
© 2004 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

Application
Debugging and
Performance Tuning
for Itanium®

Carl Burch, Dave Babcock
WDB Team, HP Caliper Team
Hewlett-Packard

Application Debugging
for Itanium: WDB

3

Exercise 1
� Change directory to ex1
� Issue make
� Start gdb on a.out
� Run to main()
� Continue to marker1()
� Issue next till exit from marker1()
� Step over call to marker2 ()
� Step into marker3 ()
� Use help to understand list command
� Line the source lines for main
� Place a breakpoint at line# 41, and continue
� Print the value of retval
� Continue till program exits

4

Exercise 2
� Change directory to ex2; make; start gdb on a.out
� Run to main ()
� Place a watchpoint at retval
� Place a temporary breakpoint at marker1 () and continue
� Return out of marker1 () without excuting the remaining part of marker1 ()
� Step over call to marker2 ()
� Step into marker3 ()
� Check the stack trace
� Set a breakpoint at return from factorial ()
� Finish executing marker3 () � use finish command
� Jump over call to marker4 () and continue
� Do a backtrace
� Go up 2 frames and print the variable �value�
� Go down 1 frame and print �value�
� Use info break command to get the breakpoint information and delete the

breakpoint at return from factorial ()
� Continue the program till the watchpoint is hit
� Continue till the program exits

5

Exercise 3 - threads
� This program creates 3 threads and joins them back in the function

do_pass. Each thread executes the routine spin()
� Change directory to ex3/threads; make; start gdb on a.out
� Run to do_pass()
� Break after each thread is spawned
� Continue 3 times and check the thread list after each thread is

created
� Switch the current thread to thread 4
� Place a temporary breakpoint at line 56 in thread 4
� Continue and check the thread list
� Apply �backtrace� command to all threads � use thread apply

command
� Continue till all the threads join � (line 116)
� Check the thread list now

6

Exercise 3 � Debugging a running
process
� Change the directory to ex3/attach; make
� Start �a.out 1&�
� Attach gdb to this pid
� Get the stack trace and thread info
� Set the variable �wait_here� to 0 to let the program

continue beyong the while loop.
� Set a breakpoint at printf and continue the process
� Breakpoint is never hit!!!
� Redo the above steps after loading the shared libraries

private
−Chatr +dbg enable a.out

7

Exercise 3 � Corefile debugging
� Change directory to ex3/corefiles; make; start gdb

on a.out
� Run the program till gdb reports SIGBUS
� Continue to get SIGABRT
� Get the backtrace and continue this program gets

terminated
� Restart gdb on a.out with this corefile �core�
� Get the backtrace

8

Exercise 4 � src-no-g
� Change directory to ex4; make; start gdb (no executable)
� Set src-no-g to no_sys_libs
� Read in the executable (file a.out)
� Place breakpoints at main and bar (deferred break)
� Run the program and see that you see source lines
� Continue to bar()
� Finish out of bar()
� Print the value of local i
� Continue till program exits

9

Exercise 4 � Assembly mode
debugging

� Rerun the previous program; hits the breakpoint at main
� Disassemble main, and get the first instruction after call to

bar()
� Place a breakpoint at this instruction (break *0xaddress)
� Disassemble bar() and get the first instruction of return

statement.
� Place a breakpoint at this instruction
� Continue to the breakpoint at bar()
� Continue to the breakpoint at return statement
� Single step (stepi) to next instruction
� Continue to next breakpoint in main
� Print the value of return register r8 (p $r8)

10

� Change directory to ex5; make; start gdb on a.out
� enable heap-checking
� run to main
� run to exit (__exit_handler)
� find memory leaks in this program

� Rerun to main
� change frame-count
� change min-leak-size
� run to exit
� find leaks

� Restart gdb; enable heap-checking; run to foo
� print the heap profile
� Enable free checking
� Continue to catch the double free
� enable bounds check
� Continue to catch write beyond bounds

Exercise 5

Application Performance
Tuning for Itanium: HP
Caliper

12

Making Measurements

caliper <measurement> [options] application �.

ie:
caliper cgprof sweep3d
caliper dcache_miss -o report crafty < crafty.in
caliper func_cover -o report --process=all \

cc -o hello +O hello.c

13

Measurements
Totals: cpu_metrics, total_cpu

Profiles: alat_miss, branch_prediction,
dcache_miss, dtlb_miss, fprof,
icache_miss, itlb_miss

Traces: pmu_trace
Coverage: func_cover*

Counts: arc_count*, func_count*
Call graph: cgprof*

* not in first Linux release

Intrusion

<< 1%

~ 1% - 3%

~ 10% - 60%

14

Demo Applications
� ls -- system directory list utility

ls

� crafty -- chess program (C)
crafty < crafty.in

� sweep3d -- pipelined wavefront with line
recursion (F90, C)

sweep3d

� cc -- C compilation (multiprocess)
cc -o hello +O hello.c

15

Exercise 1a � getting started
� measure runtime of app:

caliper total_cpu app

� examine total_cpu report
� measure cpu profile of app:

caliper fprof -o REPORT app

� explore cpu profile report

16

Exercise 1b � getting help
� access caliper manpage:

man caliper

� access caliper help:
caliper -h

� access caliper info:
caliper info �r dcache_miss
caliper info CYCLES

17

Exercise 2 � measurement options
� measure total fp metrics:

caliper total_cpu --metric=FP_OPS_RETIRED, \
FP_FLUSH_TO_ZERO, \
FP_TRUE_SIRSTALL \

app

� measure custom total metrics:
caliper my_metrics app

18

Exercise 3a � report options
� measure dcache misses:

caliper dcache_miss -d DF app

� generate default dcache miss report:
caliper report -d DF -o R1

� generate full source dcache miss report:
caliper report -d DF -o R2 ---context=100

� explore R1 & R2

19

Exercise 3b � more report options
� try various report options and explore results:

--csv=CSV
--html=HTML
--context-lines=COUNT_SOURCE[,COUNT_DISASSEMBLY]
--detail-cutoff=PERCENT_CUTOFF[,CUMUL_PERCENT_CUTOFF

[,MIN_COUNT]]
--percent-columns=total|cumulative|total:cumulative
--report-details=statement|instruction|statement:instruction
--sort-by=sampled-misses|latency|avg-latency
--summary-
cutoff=PERCENT_CUTOFF[,CUMUL_PERCENT_CUTOFF

[,MIN_COUNT]]

20

Exercise 4 � measurement context
� measure full application:

caliper fprof -o R1 app

� measure only main module (no shared libraries):
caliper fprof -o R2 --module-default=none \

--module-include=app \
app

� explore R1 & R2

21

Exercise 5 � a multiprocess app
� measure only root process:

caliper fprof -o R1 app

� measure all processes:
caliper fprof -o R2 --process=all app

� measure selective processes:
caliper fprof -o R3 --process=app app

� explore R1, R2 & R3

Co-produced by:

