 - You can often get a better feel for the actual underlying failure by comparing the failure messages as reported from each node

SIFT_LAVC.COM Tool

•A DCL command procedure is available to gather all %LAVC messages from OPERATOR.LOG files and sort them in timestamp order to allow easier correlation of the events from the viewpoint of each node. See:

SIFT_LAVC.COM from the [KP_CLUSTERTOOLS] directory of the OpenVMS V6 Freeware or from: <u>http://encompasserve.org/~parris/sift_lavc.com</u>

 To summarize %LAVC messages from the current (highest-numbered) version of OPERATOR.LOG files on all nodes, do:

\$@SIFT_LAVC

Level of Detail

- There is a trade-off between level of detail in diagnostic info and the amount of work required to initially set up and to maintain the program over time
 - More detail means more work to setup, and more maintenance work, but can provide more-specific diagnostic info when failures occur

Level of Detail Example

Disabling LAVC\$FAILURE_ANALYSIS

To turn off LAVC Failure Analysis, use the LAVC\$FAILURE_OFF.MAR program found in the [KP_CLUSTERTOOLS] directory of the OpenVMS V6 Freeware or at:

http://encompasserve.org/~parris/lavc\$failure off.mar

Speaker Contact Info

- Keith Parris
- E-mail: <u>Keith.Parris@hp.com</u> or parris@encompasserve.org or keithparris@yahoo.com
- Web: <u>http://encompasserve.org/~kparris/</u> and http://www2.openvms.org/kparris/ and http://www.geocities.com/keithparris/

invent

®

