
© 2004 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

Application
Debugging for
Itanium: HP WDB

Carl Burch
Software Engineer
Hewlett-Packard

2

Overview of debugging techniques...
• Assertions: add consistency checks within the code,

check for cases that should never happen.

• Diagnostics: add logging and dump facilities, pretty
print data structures; use tools that help create
diagnostics, e.g. Purify™ to look at memory issues

• Comparisons: use a case that works and one that
doesn’t and eliminate differences that don’t matter

• Post-mortem analysis: start with the point of failure,
work backwards to the cause.

• Divide and conquer: break problem into small parts,
check the state after individual steps complete.

A debugger can assist with these techniques.

3

WDB Availability
• Recommended debugger on HP-UX (PA & IPF)

• Based on open source GNU debugger (gdb) with lots of HP
value adds.

• Best spot to pick up most recent wdb is from the web:
http://www.hp.com/go/wdb

• Majordomo lists to keep up to date with wdb
wdb-announce@cxx.cup.hp.com – used to announce new versions
hpux-devtools@cxx.cup.hp.com – used for discussion of tools
cxx-dev@cxx.cup.hp.com is for discussion of C++ development

• wdb is bundled with C, C++ and Fortran compilers

• Web releases include both pre-built binaries and source code
(gdb)

4

Debugger overview

operating system, e.g. HP-UX

user-process

core dump
image

debugger-process

file
images with
debug info

Source
files

compiler/
linker

Debugger:
uses OS system
calls to control
user process
and read state
e.g. ttrace/ptrace

Debugger:
reads debug information
left by compiler to provide
symbolic source statements,
data types, user variables and
other program state.

Debugger:
displays source files Debugger:

uses OS to read/modify runtime
data structures from a running process;
e.g. displaying the stack or doing
command line call

Debugger:
can read static program
state from a core image;
e.g. post-mortem analysis

shared lib

5

WDB Interfaces: GDB command line

Gdb: underlying debugger engine

6

WDB Interfaces: Vdb

Vdb: replacement for –tui on IPF

7

WDB Interfaces: WDB

WDB: HP supported GUI

8

WDB GUI Interface

source display

command prompt
and transcript

status line
views on tabs or popups:
commands, watch, locals,
stack, threads, registers

assembly display

watch window

tool bar

menu bar

wdb gui highlights
� integrated with wdb plans:

e.g. fix �n continue, memory check
� supported by HP

� PC-like look
� configurable, sessions

9

WDB Interfaces: Ddd

Ddd: popular gdb GUI

10

WDB Interfaces: Emacs

Emacs: M-x gdb

11

WDB Interfaces: Firebolt

Firebolt – Vim based Edit-compile-debug tool

12

Common invocation modes
• gdb, wdb and related binaries are stored in /opt/langtools/bin

$ gdb program ! Load program into debugger

$ gdb program core ! Post mortem analysis of the core image

$ gdb program 1234 ! attach to running process 1234

• Invoking the above with wdb instead of gdb, brings up the GUI

• Useful command line options
• -xdb ! XDB compatibility mode; many but not all XDB commands

accepted
• -dbx ! dbx compatibility mode; many but not all dbx commands accepted
• -version ! display version information and quit.

13

Getting help
(gdb) help
provides a list of commands

$gdb --help
provides a list of arguments

Online reference information shipped with
wdb in /opt/langtools/wdb/doc:

• quick reference card & quick start card
• gdb manual
• online help for GUI
• tutorials and xdb transition guide
• emacs info files

14

WDB Debugger Basics
Most important simple commands to know:

• Commands for wdb control [run] [quit] [attach]

• Commands for breakpoints [break] [step] [next] [continue]

• Commands for watching data [watch]

• Commands for printing values [print] [x] [bt] [call]

• Commands for getting help [help] [info][set][show]

• Knowing just these commands, one can get remarkably far in
using wdb

• Commands are common in all interfaces, though GUIs often have
other (mouse, menus, panes) ways of doing these basic
operations.

15

Specifying target

(gdb) run [program arguments…]
Tip #1: Use (gdb) set args [arguments…] to

set program arguments
Tip #2: Use (gdb) set env variable value to

set environment variables
Tip #3: Use a .gdbinit file if you want to repeat

the same arguments or environment;
create one per application and/or per user

Note #4: Arguments are processed using a
shell, usually csh

(gdb) attach pid
Tip #5: Use �(gdb) file filename� to set the

name of the executable image
Tip #6: HP-UX doesn�t allow attaching on an

NFS file system, see workarounds
(gdb) core filename
Note #7: core files or process id may also be

given on command line
gdb exec-filename [pid | corefile]

16

Breakpoints
(gdb) break routine
(gdb) break file:lineno
(gdb) break *address
Note #8: Response tells you what was set :

Breakpoint 1 at 0x31b0: file hello.c, line 4.
Breakpoint 2 (deferred) at �mamba�
(�mamba� was not found. Breakpoint
deferred until a shared library containing
�mamba� is loaded.

Note #9: Deferred breakpoints are set when
the debugger can�t find the symbol; useful
for shared library debugging.

17

Breakpoints
Tip #10: Make a breakpoint conditional with

the condition command, e.g.
(gdb) condition 1 (x > 5)

Tip #11: Use the commands command to
execute commands when a breakpoint is
hit, e.g.:
(gdb) commands 1

printf �%d\n�,x
end

Tip #12: Use the rbreak command to set a
regular expression breakpoint, e.g.:
(gdb) rbreak myfun

18

Common breakpoints chores

(gdb) tbreak location ! set temporary breakpoint at location

(gdb) info breakpoints ! view breakpoints list

(gdb) ignore bkpt-num count ! ignore count occurrences

(gdb) disable bkpt-num ! temporarily suspend breakpoint

(gdb) enable bkpt-num ! reactivate a disabled breakpoint.

(gdb) delete bkpt-num ! permanently delete a breakpoint.

(gdb) clear ! delete breakpoint @ current position

(gdb) clear location-spec ! delete breakpoint at the location

(gdb) xbreak function ! break at the exit of function

The xbp and xdp commands are useful to set/delete breakpoints at
exit of all procedures

19

Watchpoints (Data Breakpoints)
(gdb) watch expression
• Use (gdb) watch *0xaddress to watch an address -

otherwise the expression is evaluated repeatedly.

• HP-UX 11.x allows the debugger to implement hardware
watchpoints, much much faster

• Itanium supports yet another fast way to watch locations.

• Watchpoints may be modified with the “condition”,
“command” and “ignore” commands.

• Recent WDB versions support “deferred” watchpoints,
useful to watch as yet unallocated addresses

• Use watchpoints to monitor changes in variable values. Use
Display to track variable values.

20

Deferred Breakpoints
Debugger doesn’t know symbols until they are loaded …

• Solution: deferred breakpoints. This is why wdb reports:
Breakpoint 1 (deferred) at “routine” (“foo” was not found).
Breakpoint deferred until a shared library containing “foo” is loaded.

• Deferred breakpoints automatically activated upon library load.

• Note: use “info shared” to see what shared libraries are loaded

• Note: also works with main in a shared library

• Note: supported for “break” or “tbreak” but not for other
variations, e.g. xbreak, rbreak. (tbreak sets a temporary
breakpoint, xbreak sets breakpoint at exit and rbreak sets a
breakpoint on a regular expression).

• Recent versions support deferred watchpoints also

21

Execution Control
(gdb) cont [count]
(gdb) step [count]
(gdb) next [count]
(gdb) return

(gdb) finish

(gdb) jump line
Note: Step steps into a called function, next steps over the call. The

optional repeat count tells how many times to do this.

Tip: Many common commands are available by their one letter
abbreviations: c, s, n

steplast ! useful when call arguments contain other calls : e.g.,
steplast at foo(goo(),boo()) steps into foo(), not boo()/goo()

22

Navigating the call stack
• Viewing the current thread’s call stack

• bt, where, info stack

• To switch to a different frame use
• (gdb) frame <number> ! for random access
• (gdb) up
• (gdb) down ! for sequential navigation

• Viewing local variables of a frame
• (gdb) info args
• (gdb) info locals

• To step out of current frame
• (gdb) finish

• To abruptly return from current frame
• (gdb) return

23

Printing values
(gdb) print /format expression
• The expression can be a command line call e.g.

(gdb) print function (argument)

• To alter a variable, use a print command, e.g.

(gdb) print x = 4

(gdb) x /format address
Formats can include a count, format type and size:

format types include: o - octal; x - hex; d - decimal; u - unsigned
decimal; t - binary; f - float; a - address; I - instruction; c - char;
s - string.

Format sizes include: b - byte, h - 2bytes, w - 4bytes, g - 8bytes

e.g.

(gdb) print /x variable (gdb) x /20i main

24

Printing state
(gdb) info

(gdb) show

(gdb) set

Note: “info” tells you about your program;

“show” tells you about the debugger;

“set” changes the things displayed by show.

Things info can display include:

args, breakpoints, files, frame, locals, registers, scope, sharedlib,
signals, stack, threads

25

How to debug a multi-threaded
program ?
• Problems troubleshooting multi-threaded and multi-process

programs:

• locking issues: deadlock
• locking issues: starvation
• non-deterministic behaviors; non-repeatable
• overall complexity

• wdb has basic support for user-space and kernel threads, but
not explicit support for areas listed above.

26

WDB support for threaded programs
• Kernel threads, user threads & MxN threads are supported:

(gdb) info threads
− lists the id numbers of currently known threads
− Displays both utid and ktid for all user threads
− Doesn’t display kernel threads which are not associated with a

user thread (for mxn threads).
(gdb) thread <number>

− switch to another thread
(gdb) thread apply [number... | all] <command>

− apply a command to a list of threads
(gdb) break function thread <number>

− Create a thread specific breakpoint.
(gdb) thread [disable | enable] [number | all]

− Freeze/thaw threads specifically.

27

How to debug a multi-process
program ?
• wdb has no support (yet) for multi-process programs.

• attach multiple debuggers, one per process
• build troubleshooting techniques on top of multiple debuggers

• Following forks:

• follow-fork-mode decides the identity of the target after fork
• (gdb) set follow-fork-mode parent | child | ask
• Default behavior is to stay with the original target.
• (gdb) catch fork ! stop the program on a fork event.

28

Debugging Shared libraries
(gdb) catch load
−Get control when a shared library is loaded

(gdb) catch unload
−Get control when a shared library is unloaded

(gdb) info shared
−Use this command to list all the shared libraries that are

currently loaded.

$ chatr +dbg enable a.out
−Enable shared library debugging during attach
−Loads the shared libraries private

29

Debugging a running process
� Remember to chatr the executable to debug

shared libraries
$ gdb a.out
(gdb) attach 1234
$ gdb a.out 1234
� Stops the process after attach.
� Place required breakpoints and continue
(gdb) detach
Use detach command to detach gdb from the

process

30

Debugging core files
$ gdb a.out
(gdb) corefile core
$ gdb a.out core
� Print local and global variables
� Backtraces
� Thread information
� Examine memory and registers
� Cannot place breakpoints and continue the

program

31

How to ignore or trap signals ?

Signal Disposition

stop - gdb stops program if set

print - gdb prints a message

pass - gdb passes signal to
program

(gdb) info signals

(gdb) handle SIGBUS [pass |
nopass | print | noprint |
stop | nostop]

(gdb) signal SIGBUS

32

Edit-compile-debug cycle speedup

• Compilation speed for -g links; +objdebug
− keeps debug information only in object files...

a.out
compiled with +objdebug

.o file

.o file

.o file

.o file

.o file

.o file

a.out
compiled with +noobjdebug

Lookup tables for routines, types, constants
entries are pointers to *.o files with info

Debug information:
quick lookup tables
global type and symbol info
local type and symbol info
lines tables
information for debug code
...

faster link times, no need to run pxdb
smaller executable files, debug info can be huge
different memory profile: smaller to start out

need to load at debug time, often don�t care, but
can take time.
default behavior on Itanium, new model

no need to find *.o files at debug time
different memory profile: pxdb removes duplicates

default behavior on PA-RISC, old model

33

How do I find memory leaks?

(gdb) set heap-check [on | off]

(gdb) set heap-check [leaks | bounds | free | scramble] [on | off]

(gdb) set heap-check frame-count number
(gdb) set min-leak-size number
(gdb) info leaks <file>

(gdb) info heap <file>

Recent versions allow analysis after attach and “Batch mode”

34

How do I find memory leaks?

35

Debugging Optimized Code
• Problems with debugging optimized code:

− register allocation; variables move around and may not even exist
− source lines combined, eliminated; no longer 1:1 mapping from source

code to object code
− side effects happen in scrambled order; some effects done before

others

• Approaches:
− turn optimization off; either wholesale or with #pragma
− wdb has some additional basic support:

• range record information; to keep track of variable locations; tells you
truthfully location or if variable is not found

• better following of scrambled source lines

• Incremental support in future; complex, research problem.

36

Source level debugging without �g
(Itanium)
• Possible on IPF because WDB leverages “minimal line table”

added for PBO.

• Useful to debug optimized code, production binaries & dumps
from field.

• What works :
• Breakpoints, step, next, stack traces, disassembly will have source

information available
• Global variables can be printed as usual

• What does not :
• Type information will not be available
• Local variables cannot be queried.

37

Source level debugging without �g:
Usage
• Invoking at command line:

gdb -src_no_g=no_sys_libs <other gdb options>

• Or, start gdb and at the prompt use a set command

$ gdb <options> " don’t specify file name

(gdb) set src-no-g no_sys_libs | all | none

(gdb) file <executable>

• Once src-no-g is enabled, sources are automatically available

• no_sys_libs is the recommended mode.

• Help is available at the following command

(gdb) help set src-no-g

38

Support for debugging assembly
code
• Facilities for assembly level debugging:

• wdb GUI, firebolt, ddd have explicit pane/tab
• If compiled with –g, source and assembly interleaved.
• info registers to show register state, register window in GUI.
• si and ni instead of step & next

• (gdb) disass <function | address> - to disassemble

• disass works only with statically compiled/linked code addresses.
• Examine “memory as instruction stream” for dynamic code

Example : (gdb) x/16i <address>
• (gdb) b *address ! plant a breakpoint at a raw address.

39

Support for debugging C++
programs
• C++ facilities include

• Breakpoint menus for overloaded functions
• use rbreak to set on all members of a class
• use conditional breakpoints to create instance breakpoints

• set print object; useful setting to know

• Exception handling support – catch throw, catch catch

40

Support for debugging Fortran
• Facilities to debug Fortran include support for

• Array descriptors
• Common blocks
• Case sensitivity
• Derived types and VMS records
• Fortran expression types
• Cray pointers, compiler limitation here

41

Customizing gdb
• Tip: Create a .gdbinit file for the application; add some of :

− break fatal
− dir /path/to/my/sources
− set args …
− set env var value
− define dump_data

print data
end

− set print object on

• Global preferences in ~/.gdbinit, project specific in ./.gdbinit
• Note: Use “help set” to list the things one might customize

• Note: Use the –nx command line option to ignore .gdbinit

• Note: Use “source <file>” to read in any gdb commands file

42

Saving and restoring WDB sessions
• Target information

• Breakpoints and watchpoints

• Signal settings

• Source Paths

• Current directory

• Debugger settings

• User-defined buttons

• Positions and sizes of
windows

• Command history

43

Java Unwind Support
• gdb support for Java supplied as a shared library

• Library supporting Java unwind must be specified
• Do this by export GDB_JAVA_UNWINDLIB=<path>/libjunwind.sl
• With latest versions of gdb, you can bypass this step.

• Location of library in the J2SE release (1.3.1+):
• jre/lib/PA_RISC2.0[W]/libunwind.sl

• No support to debug Java code per se;
• Useful for debugging mixed mode Java/C/C++ code.

44

Starting Java from gdb
• Built-in mechanism with “java” command:

− Set DEBUG_PROG in your shell:
export DEBUG_PROG=/opt/langtools/bin/gdb
Export GDB_JAVA_UNWINDLIB=<libjunwind.sl>

• Problem using arguments to the java command
− You need to remove arguments else you get:

/opt/langtools/bin/gdb: unrecognized option ‘-Xmn500m’

• Once in gdb:
− Type in all of the arguments:

(gdb) r -Xmn500m -Xms1024m -Xmx1024m COM.volano.Mark -port
8000 -count 5000 -rooms 5

− Alternatively, use the “set args” feature in your ~/.gdbinit file

45

Before Java Support

#0 0x6ffad8d0 in __ksleep () from /usr/lib/libc.2

#1 0x6fc73298 in _lwp_cond_timedwait () from /usr/lib/libpthread.1

#2 0x6fc72fd4 in pthread_cond_wait () from /usr/lib/libpthread.1

#3 0x6f8de384 in ObjectMonitor::wait ()

from /opt/java1.3/jre/lib/PA_RISC2.0/server/libjvm.sl

#4 0x6f9182ac in ObjectSynchronizer::wait ()

from /opt/java1.3/jre/lib/PA_RISC2.0/server/libjvm.sl

#5 ?? ! stack trace stops here !!!

46

With Java Support
#0 0x6ffad8d0 in __ksleep () from /usr/lib/libc.2
#1 0x6fc73298 in _lwp_cond_timedwait () from /usr/lib/libpthread.1
#2 0x6fc72fd4 in pthread_cond_wait () from /usr/lib/libpthread.1
#3 0x6f8de384 in ObjectMonitor::wait ()

from /opt/java1.3/jre/lib/PA_RISC2.0/server/libjvm.sl
#4 0x6f9182ac in ObjectSynchronizer::wait ()

from /opt/java1.3/jre/lib/PA_RISC2.0/server/libjvm.sl
#5 0x6f859d30 in JVM_MonitorWait () – interpreted transition to native

from /opt/java1.3/jre/lib/PA_RISC2.0/server/libjvm.sl
#6 0xc8b7c in interpreted frame: java/lang/Object::wait {(J)V} ()
#7 0x6d41aaf4 in c2i_adapter frame () - compiled to interpreted adapter
#8 0x6d41a1b8 in compiled frame: COM/volano/mcf::x{()[Ljava/lang/Object;} ()
#9 0x6d40517c in i2c_adapter frame () - interpreted to compiled adapter
#10 0xc4b68 in interpreted frame: COM/volano/mca::run {()V} ()
#11 0xc4dcc in interpreted frame: java/lang/Thread::run {()V} ()
#12 0x6fe911b8 in Java entry frame ()

47

Tips & Tricks
• Unable to debug shared libraries upon attach

• On HP-UX shared libraries truly share a global virtual address
• No copy on write policy
• Work around by

• /opt/langtools/bin/pxdb -s on a.out (or)
• chatr +dbg on a.out (preferred, works on both PA
& IPF)

• Unable to attach to a process
• Process started over NFS ? Interruptible NFS mount ?
• mount -o nointr
• use a local file system
• Fixed in recent 11.x kernels.

48

Tips & Tricks (more)
• Debugging C++ inline functions

• Must use +d switch to aCC

• Debugger as well as debuggee hang

• Some programs disable all signals when in a critical region
• Debugger depends on SIGTRAP for breakpoints!!!
• Best not to muck around with SIGTRAP and SIGINT

49

Tricks & Tips (more)
• Classes appear partial or empty

• aCC -g ?
• Only part of program compiled -g ?
• Use -g0 for partial debug compiles.

• Long link times with –g

• Consider +objdebug for compiles
• Improves link time
• Higher overhead for gdb bring up.

50

Tips & Tricks (more)
• Debugger performance

• If happy, let sleeping dogs lie, go to the next slide.
• If program composed of shared libraries :

− set auto-solib-add 1 in .gdbinit file
−Use share commands in .gdbinit to load relevant

libraries
−Gdb will load libraries as needed in many (not all)

situations.
−Gdb users from other platforms: never set auto-

solib-add to 0 on hp !!!
• If watchpoints are very slow

• 10.20 uses S/W watchpoints :-(

51

Tips & Tricks (more)
• Unable to view source code

• Source paths in the image stale ?
• Use dir command
• Complied +objdebug?
• Use objectdir command to let gdb know where the object files are.
• Use the “pathmap” command in WDB 4.2 and later.

• Backtraces don’t look right on core
• Analyze core files on the same machine if at all possible.
• Otherwise environment must be faithfully recreated.
• ‘packcore’ command available in the WDB 4.5 release.
• Use GDB_SHLIB_PATH or GDB_SHLIB_ROOT variables.

52

Tips & Tricks (more)
• Gdb doesn’t like the core file

• “Large” core file ? (>2GB)
• Recent versions contains support for mega core files.

• Deployment Issues
• Consider shipping un-stripped
• Preserve a –O –g version and ship the –O version
• Install signal handlers and generate stack trace on crash using

U_STACK_TRACE() (link with -lcl)

53

Tips & Tricks (more)
• Command line completion

• Use <TAB>

• Command line editing and history
• set editing-mode vi in ~/.inputrc

• Using a different gdb with wdb/firebolt/vdb
• export GDB_SERVER=<gdb-path>

• Output redirection
(gdb) set redirect-file <filename>
(gdb) set redirect on|off

Co-produced by:

