
© 2004 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

RMS Indexed File
Tuning and Internals
(#4032, draft 1)

Hein van den Heuvel
Performance Engineer
HP, Enterprise Solutions Partners

2

Introduction and overview
• This presentation is based on, and much similar to,

earlier Decus and CETS, and the HPworld ‘03
submission “RMS and the million dollar bit”

• This presentation consists of:
− General performance remarks
− Picture of an indexed file on disk structure
− Detailed tuning points including Duplicate Key Chains

and Deleted record chains.
− Nice to knows (not presented)
− File patching (not presented)

• With this background in place we will analyze
and correct several indexed file problems ‘hands
on’.

3

Get some, any, RMS training.
• If this was a ‘Real’ Database application (Oracle /

SQLserver / MySQL), would you not have had:
− a dedicated DB administrator
− a handfull of specialized DB designers /programmers?
− Invested in weeks (years?) of training
− Hired mostly experienced database personel?

• RMS may be for free, but is still needs some TLC!
− How much have you invested in RMS experience?
− Used formal training? (HP, Bruden, Parsec)
− Allow a engineer to build hands-on experience?

25-Aug-04 RMS Tuning, Hein van den Heuvel 4

Anatomy of an Indexed File

AreasPrologue
Key 0
Primary

Key 1
Alternate

2

1

0

Root
6 *

Index
2 6

Index
*

Data
1 2

Data
3 6

Data
7

Root
Smith *

Index
Jones Smith

SIDR
Bell Jones

SID
Sla..

Down Down keyDown
Down index

Next

Down
Next

Next

ANALYZE/RMS/INT

5

ANALYZE/RMS/INTER Hands-on

25-Aug-04 RMS Tuning, Hein van den Heuvel 6

Design For Performance,
Work with the numbers.

• RMS does (unfortunately) no magic (no optimizer)

• All RMS activity is rather predictable

• Calculate /predict IO resource needs

• Instrument application
− Display records or work-units processed for batch.
− SYS$GETJPI / LIB$SHOW_TIMER

− SET FILE /STATISTICS followed by
• MONITOR RMS /ITEM=CACH …
• RMS_STATS & RMS_TUNE_CHECK tools on VMS Freeware

− SHOW PROCESS/ ACCOUNTING

− Compare Expected and Actual measurements

25-Aug-04 RMS Tuning, Hein van den Heuvel 7

Production Systems

• Regular Converts for indexed files
− Daily / Weekly / Monthly / Yearly based on usage
− Combats both Internal and External fragmentation
− Opportunity to tune
− Delivers basic statistics: record count
− Implied backup
− Implied sanity check
− Corruption might not yet show in production

25-Aug-04 RMS Tuning, Hein van den Heuvel 8

Production Systems

• Periodic Analyze / Optimize
• Index root level(s) still as planned ?
• Bucket size still adequate ?
• Number of (global) buffers still adequate ?
• File size still as planned ?

• Standard tools
� �� � � �� � �	
 � ��� � � �� �
 �

� ��� �� 	�� �	� � �� � �
 � � � �� �

� �� �
 �� � �
 � 	�� ��

25-Aug-04 RMS Tuning, Hein van den Heuvel 9

Performance still bad ?

• Is there a bottleneck ?
− CPU : �� � � �� � � �

− 10% INTERRUPT = Devices and cluster locks
− 5% MPSYNC = Kernel access serialization (locks?)
− 30% KERNEL = Locks and QIO and logical names
− 20% EXECUTIVE = RMS (or ORACLE or…)
− 10% USER = real work!
− 25% IDLE = Waiting for (read) IO to complete

− IO : �� � � �� ��� ��� ��
 � � 	� � �� ��
− Watch out for MONI DISK/TOPQ because serial reads

will NOT cause a queue and yet still be an IO problem!
− LOCKS: �� � � ��� � � �� �� � �

10

Monitor Mode Hands-on

25-Aug-04 RMS Tuning, Hein van den Heuvel 11

Performance still bad ?

• No IO problem, No CPU problem, and still
No Performance? Probably Serialization!

• Basic application understanding
• “Master record with ‘next key’ value”
• mailbox to go through?

• Hot files
• DECps / Advise (Now C.A. previously VPA)
• Viewpoint (Datametric)
• DLB dynamic load balancer (TTI)
• OVO HP Openview

25-Aug-04 RMS Tuning, Hein van den Heuvel 12

RMS Tuning

• RMS Tuning can be as EASY as
−$set rms/system/indexed/buffer=20
−$set rms/system/extend=2000
−$set rms/system/seque/buffer=4/block=64
−$set file /global_buffer=100 *.DAT

: … Just Do It!: … Just Do It!

13

SHOW RMS, DIR/FULL Hands-on

25-Aug-04 RMS Tuning, Hein van den Heuvel 14

RMS Tuning: Just Do It
• The 80 /20 rule applies

• A little tuning can help a whole lot
• Ideal tuning requires a whole lot

• Just get it roughly right and your end-users will love
you for it

25-Aug-04 RMS Tuning, Hein van den Heuvel 15

Code does not break

• Many performance options are transparent

• Some require quota / resource adjustment

25-Aug-04 RMS Tuning, Hein van den Heuvel 16

Code does not break

Parameter Transparent? Adjustment
Number of Buffers Yes ENQLM

Size of buckets Yes WSQUOTA

File Extend Quantity Yes Clustersize?

File/Area Placement Yes Spindles

Global Buffers Yes GBLPAGFIL,
GBLPAGES,…

25-Aug-04 RMS Tuning, Hein van den Heuvel 17

What to look for ?
(Details on next slides)

• Bucket Size
• Number of Local and Global Buffers
• Duplicate Alternate Key Chains (SIDR)
• Number of Index Levels (depth)
• Allocation and Extend Sizes
• Placement in Space and Time
• Bucket splits
• Compression
• Deleted key ranges

25-Aug-04 RMS Tuning, Hein van den Heuvel 18

What is a Bucket anyway?

• Unit of transfer to IO device
− NOT directly dependent on CLUSTERSIZE
− FINE Tuning with clustersize helps

• Contains Data or Index records
− Records can NOT cross bucket boundaries
− If records do not fit, a BUCKETSPLIT occurs

• Different sizes for different usage in file
− Data / Level-1 Index / Rest-of-Index / Alternate keys
− RMS memory buffers size = largest bucket size in file

• Bucket Size is a Permanent file attribute

25-Aug-04 RMS Tuning, Hein van den Heuvel 19

Bucket Size Cheat Sheet

Bucket Size SMALL MEDIUM BIG

Size (Blocks) 1 - 6 6 - 24 24+

Size (Records) 1 - 10 10 - 300 300+

Index Levels 4+ 2 or 3 1 or 2

CPU time 0 ms 0.1 ms 0.5 ms

25-Aug-04 RMS Tuning, Hein van den Heuvel 20

Bucket Size Cheat Sheet

Bucket Size SMALL MEDIUM BIG

IO Transfer time
@ 5 MB/Sec

 0 ms 1 – 2 ms 3+ ms

Working Set Minimal Low Impact Add Pages

Contention Low Medium High

Disasters Low risk
Low impact

Low risk Higher risk
Big impact

25-Aug-04 RMS Tuning, Hein van den Heuvel 21

What about buffers

• A buffer is a chunk of RMS maintained memory
to read a bucket (or to write from)

• PUTs and UPDATEs need many buffers if multiple
keys are in use

• Indexed file Sequential GETs need only 1 buffer

• Keyed GETs need 1 for each index level plus
one for data (and perhaps for RRV)

25-Aug-04 RMS Tuning, Hein van den Heuvel 22

What about LOCAL buffers?

• Default quantity is : ‘deepest index + 2’
• RMS was very frugal : just 2 buffers pre VMS 5.4.

• Set on CONNECT time (HLL OPEN call)

• $SET RMS /BUFFER [/SYSTEM]…
− to set default (every file!) at process or system level.

• Local buffer max = 254 through RAB

• Specify up to 32K buffers through XABitm

25-Aug-04 RMS Tuning, Hein van den Heuvel 23

What about GLOBAL Buffers?

� GLOBAL BUFFERS REALLY WORK
� Share buffers by all accessors on a node
� Efficient in clusters (no change broadcasts)
�Expect to SAVE Memory.

» Sure, they use memory, but with many concurrent
users they often save memory by requiring fewer
local buffers per user (100 is less than 30 times 6)

�Great to cache (all) index buckets
» Primary and Alternate indexes alike

GLOBAL BUFFERS REALLY WORK

25-Aug-04 RMS Tuning, Hein van den Heuvel 24

What about GLOBAL Buffers

• Great for read and write accessed files
• PUTs first need to read, to know where to write.
• Can write from global cache, avoiding next read

• Minor Gotchas:
• Up to VMS 7.2 (patch kit for 7.1) a per node serial sequential

scan was used to locate buckets under protection of an exclusive,
local, lock limiting useful quantity to 2000-ish.

• SHOW PROC /RMS=GBHSH (VMS 7.2+)
• Needs LOCKs to work, thus needs shared access
• ‘Deferred Write’ option forces a local buffer copy
• Not used for DCL opened (process permanent) files
• Sequential readers may trash cache (bad citizens)

25-Aug-04 RMS Tuning, Hein van den Heuvel 25

How many GLOBAL Buffers

• ‘None’ is the only wrong answer.
• RMS Limit is 32K, Practical 200 - 2000 ?
• 42? One for each user?
• Cache (top of) index and then some?
• Goal is 80 - 99% hit rate.

− But really the goal is an acceptable IO rate.
− 99% hit rate on 5000 accesses/second is still 50 IO/second
− 90% hit rate on 50 accesses/second is only 5 IO /second

• Treat as memory budget
• You have xxxx pages in the bank to start with.
• spent pages wisely, don’t spend all in one place.

26

MONI RMS / rms_stats Hands-on

25-Aug-04 RMS Tuning, Hein van den Heuvel 27

Duplicate Chains,
Overview.

• RMS stores duplicates as 7 byte RRV pointers in
Secondary Index Data Records (SIDR)

• If SIDR is larger then Bucket Size a new Bucket is
allocated

• RMS maintains duplicates in arrival order
− This is deliberate documented behavior which some

applications count on.
− Last record added with key value ‘Request’ should become last

entry in last SIDR with key ‘Request’

• New inserts must first find the end of target SIDR chain
potentially requiring many read IOs

25-Aug-04 RMS Tuning, Hein van den Heuvel 28

Duplicate Chains,
Picture.

SIDR Index (=root)
“Done”,”*”

Prologue Key 2
Alternate

Active[1,2],
Done[1,2,3]

Done[6,7,8,
9,10…99]

Done[100,
101,…190]

Done[…]
Request[1,2,3]

No more Index Entry !

RRV’s pointing to User Data Record.

Sidr Data (100/bucket)

13Request

4200+Done

12Active

BucketsSIDRsKey

SIDR
Buckets

25-Aug-04 RMS Tuning, Hein van den Heuvel 29

Duplicate Chains,
Detection methods.

• Problems often seen on SHORT Alternate Keys
• Equally possible on primary keys, but those are more often then

not made unique or almost unique.

• High READ IO rate for an application that is
supposed to be mostly writing.

• Very high XFC or IO-controller Cache Hit Rate.
• ANALYZE/RMS/FDL <your-file.idx>
• RMS_TUNE_CHECK tool on VMS Freeware

• Used to be called ‘sidr’.
• Suggestion: check .txt help file, and try –m argument

25-Aug-04 RMS Tuning, Hein van den Heuvel 30

Duplicate Chains,
Detection example 1 of 2.

• ANALYZE/RMS/FDL/OUT=SYS$OUTPUT X.IDX

− Bucket size was 16
− Therefore… 1968 /16 = 123 SIDR buckets.
− Just 9 index entries: 112 buckets with duplicates!
− And… maximum SIDR size = 1168 entries

− (16*512 – 15 – compressed-key-size) / 7

ANALYSIS_OF_KEY 2ANALYSIS_OF_KEY 2

::

DATA_SPACE_OCCUPIEDDATA_SPACE_OCCUPIED 19681968

DUPLICATES_PER_SIDRDUPLICATES_PER_SIDR 969969

LEVEL1_RECORD_COUNTLEVEL1_RECORD_COUNT 9 9

25-Aug-04 RMS Tuning, Hein van den Heuvel 31

Duplicate Chains,
Detection example 2 of 2.

• RMS_TUNE_CHECK Y.IDX

− Every new record inserted with key value 0000000000 will require
4000+ read IOs and 1 (or more) Write.

− Most new records will have that key value… how else did those 1.7
millions duplicates get there?

::

Duplicate count, Buckets, Key valueDuplicate count, Buckets, Key value

--

17597481759748 40454045 000000000 000000000

4646 11 292164044 292164044

2727 11 211941745 211941745

2525 11 211147595 211147595

32

Duplicate Key Chain Hands-on

25-Aug-04 RMS Tuning, Hein van den Heuvel 33

Duplicate Chains,
Solutions 1 of 3.

• DROP the Key! Do you really use it?
− Consider SORTING primary data as alternative.
− What is the business value of a query ‘find the first of the 2 million

records without an appointment’. Now. And the next, and the next…

• Apply NULL KEY VALUE
− Set ‘the million dollar bit’ : xab$v_nul = 1
− Set ‘null value’ byte xab$b_nul = 32 ����������	

− Sample FDL command to set ‘space’ as null key value:

• NULL_KEY yes
• NULL_VALUE 32

− NO index entry made if each byte of the key for the records added
equals the ‘null value’ byte

− NO application code change needed. Just re-convert!
• Restricted use. May need to define application data value.

25-Aug-04 RMS Tuning, Hein van den Heuvel 34

Duplicate Chains,
Solutions 2 of 3.

• Increase the Bucket Size (for the alternate key)

− IO Size is not such an important factor in the Cost to do
an IO. It’s the number of IOs that matter.

− RMS Maximum bucket size is 63
− If the current bucket size is 12 or less, then duplicate key

read IO count can be divided by 5 or more.
− Edit FDL file, change bucket size in the AREA for the key

with a problem, and re-convert.

25-Aug-04 RMS Tuning, Hein van den Heuvel 35

Duplicate Chains,
Solutions 3 of 3.

• Add (ordered) key segment to ‘de-duplicate’
− Goal is NOT to make each key unique,
− Goal is just to avoid buckets full of duplicates.
− A few (hunderds!) duplicates is just fine (even efficient!)
− Physical data need not be changed, just the key

definition to add a segment (XABW_POSx, XABB_SIZx)
− The new segment will change the sorting order. Ok?
− Sample: change STATE to STATE + ZIP(9)
− Sample: add low bytes from primary as segment to

alternate key to divide average dup count by 100?

36

The Million Dollar bit
• For more than one customer a single bit set incorrectly has

cost them more then a million dollars in oversized servers
and lost production.

• The bit is called XAB$V_NUL and instructs RMS not to
bother to maintain the index structure for one particular key
value.

• Maintaining excessive duplicate keys (millions of duplicates
for a single key value) can cost thousands of READ IOs
causing a single record insert to take minutes instead of
being a sub-second operation.

• See also OpenVMS Technical Journal V2 (July 2003)

25-Aug-04 RMS Tuning, Hein van den Heuvel 37

Index Depth

• Each level to traverse may need an IO

• Each level requires a (temporary) LOCK

• Locking ‘amplified’ with global buffers

• Bucket locking is cluster wide

• Binary search minimizes lock duration
• ‘Flat’ files are often best but may cause too much

contentions. Compensate extra levels through more
buffers

25-Aug-04 RMS Tuning, Hein van den Heuvel 38

Index Depth Cheat Sheet Sample

Bucket size: 1 2 3 20
records per data bucket 4 10 15 102

records per index bucket 49 100 152 1022

level 0 (data) buckets 25001 10001 6667 981

level 1 index buckets 511 101 44 1

level 2 index buckets 11 2 1

level 3 index buckets 1 1

index blocks 523 208 135 20

�������������	
�������	
�� ���������
�� ������������	������	�	

39

Index Depth Excel spread sheet

Number of Records: 100,001 10 Records per data bucket

Average Record Size 89 92 Keys per index bucket

Key Size 9
 Blocks

Data Bucket Size: 2 10001 Level 0 (data) Buckets 20002

Index Bucket Size 0 109 Level 1 Buckets 218

Data Bucket Fill Percent 100 2 Level 2 Buckets 4

Index Bucket Fill Percent 100 1 Level 3 Buckets 2

Total Allocation: 20,226
Root Level: 3

512 Byte Block size
15 Byte Bucket Overhead
11 Byte Record Overhead
2 Byte Key Pointer Size

• Click on spreadsheet to activate

40

Excell + EDIT/FDL/INT Hands-on

25-Aug-04 RMS Tuning, Hein van den Heuvel 41

Adequate Extends

• High price if done wrong
• Not acceptable to run out of disk space while in production
• Frequent file system (XQP) requests each requiring several IOs

(worse with High Water Marking)
• Fragmentation

− One bucket requiring multiple clusters = SPLIT IO
− Unwarranted disk head movements

• Very easy to do right
• Rely primarily on adequate allocation
• If file needs to grow, allow significant growth

− Gotcha: Maximum extend is 65536

25-Aug-04 RMS Tuning, Hein van den Heuvel 42

Compression

• DATA and KEY compression is goodness
• Save SPACE and save CPU TIME

• Fewer data buckets => fewer IO
• Fewer index keys => fewer index levels
• More effective caches
• Less memory to walk

• Remember to verify effectiveness
• FDL has no smarts to detect negative compression

• Index compression often discouraged as it prohibits
binary searches in index buckets

25-Aug-04 RMS Tuning, Hein van den Heuvel 43

Deleted key ranges

• Deleted records are purged from the data bucket.
• Space can be re-used for records with similar keys.
• deleted ‘ID’ remains gone, allowing alternate key, and RFA,

access to conclude the record was deleted.
• With ‘Fast Delete’ a future alternate key access will remove the

associated alternate key.
• Exception: The last key is never deleted, but left

• The Primary key index is never removed.
• Buckets remain ‘reserved’ for key range from index.
• CONVERT/RECLAIM designed to clean up (off-line!)

• PROBLEM: ‘GET First Record’ may travers empty
buckets

25-Aug-04 RMS Tuning, Hein van den Heuvel 44

Deleted key ranges (Continued)

• Example: “work queue” file with date & time key.
• If work needs to be done, a record is inserted.
• Worker process takes action and deletes record.
• At end of day, no records are left.

• If worker falls behind, new records fill up bucket and ‘spill’
into next bucket. The first bucket wil never be re-used for
data, because keys increase.

• Workaround / Solution:
− Maximum bucket size (63) may cache queue longer, adding fewer buckets.

(watch out for RMS AIJ)
− Remember last record processed, used KGE.

• Does NOT have to be exact, just update when crossing bucket boundary (peek into
RFA? Update every 100 records or seconds?)

25-Aug-04 RMS Tuning, Hein van den Heuvel 45

Deleted key ranges (picture)

Index (=root)
00105, 00912, 02518, *

Prologue Key 0
Primary

Xab$b_rvb

Xab$b_dvb
Xab$b_lvl = 1

Data (empty)
00085(del)

Data (empty)
00912(del)

Data (empty)
02518(del)

Data (busy!)
04025,04026

46

Deleted Key Chain Hands-on

25-Aug-04 RMS Tuning, Hein van den Heuvel 47

What about IO

• Eliminate it: Caches & Application design

• A files place in space and time is critical
• Just because it fits, does not make it the right place.

• Spread it out
• Multiple disks per application
• Hardware or software striping
• Bound volume sets (area placement)

− Yes, you can bind a Solid State disk with a real disk
• Shadow sets (notably for read intensive)

25-Aug-04 RMS Tuning, Hein van den Heuvel 48

What about IO

• Speed it up
• Solid state disks (DECram, EZnn)
• Faster disks (10,000 rpm now available)
• Shorter seeks by reducing area on disk
• Faster area on zoned disks

− RZ29 has 16 zones from 67 to 135 sectors per track.
− Some 50% of the data lives in 30% of the seek range

• Track read ahead caching
• Writeback caching (notably with battery backup)

25-Aug-04 RMS Tuning, Hein van den Heuvel 49

Bucket Splits

• Necessary evil… CONVERT regularly
• RMS keeps records in primary key order
• RMS maintains single pointer from original record file address (RFA)

to actual location after split

• Cause by random inserts or updates changing the
effective record size

• Try to add records in primary key order
• Fill factor used to avoid or ease splits

• leave room for a few records per bucket
• Localized multiple inserts? Split will make room.

50

Cluster size

• Fine-tuning. Exercise in trading speed for space.

• More important with underlying STRIPING
− EDIT/FDL makes buckets too large for large cluster.
− Make CHUNK, CLUSTER and BUCKET SIZE all have nice

factors, notably for small chunks (swxcr).
− Chunk=16, Cluster=64 Bucket=8, NOT bucket = 17

− Each AREA = XQP Extend. Will be cluster aligned
− Buckets will not cross into extends

− By default the data buckets in the first AREA 0 extend are
unaligned following the file PROLOGUE. Can be fixed by using
area 0 for top index, area 1 for data.

51

Stump the Teacher - Hands-on

Co-produced by:

Nice to Knows

25-Aug-04 RMS Tuning, Hein van den Heuvel 54

Assorted Nice to Knows

• Convert starts duplicate chains in their own buckets,
mostly goodness but…

• Use normal editor for FDL files

• EDIT/FDL/ N OINTER takes TWO inputs:
− File design: Defines keys and such. Do not touch.
− Statistics: really only uses 3 inputs!

• Record count: Set to anticipated value
• average record size: Keep from old stats
• cluster size: Set to small ‘nice’ value: 12? 6?

25-Aug-04 RMS Tuning, Hein van den Heuvel 55

Assorted Nice to Knows

• Use ANALYZE/SYSTEM to peak at global buffers
and hit & miss counters if no file stats.

• SDA> SHOW PROC/RMS=(GBH,GBDSUM)

• Tune system files
• sysuaf, rightslist, mail_profile, mail.mai files,...

25-Aug-04 RMS Tuning, Hein van den Heuvel 56

Assorted Nice to Knows

• Use ‘idle’ program to maintain global buffers when
files are not always open. Keep them warm

• Drive with file of files
• Consider touching ‘desirable’ records on startup
• Optionally add check index levels /allocations

• Use SHR=NIL to avoid locking

• $GET for first record walks index. Cache its RFA in
application?

25-Aug-04 RMS Tuning, Hein van den Heuvel 57

Assorted Nice to Knows

• Records are stored in order by Primary key.
• Assume record has name and number as keys
• If frequent sequential or ‘generic’ search by name is needed and

only random access by number then, contrary to popular believe,
name should be primary

• If significant portion of the file is read by alternate
key order, then it will often be more efficient to walk
entire file by primary

• With random distribution, each alternate key need an IO to find
right data bucket. By contrast, each primary bucket read will return
several records

Patching broken
Indexed files.

25-Aug-04 RMS Tuning, Hein van den Heuvel 59

Patching up broken files

• The remainder of this presentation was the
main contents presented at CETS200 in
session 705

25-Aug-04 RMS Tuning, Hein van den Heuvel 60

Anatomy of an Indexed File

AreasPrologue
Key 0
Primary

Key 1
Alternate

2

1

0

Root
6 *

Index
2 6

Index
*

Data
1 2

Data
3 6

Data
7

Root
Smith *

Index
Jones Smith

SIDR
Bell Jones

SID
Sla..

Down Down keyDown
Down index

Next

Down Next

Next

ANALYZE/RMS/INT

61

Bucket header
$libr /extr=$BKTdef sys$library:lib.mlb

Offset Type Description
0, x-1 Char Bucket Check Byte
1 Char Index level or Area indicator
2 Word VBN Address Sample (low 16 bits)
4 Word Free Space Offset (end of data)
6 Word Next Record Id (for prologue 3)
8 Long Next Bucket VBN
12 Byte Bucket Level (0 = data)
13 Byte Flags (LAST, ROOT, PointerSize)

62

Record header (Variable, Compression)
$libr /extr=$IRCdef sys$library:lib.mlb

Offset Type Description
0 Byte Control Byte (2=Valid, DEL,RRV)
1 Word Record ID
3 Word RRV ID (original ID)
5 Long RRV VBN (original VBN)
9 Word Record Length
11 Byte Key length as stored here
12 Byte Count of front bytes (previous key)
13 Chars KEY data (variable count)
Data Chars RECORD data (variable count)

25-Aug-04 RMS Tuning, Hein van den Heuvel 63

Excuses for corruption

• Hardware failure: Disk, controller, cable.
• Partial IO due to Power-failure
• stop /id (amplified with deferred write usage)
• Software failure

− RMS: NO known problems since 6.0
− Experimental defrag tool?
− Privileged code (write logical block)
− Stupid code: $READ/$WRITE indexed files.
− Experimental data caching tool?

25-Aug-04 RMS Tuning, Hein van den Heuvel 64

Basic PATCH strategy

• Use tools to locate problem zone

• Goal is to be able to CONVERT the file

• Concentrate on DATA buckets only

• Concentrate on bringing bulk of file back
• Trade-off between TIME and DATA

• Worry about touching up remainder later.
• Use BACKUPs and application reports to reconstruct any

lost records if needed.

25-Aug-04 RMS Tuning, Hein van den Heuvel 65

Basic PATCH Analysis tools

• ANALYZE/RMS/INTERACTIVE
• Drill down structure as per first slide.

• DUMP
• /BLOCK=(START:x, COUNT:y)
• /RECORD=(START:x, COUNT:y)

• SEARCH, DIFF, EDT
• Quick tests for linear read.

• DCL: READ/KEY
• Quick test for random access read

25-Aug-04 RMS Tuning, Hein van den Heuvel 66

Basic PATCHing tools

• COPY / BACKUP : Work on test file first!

• PATCH… on VAX in cluster.
• ‘vested’ Alpha version is floating around

• DCL on file in SEQUENTIAL-512 bytes mode

• Reading (CONVERT) by alternate key

• ZAP

• COPY_BLOCK

• ‘binary’ file editor ‘rms-edt?’

• CONVERT… when all is well again.

25-Aug-04 RMS Tuning, Hein van den Heuvel 67

DCL as PATCHing tool

• Flip file from indexed to sequential (and back later)
in order to read / write a block at a time.

• set file/att=(org=seq,rfm=fix,mrs=512,lrl=512)
• set file/att=(org=idx,rfm=var,mrs=x,lrl=y)

• DCL File and symbol manipulations:
• open/read/write file filename.dat
• key[0,32]=vbn_number !Binary key value
• read/key=&key file record

− Use & to postpone symbol substitution, quotes are a problem
• record[x*8,y*8]=z

− replace y bytes at offset x by value z
• write/update/symbol file record
• close file

25-Aug-04 RMS Tuning, Hein van den Heuvel 68

ZAP as PATCHing tool

• Simple Macro tool to read, update, format, write buckets.

• Take your time to study outputs. ‘dense’, but all you need is there.

• Uses DBG as GUI
• Define dbg$decw$display “ “
• bucket buffer pointed to by ‘buf’ and R2
DBG> examin/octaword @r2

DBG> deposit/byte @r2=0

DBG> go … back to prompt, format and write.

Text DocumentClick on icon to get source

25-Aug-04 RMS Tuning, Hein van den Heuvel 69

Text Document

• Simple C tool to move a block /bucket between files.

• May need to update source to your liking (input VBN).

• Can be used to ‘clone’ a good (but old) bucket from a

backup over a broken file bucket.

• Adjust checkbytes… if you are so lucky

COPY_BLOCK as PATCHing tool

Click on icon to get source

25-Aug-04 RMS Tuning, Hein van den Heuvel 70

Basic PATCH strategies

• Adjust check byte
− Loose nothing?!

• Patch ‘around’ broken bucket(s)
− Loose a bucket of records

• Adjust next free byte value
− Loose a end portion of bucket

• Construct deleted record over bad blocks
− Loose a middle portion of bucket

• reconstruct bucket header
− Loose nothing?

‘easy’

‘hard’

25-Aug-04 RMS Tuning, Hein van den Heuvel 71

Basic Check byte correction

If somehow the beginning of an updated
bucket was written, but not the end, you
may only have to make the check-bytes
match

• Needed for most other steps.
• Really easy to do.
• Easiest to adjust byte-0 to match last one

(even though last one is really the bad one)

• Done! ‘if you would only be so lucky’

25-Aug-04 RMS Tuning, Hein van den Heuvel 72

Patch ‘around’ broken bucket(s)

If the bucket, or a series of buckets really
‘looks like a mess’ (DUMP), then maybe
just give up on that data.

• Fairly easy to do: Quick & dirty

• Set next-vbn in bucket before bad zone to
point to first valid bucket after bad zone.

• hope that buckets are adjacent.

• Verify prior and next bucket VBN with
pointers from the index bucket above it.

25-Aug-04 RMS Tuning, Hein van den Heuvel 73

Adjust next free byte value

The beginning of an updated bucket was written,
but not the end. The free byte points into the end.
The new data abruptly flows into old data blocks.

• Fairly easy patch.
• ‘Eye-ball’ dump to find good /back boundary.

• ANAL/INT/RMS
− POSITION /BUCKET broken-vbn
− NEXT 9999: run into broken record
− BACK : find start of last good record
− Calculate end of last good record.

25-Aug-04 RMS Tuning, Hein van den Heuvel 74

Construct deleted record over bad
blocks

• Experts only. A lot of work.

• Easy to get RMS to loop if done wrong

• Fake all but FLAG (deleted) and SIZE

• Fake KEY with data key compression (Tricky!)

• Maximum data recovery chance!

25-Aug-04 RMS Tuning, Hein van den Heuvel 75

reconstruct bucket header

If somehow the beginning of a bucket was
overwritten (zeroed out? Text file?)

• Al lot of the header data is ‘redundant’
• first check from last
• Since we are only interested in the data level make

level=0, and area=0
• vbn sample from vbn address
• flags = 0 (not last bucket is it?)
• next bucket from index (or adjacent value)

• Construct deleted record to span into good
zone.

Co-produced by:

