
DCL Programming
Hands-on Session
David J Dachtera
djesys@earthlink.net
DJE Systems - http://www.djesys.com/

2July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

This presentation is intended to be displayed or
printed in the “Notes View” so it reads like a text
book.

If you are viewing this as a “Slide View” .PDF
(Adobe Acrobat file), download the .PPT
(PowerPoint presentation) from:

http://www.djesys.com/vms/support/dclprog.ppt

When published with the Symposium Session
notes, this presentation might be converted to
.PDF in the slide view only. Go to the URL
shown to get the final PowerPoint presentation,
then view it the way that works best for you.

3July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Agenda - Introduction
Basic DCL Concepts

Commands
Verbs
Symbols

IF-THEN

IF-THEN-ENDIF

IF-THEN-ELSE-ENDIF

Labels, GOTO

In this presentation, we’ll begin by going over
some DCL basics: commands, verbs and
symbols.

We’ll look at conditional statements and
conditional statement blocks.

We’ll look at logical control and how to pass
control from one section of code to another.

4July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Agenda - Introduction, Cont’d
GOSUB-RETURN

SUBROUTINE ENDSUBROUTINE

Common Lexical Functions
F$CVTIME
F$GETDVI
F$GETJPI
F$GETQUI
F$GETSYI

PARAMETERS

Logical Names

Then, we’ll look at some of the more modular
structures, including internal subroutines, using
the GOSUB and RETURN statements.

We’ll look at some functions built into DCL that
allow you to manipulate dates and times, get
information about devices, processes, batch
and print queues and even from the system
itself.

We’ll look at passing parameters to DCL
procedures, getting information from logical
names and symbols, ...

5July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Agenda - Introduction, Cont’d
Batch jobs that reSUBMIT themselves

Daily Jobs

Weekly Jobs

Question & Answer

- Break -

We’ll use what we’ve learned to build batch
jobs which resubmit themselves, and change
their behavior based on the day of the week,
month or year.

We’ll also have question and answer sessions
to help everyone understand what we have
covered as we go along.

We’ll have a short break before continuing into
the intermediate material.

6July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Agenda - Intermediate
SUBROUTINE - ENDSUBROUTINE

CALL subroutine [p1[p2[…]]]

Why CALL instead of GOSUB?

More Lexical Functions
F$SEARCH
F$TRNLNM
F$ENVIRONMENT
F$PARSE
F$ELEMENT

We’ll then get deeper into some of the more
advanced functions like complex internal
subroutines, some of the more useful lexical
functions, ...

7July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Agenda - Intermediate, Cont’d

F$SEARCHing for files

File I/O

Process Permanent Files (PPFs)

File Read Loops

Hands-on Exercise, Part 1

Using F$ELEMENT to parse input strings

F$ELEMENT loops

Symbol Substitution
Using Apostrophes (‘symbol’, “’’symbol’”)
Using Ampersand (&)

...processing wildcarded file specifications,
reading and writing disk and process-
permanent files, parsing strings and parameters,
and using symbol substitution.

8July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Agenda - Advanced
Logical Name Table Search Order

Tips, tricks and kinks

F$TYPE()
Tips, tricks and kinks

F$PARSE()
Tips, tricks and kinks

Loops using F$CONTEXT(), F$PID()
Select processes by name, node, etc.

In the advanced section, we’ll discuss Logical
Name Table Search order and how to change it,
using ampersand’s (&) special characteristics to
your advantage – assign the entire content of a
string to a logical name, preserving case and
spacing.

We’ll talk about F$TYPE() and some good
ways to use it.

We’ll talk about using F$PARSE() to validate
and navigate paths.

We’ll talk some more about using
F$CONTEXT() and F$PID().

9July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Agenda - Advanced, Cont’d
Using F$CSID() and F$GETSYI()

Get/display info. about cluster nodes

The PIPE command
Usage Information
Techniques

• Reading SYS$PIPE in a loop
• Hands-on exercise, Part 2
• Getting command output into a symbol
• Symbol substitution in “image data”

We’ll see how to use F$CSID() and F$GETSYI()
to return information about cluster nodes, with a
practical example.

We’ll take a look at the PIPE command, and
examine in detail its flexibility and intricacies.
We’ll see how to use PIPE to get the output of a
command into a symbol, and explore other
PIPE “magic”.

10July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

DCL - Programming?

DCL as a programming language?

Certainly!

DCL has many powerful features!

Never thought of DCL as a programming
language?

Well, that’s even what Digital once said - but
not any more!

DCL has many powerful features that can help
automate many operations that you or your
operators may be performing manually.

11July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

DCL Command Elements

$ verb parameter_1 parameter_2

DCL Commands consist of a verb and one or more
parameters.

To begin understanding DCL, first let’s review a
few basic concepts.

DCL commands always begin with a dollar sign
(“$”).

DCL Commands consist of a verb and one or
more parameters or operands.

Some commands can be as simple as:
$ SET VERIFY
or
$ LOGOUT
or
$ EXIT

12July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

DCL Verbs

Internal commands
ASSIGN, CALL, DEFINE, GOSUB, GOTO, IF, RETURN,
SET, STOP, others…

External commands
APPEND, BACKUP, COPY, DELETE, PRINT, RENAME,
SET, SUBMIT, others...

Commands in DCL are either internal to DCL or
are executed by programs which are external to
DCL.

Here we see some examples of both internal
and external commands.

Notice that SET, STOP and other commands
can be either internal or external depending
upon the keyword after the verb.

13July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

DCL Verbs, Cont’d

“Foreign” Commands
$ symbol = value

Examples:
$ DIR :== DIRECTORY/SIZE=ALL/DATE
$ ZIP :== $ZIP/VMS

Commands can be added or customized using
symbols or “foreign commands”.

In the slide, the DIR symbol redefines the
behavior of the DIRECTORY command, while
the ZIP symbol provides a means to invoke the
ZIP program in such a manner that it can
accept parameters and qualifiers from the
command line.

14July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

More Foreign Commands
The DCL$PATH Logical Name (V6.2 +)

Behaves similar to the DOS or UN*X “path”:
.COM and .EXE files can be sought by way
of DCL$PATH

$ DEFINE DCL$PATH MYDISK:[MYDIR.PROGS]

DCL$PATH can even be a search list:

$ DEFINE DCL$PATH -

MYDISK:[MYDIR.COM],MYDISK:[MYDIR.EXE]

Another way to find “foreign” or external
commands is to use the DCL$PATH logical
name. DCL$PATH was introduced in
OpenVMS V6.2.

DCL$PATH behaves very much like the DOS
or UN*X “path” - .COM and .EXE files can be
located via the DCL$PATH path.

DCL$PATH can have a single translation or it
can be a search list.

15July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

DCL$PATH Caveat
Specifying an asterisk (“*”) at the DCL prompt, or an
invalid specification which results in DCL seeing an
asterisk or other wildcard specification, can produce
undesirable results:

$ *

$ dirdisk:*.txt
%DCL-W-NOLBLS, label ignored - use only within command procedures

.

.

.

There is an aspect of DCL$PATH of which you
need to be aware:

DCL will observe wildcard specifications when
seeking a file by way of DCL$PATH. This can
produce undesired results.

Even an invalid specification might be
interpreted as a wildcard specification. The
second example shows what can happen if a
space is left out of a DIRECTORY command.

16July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

DCL$PATH Caveat
Determine what might be found via a

wildcard specification:

$ DIR DCL$PATH:*.COM;

$ DIR DCL$PATH:*.EXE;

You can determine in advance what might be
found via a wildcard specification. Just issue a
DIRECTORY command for .COM files and
another for .EXE files.

17July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

DCL$PATH Caveat
Avoid wildcard problems:

Place a “$.EXE” program and a “$.COM”

in the DCL$PATH path. Each should just

exit without doing anything.

URL:
http://www.djesys.com/freeware/vms/make_$.dcl

Download, RENAME to .COM and invoke it.
$ @make_$.com

To avoid problems, you can place a “$.EXE”
program or a “$. COM” procedure in the
DCL$PATH path. They should both simply exit
without doing anything.

A DCL procedure to create these can be
downloaded from the internet at the URL shown
in the slide.

18July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Command Qualifiers
$ command/qualifier

$ command/qualifier=value
$ command/qualifier=(value,value)

$ command/qualifier=keyword=value
$ command/qualifier=-

(keyword=value,keyword=(value,value))

Command qualifiers specify additional
information or alternate behaviors of
commands.

Some qualifiers accept a value or a list of
values. When specifying a single value, the
parentheses can be left out.

Some qualifiers accept a keyword or a list of
keywords. Each keyword may accept a value or
a list of values.

The HELP for the command will usually indicate
whether a list may be specified for qualifier
and/or keyword values.

19July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Non-positional Qualifiers
Apply to the entire command, no matter where they
appear.

$ command param1/qual param2

Example:
$ COPY A.DAT A.NEW/LOG
$ DELETE/LOG C.TMP;

Some qualifiers have the same effect no matter
where they appear on the command line. These
are called non-positional qualifiers.

The slide shows some examples. The /LOG
qualifier is usually non-positional.

20July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Positional Qualifiers
Apply only to the object they qualify.

$ command param1/qual=value1 -
param2/qual=value2

Examples:
$ PRINT/COPIES=2 RPT1.LIS, RPT2.LIS
$ PRINT RPT1.LIS/COPIES=1,-

RPT2.LIS/COPIES=3

Some qualifiers can appear more than once in
a command. These are called positional
qualifiers. They qualify (or modify) the
command element to which they are
immediately adjacent.

An example of this is the /COPIES qualifier of
the PRINT command. When applied to the
PRINT command, it is global to all the files in
the print job. When applied to single file
specifications in a PRINT job, it modifies only
those files which match that file specification.

21July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Common Qualifiers
Many commands support a set of common
qualifiers:

/BACKUP /BEFORE /CREATED /EXCLUDE /EXPIRED
/INCLUDE /MODIFIED /OUTPUT /PAGE /SINCE

See the on-line HELP for specifics.

The VMS run time library UTIL$SHR provides
support for a set of common qualifiers that have
been made available in many of the more
common commands.

You can find these in the HELP for the
DIRECTORY command, SEARCH, PRINT and
others.

22July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

DCL Statement Elements
$ vbl = value

DCL statements are typically assignments where a
variable receives a value.

Elements of a DCL statement (as opposed to a
command) look very much like other
programming languages.

DCL statements always begin with a dollar sign
(“$”).

Here we have an example of an assignment
statement. A variable receives a value. The
value can be a literal expression, the name of
another symbol, the result of a function, the
result of an arithmetic or string operation, etc.

23July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Assignment Statements

$ vbl = F$lexical_function(params)

Examples:
$ FSP = F$SEARCH(“*.TXT”)
$ DFLT = F$ENVIRONMENT (“DEFAULT”)
$ NODE = F$GETSYI(“NODENAME”)

Here we see a variable which receives the
value returned by a built-in (“lexical”) function.
The built-in function is part of the DCL lexicon.

The slide also shows some examples.

24July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Assignment Statements
$ vbl = string_expression

Examples:
$ A = “String 1 “ + “String 2”
$ B = A - “String “ - “String “
$ C = ‘B’

Maximum string length = 255 bytes (up to V7.3-1)
4095 bytes (V7.3-2 +)

Here are some examples of string operations.

The first operation is a string concatenation.

The second operation is string reduction.

The third operation is a symbol substitution.

What’s happening in statement three?

25July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

String Length Limitations
Maximum command string length =

255 bytes (up to V7.3-1)
4095 bytes (V7.3-2 +)

Maximum string length for SHOW SYMBOL =
500 bytes (up to V7.3-1)
4087 bytes (V7.3-2 +)

Maximum string length that DCL can manipulate =
510 bytes (up to V7.3-1)
8173 bytes (V7.3-2 +)

The longest command string that you can pass
to DCL before symbol substitution is 255 bytes
for V7.3-1 and earlier, 4095 bytes for V7.3-2
and later.

The longest string that SHOW SYMBOL can
display without an informational message
(%DCL-I-SYMTRUNC, preceding symbol value
has been truncated) is 500 bytes for V7.3-1 and
earlier, 4087 bytes for V7.3-2 and later. This
appears to be an output buffer size limitation.

The longest string that can be manipulated
using lexical functions, concatenation or
reduction is 510 bytes for V7.3-1 and earlier,
8173 bytes for V7.3-2 and later.

26July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Assignment Statements
Character replacement within a string

$ vbl[begin,length] := string_expression
• The colon (“:”) is REQUIRED!

Example:
$ A = “String 1”
$ A[3,3] := “ike”
$ SHOW SYMBOL A
 A = “Strike 1”

We can replace characters within a string. Note
that the colon-equal (“;=“, local symbol) or
colon-equal-equal (“:==“, global symbol)
operators must be used for this type of
assignment.

How this is done is illustrated by the example.
The characters “ing” are replaced with “ike”.
Thus, “String 1” becomes “Strike 1”.

27July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Assignment Statements
$ vbl = numeric_expression

Examples:
$ A = 1
$ B = A +1
$ C = B + A + %X7F25
$ D = %O3776

Here, we see some examples of numeric
assignments.

We have an assignment using a literal and
other assignments using numeric additions.

Note the use of hexadecimal notation in the
third example and octal notation in the fourth.

28July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Assignment Statements
$ vbl[start_bit,bit_count]=numeric_exp

Examples:
$ ESC[0,8]=%X1B
$ CR[0,8]=13
$ LF[0,8]=10
$ FF[0,8]=12
$ CRLF[0,8]=13
$ CRLF[8,8]=10

These are examples of assigning values to bits
within a string. The result is always a string.
This is useful for constructing escape
sequences and binary values.

In the fifth and sixth examples, the result is a
two byte string containing a carriage-return and
a line-feed (in that order).

29July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Assignment Statements
$ vbl = boolean_expression

Examples:
$ MANIA = (“TRUE” .EQS. “FALSE”)
$ TRUE = (1 .EQ. 1)
$ FALSE = (1 .EQ. 0)
$ YES = 1
$ NO = 0

Here we have examples of assignment of a
“truth value” or a boolean value.

The last two examples are ordinary numeric
literal assignments. They illustrate the defaults
for “true” (“yes”) and “false” (“no”).

30July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Assignment Statements

Local Assignment:
$ vbl = value

Global Assignment:
$ vbl == value

Symbols can be either local to the current
procedure level (“depth”) and all levels deeper,
or global to all procedure levels (“depths”).

Local symbols are available to the current
procedure and any that it invokes.

Global symbols are available to the current
procedure and any that it invokes, as well as
the procedure(s) which invoked the current
procedure.

31July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Assignment Statements
Quoted String:

$ vbl = “quoted string”
Case is preserved.

Examples:
$ PROMPT = “Press RETURN to continue “
$ INVRSP = “% Invalid response!”

When a quoted string is assigned to a symbol,
the case and contents of the string are
preserved intact.

32July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Assignment Statements
Unquoted string:

$ vbl := unquoted string
Case is NOT preserved, becomes uppercase.
Leading/trailing spaces are trimmed off.

Examples:
$ SAY := Write Sys$Output
$ SYSMAN :== $SYSMAN ! Comment

In the case of an unquoted string (uses the
“colon-equal[-equal]” sequence), all text
becomes upper case, and leading and trailing
spaces and TABs are trimmed off. If the
unquoted string contains an embedded quoted
string, the case and content of the quoted
portion of the string will be preserved.

Comment delimiters are observed as usual.
The comment is not considered part of the
unquoted string.

33July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Foreign Commands

$ vbl := $filespec[param[param[…]]]

“filespec” defaults to SYS$SYSTEM:.EXE

Maximum string length is 510 bytes.

A “foreign command” is a special case where a
symbol can be interpreted by DCL as verb. The
value of the symbol can include qualifiers
and/or parameters in addition to the file
specification of the executable file.

If necessary, foreign commands can be defined
using quoted strings if, for example, the case of
an argument or embedded spaces within an
argument needs to be preserved.

Using symbol substitution, strings of up to 1024
bytes can be constructed.

34July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Displaying Symbol Values
Use the SHOW SYMBOL command to display the
value of a symbol:

$ A = 15
$ SHOW SYMBOL A
 A = 15 Hex = 0000000F Octal = 00000000017

$ B := Hewlett Packard
$ SHOW SYMBOL B
 B = “HEWLETT PACKARD”

$ B := “Hewlett” Packard
$ SHOW SYMBOL B
 B = “Hewlett PACKARD”

To display the value of a symbol, use the
SHOW SYMBOL command.

SHOW SYMBOL will display the value of the
symbol and indicate whether the symbol as
displayed is local or global. Local symbol
values are displayed with a single equal sign
(“=“). Global symbol values are displayed with
the double equal (“==“).

Note that integer symbols are displayed in three
radices: Decimal, Hexadecimal and Octal.

35July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Displaying Symbol Values
Use the SHOW SYMBOL command to display the
values of symbols (wildcarded):

$ SHOW SYMBOL $*
$A = “X”
$RESTART == "FALSE”
$SEVERITY == "1”
$STATUS == "%X00030001"

To display the value of symbols whose names
have beginning characters in common, use the
SHOW SYMBOL command with a wildcarded
symbol name expression.

36July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Conditional Expressions

$ IF condition THEN statement

Variations:

$ IF condition THEN $ statement

$ IF condition THEN -

$ statement

Conditional expressions provide logical control
based on conditions you specify.

In this form, the IF-THEN structure can be
stated on a single line or it can be continued
across two or more lines.

In either case, the “$” after THEN is optional.

37July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Conditional Expressions
$ IF condition

$ THEN

$ statement(s)

$ ENDIF

Another variation is the IF-THEN[-ELSE]-
ENDIF structure.

This variant allows multiple statements (or no
statements) to be included in the THEN or
ELSE clause.

Although it is not required, it is recommended
that the THEN or ELSE statement appear on a
line by itself.

38July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Conditional Expressions
$ IF condition

$ THEN

$ IF condition

$ THEN

$ statement(s)

$ ENDIF

$ ENDIF

The IF-THEN[-ELSE]-ENDIF structure allows
IF-THEN[-ELSE]-ENDIF structures to be
nested.

39July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Conditional Expressions
$ IF condition

$ THEN

$ IF condition

$ THEN

$ statement(s)

$ ENDIF

$ statement(s)

$ ENDIF

Other statements can be included either before
or after a nested IF-THEN[-ELSE]-ENDIF
structure.

40July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Conditional Expressions
$ IF condition

$ THEN

$ statement(s)

$ IF condition

$ THEN

$ statement(s)

$ ENDIF

$ ENDIF

If one or more statements are included before a
nested IF-THEN[-ELSE]-ENDIF structure, it is
recommended that the preceding THEN or
ELSE statement appear on a line by itself. In
some older versions of VMS, this is a
requirement.

For current and future versions of VMS, it is
recommended that this guideline be observed
to prevent your procedures from “breaking” due
to a VMS upgrade, or due to being used on an
older VMS version.

41July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Conditional Expressions
$ IF condition

$ THEN statement(s)

$ IF condition

$ THEN

$ statement(s)

$ ENDIF

$ ENDIF

This may not work in pre-V6 VMS!

Here’s an example of some code that might not
work in some older versions of OpenVMS.

Notice that the THEN clause includes a DCL
statement, instead of being on a line by itself.

42July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Conditional Expressions

$ IF condition

$ THEN

$ statement(s)

$ ELSE

$ statement(s)

$ ENDIF

Here is an example of an IF-THEN-ELSE-
ENDIF block.

As we discussed earlier, the THEN and ELSE
statements are recommended to be on lines by
themselves.

Either the THEN or ELSE portions may contain
nested IFs of any kind.

43July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Labels, GOTO
$ GOTO label_1

.

.

.

$label_1:

The GOTO statement provides for logical
control within your procedures.

Combined with IF, GOTO provides for powerful
logical control within your procedures.

Labels are defined by including the label name
on a line followed immediately by a colon.

Any statement can follow a label on a line;
however, this is recommended only for the
SUBROUTINE statement. Otherwise, place the
label on a line by itself for readability.

44July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

GOSUB, RETURN
$ GOSUB label_1

.

.

.

$label_1:

$ statement(s)

$ RETURN

The GOSUB and RETURN statements let you
create internal subroutines.

All symbols local to the current procedure level
are available, as are all global symbols.

Combined with IF, GOSUB and RETURN
provide for powerful logical control within your
procedures.

Labels are defined by including the label name
on a line followed immediately by a colon.

45July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

SUBROUTINE - ENDSUB...
$ CALL label_1[param[param[…]]

.

.

.

$label_1: SUBROUTINE

$ statement(s)

$ END SUBROUTINE

Another form of subroutine is enclosed within
the SUBROUTINE and ENDSUBROUTINE
statements. This form of subroutine is similar to
invoking an external procedure.

Use the CALL statement to invoke this form of
internal subroutine. Optionally, parameters to
be passed to the subroutine can be included on
the CALL statement.

We’ll discuss this further in the Intermediate
portion of the DCL Programming Session.

46July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

External Procedures
Invoking other DCL procedures:

$ @filespec

where “filespec” is ddcu:[dir]filename.ext

ddcu: default = current default device
[dir] default = current default directory
filename no default
.ext default = .COM

DCL procedures can invoke other DCL
procedures. These can be stand-alone
procedures or subroutines of the procedure(s)
which invoke them (“external” subroutines).

Each procedure invoked creates a new
procedure level or “depth”. Symbols local to the
current depth are available to all deeper
procedures, but not above. Global symbols are
available to all procedure depths.

Each procedure “inherits” the VERIFY condition
of the one before it. If VERIFY is on, it stays on;
if off, it stays off. Each procedure depth has its
own “ON” condition and so can change error
handling as it needs to using “SET [NO]ON”
and/or “ON condition THEN statement”.

47July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Parameters
$ @procedure_name p1 p2 p3 … p8

Notes:
• Only eight(8) parameters are passed from the command

line, P1 through P8
• Parameters with embedded spaces must be quoted

strings.
• Parameters are separated by a space.

This slide shows how to pass parameters when
invoking a DCL procedure either interactively or
within another DCL procedure.

Only eight(8) parameters can be passed from
the command line. These parameters can
contain lists of items. We’ll discuss that further
in the Intermediate portion of this session.

48July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Parameters, Cont’d
$ @procedure_name p1 p2 p3 … p8

Notes, Cont’d:
• Reference parameters via the variable names P1 through

P8.
• No built-in “shift” function. If you need it, write it as a

GOSUB.

Within a procedure, you reference parameters
using the symbol names P1 through P8. These
symbols are local to the current procedure
level.

There is no built-in “SHIFT” function that can be
used to exhaust the list of parameters, as there
is in UN*X and DOS. If you need this
functionality, write it as a GOSUB.

49July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Parameters, Cont’d
Example: SHIFT Subroutine:

$SHIFT:

$ P1 = P2

$ P2 = P3

.

.

.

$ P7 = P8

$ P8 :=

$ RETURN

Here’s an example SHIFT subroutine.

It SHIFTs the values of the parameters by one
position, discarding the first and blanking out
the last.

The next slide shows how to implement this.

50July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Parameters, Cont’d
Use the SHIFT subroutine:

$AGAIN:

$ IF P1 .EQS. “” THEN EXIT

.

.

.

$ GOSUB SHIFT

$ GOTO AGAIN

Here’s and example of how to implement the
SHIFT subroutine.

The idea is to process all the parameters on the
command line, one by one - as P1 - then exit
when none remain unprocessed.

51July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Data for Programs (“Image Data”)
Sometimes, data for a program is included in the
DCL procedure. This is referred to as “image data”.

Example:
$ CREATE MYFILE.TXT
This is the first line
This is the second line
This is the third line
$ EOD

$ EOD signals end of file, just as CTRL+Z does
from your keyboard.

Sometimes, data as input to a program is
included in a DCL procedure. This is referred to
as “image data”, since it is usually data to be
read from SYS$INPUT by an executable image
(program).

In the example, a simple text file is CREATEd
from the image data provided. “$ EOD” signals
end-of-file in a DCL procedure, just as CTRL+Z
does from your terminal keyboard. In most
cases, any other command beginning with a
dollar sign (“$”) will also signal end-of-file and
attempt to execute the command.

Some programs do not respond to EOF as
expected. EDT in line mode is one example.

52July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Logical Names

Created using ASSIGN and DEFINE.
$ ASSIGN DUA0:[MY_DIR] MY_DIR
$ DEFINE MY_DIR DUA0:[MY_DIR]

Deleted using DEASSIGN.

$ DEASSIGN MY_DIR

Logical names are another kind of variable.
These values can be global to a process, a job
(processes owned by a parent process), a UIC
group, all processes on the system, or any
process which has access to the logical name
table in which the logical name is defined.

The ASSIGN and DEFINE statements are
similar, except for the order of their arguments.

The DEASSIGN statement is used to delete
logical names.

53July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Logical Names
Specifying a logical name table:

$ ASSIGN/TABLE=table_name
$ DEFINE/TABLE=table_name

Examples:
$ DEFINE/TABLE=LNM$PROCESS
$ DEFINE/PROCESS
$ DEFINE/TABLE=LNM$JOB
$ DEFINE/JOB
$ DEFINE/TABLE=LNM$GROUP ! These require
$ DEFINE/GROUP ! GRPNAM privilege.
$ DEFINE/TABLE=LNM$SYSTEM ! These require
$ DEFINE/SYSTEM ! SYSNAM privilege.

Logical names can be created in any logical
name table to which the process has access.

The examples here show some of the
convenience qualifiers available for certain
logical name tables.

Notice that privileges are required to modify
certain logical name tables.

54July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Logical Names
Search lists

$ DEFINE lnm string_1,string_2

Each item of a search list has its own “index” value:
string_1 - index 0
string_2 - index 1

Logical names can have more than one
translation. These are called “search list” logical
names.

Each translation of a search list logical name is
referred to by its “index”. We’ll discuss that
when we look at the F$TRNLNM() Lexical
function.

55July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Logical Names
Cluster-wide logical name table (V7.2 and later):

$ ASSIGN/TABLE=LNM$SYSCLUSTER
$ DEFINE/TABLE=LNM$SYSCLUSTER
Requires SYSNAM privilege.

Examples:
$ DEFINE/TABLE=LNM$SYSCLUSTER
$ DEFINE/TABLE=LNM$SYSCLUSTER_TABLE

DEFINE/CLUSTER and ASSIGN/CLUSTER
appear in V8.2.

Logical names can also be created in a cluster-
wide table. This was new in V7.2. Special
system functions keep these tables
synchronized on each node of the cluster.

The examples here show the convenience
name available for the cluster-wide logical
name table. LNM$SYSCLUSTER is provided.
The translation of LNM$SYSCLUSTER is
LNM$SYSCLUSTER_TABLE.

Notice that privileges are required to modify the
cluster-wide logical name table are the same as
for the system-wide logical name table.

56July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Logical Names
Specifying a translation mode:

$ ASSIGN/USER
$ DEFINE/USER

• Logical names are DEASSIGNed at next image run-down
• Does not require privilege

$ DEFINE/SUPERVISOR
$ ASSIGN/SUPERVISOR

• /SUPERVISOR is the default
• Does not require privilege

$ ASSIGN/EXECUTIVE
$ DEFINE/EXECUTIVE

• Requires CMEXEC privilege

There is no /KERNEL qualifier. Kernel mode logical names must be
created by privileged programs (requires CMKRNL privilege).

Access modes of logical names specify
additional levels of privilege or supercession.

More privileged access modes (called “inner”
modes) require privileges in order to replace
the current definition of a logical name.
However, another translation of a logical name
can be created in a less privileged (“outer”)
mode. Such a condition creates an “alias” of the
more privileged logical name.

57July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Logical Names
Name Attributes

CONFINE
• The logical name is not copied into a subprocess.
• Relevant only to “private’ logical name tables.
• If applied to a logical name table, all logical names in that table

inherit this attribute.

NO_ALIAS
• The logical name cannot be duplicated in the same table in a less

privileged (“outer”) access mode.

Note:

 /NAME_ATTRIBUTES is a non-positional qualifier.

The attributes of a logical name determine how
the name is treated with respect to
subprocesses and less privileged access
modes.

If a name is specified with “CONFINE”, it is not
copied to the logical name tables associated
with processes spawned by other processes.

If a name is specified with “NO_ALIAS”,
another translation cannot be specified in a less
privileged (“outer”) access mode.

Non-positional qualifiers were discussed earlier
in this session.

58July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Logical Names
Translation Attributes

CONCEALED
• Translation is not displayed unless specifically requested. Useful

for “rooted” logical names.

TERMINAL
• Translation is not performed beyond the current level.

- Was used in earlier VAX machines to save machine cycles.

Note:

 /TRANSLATION_ATTRIBUTES is a positional qualifier.

The translation attributes of a logical name
determine how its translation is handled at
various times.

If a logical name’s translation is specified as
“CONCEALED”, its translation is not displayed
unless that is specifically requested.

If a logical name’s translation is specified as
“TERMINAL”, no further attempt is made to
translate the current translation of the logical
name. This is used in some CONCEALED
logical names. It was also used in early VAX
systems to reduce the machine time
requirements for translation of logical names.

59July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Logical Names
“Rooted” Logical Names -

Specifying Translation Attributes
$ DEFINE/TRANSLATION_ATTRIBUTES=-

(CONCEALED) lnm string
$ DEFINE lnm string/TRANSLATION_ATTRIBUTES=-

(CONCEALED)

Rooted logical names provide a means of
specifying a root level from which additional
paths can be specified.

The next slide shows examples of rooted
logicals.

60July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Logical Names
“Rooted” Logical Names, Cont’d -

Example:
$ DEFINE/TRANS=(CONC) SRC_DIR DKA0:[SRC.]
$ DIRECTORY SRC_DIR:[000000]
$ DIRECTORY SRC_DIR:[MKISOFS]

$ DEFINE SRC_AP SRC_DIR:[AP]
$ DIRECTORY SRC_AP

$ DEFINE SRC_GL SRC_DIR:[GL]
$ DIRECTORY SRC_GL

This slide illustrates how to DEFINE a rooted
logical and how to use rooted logicals to
DEFINE other logical names.

61July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Common Lexical Functions
$ vbl = F$TRNLNM(-

lnm[, table] [, index] [, mode] [, case] [,item])

Examples:
$ HOME = F$TRNLNM(“SYS$LOGIN”)
$ TERMINAL = F$TRNLNM(“SYS$COMMAND”)
$ MY_VALUE = F$TRNLNM(“MY_LOGICAL_NAME”)

F$TRNLNM() can be used to retrieve logical
name translations and information about the
logical name or its translation. Logical name
tables, access modes and indices were
introduced earlier.

“case” is one of “CASE_BLIND” which is the
default, “CASE_SENSITIVE”, “INTERLOCKED”
or “NONINTERLOCKED”. “INTERLOCKED”
refers to cluster-wide logical name processing
and depends on that to have already completed.
The default is to ignore cluster-wide logical
name processing.

“item” can be used to return info not already
known about a logical name. See the next slide.

62July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Common Lexical Functions
F$TRNLNM() Items

ACCESS_MODE
CLUSTERWIDE
CONCEALED
CONFINE
CRELOG
LENGTH
MAX_INDEX
NO_ALIAS
TABLE
TABLE_NAME
TERMINAL
VALUE (default)

Some items return a numeric value (LENGTH,
MAX_INDEX).

Some items return either “TRUE” or “FALSE”
(CLUSTERWIDE, CONCEALED, CONFINE,
CRELOG, NO_ALIAS, TABLE, TERMINAL).

 Some items return a string value
(ACCESS_MODE, TABLE_NAME, VALUE).

63July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Common Lexical Functions
$ vbl = F$GETSYI(item[, nodename][,csid])

Examples:
$ NODE = F$GETSYI(“NODENAME”)
$ FGP = F$GETSYI(“FREE_GBLPAGES”)
$ FGS = F$GETSYI(“FREE_GBLSECTS”)

F$GETSYI() can be used to retrieve information
about the running system. In some cases, it can
also be used to get information about other
members of an OpenVMS cluster, either by
node name or by Cluster System ID (V7.2 and
later).

64July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Common Lexical Functions
$ vbl = F$CVTIME(string[, keyword[, keyword]])

“string” = Absolute time expression

“keyword” = (1st instance) is one of “ABSOLUTE”,

“COMPARISION”, “DELTA”

“keyword” = (2nd instance) is one of “DATE”, “DATETIME”,
“DAY”, “MONTH”, “YEAR”, “HOUR”, “MINUTE”,
“SECOND”, “HUNDREDTH”, “WEEKDAY”

F$CVTIME() can be used to develop routines to
get and compare elements of the system
date/time.

This can be useful for procedures that need to
change their behavior based on the day, date
and/or time of day.

65July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Common Lexical Functions
F$CVTIME(), Continued…

Defaults:

$ vbl = F$CVTIME(string, -

”COMPARISON”, -

”DATETIME”)

This slide shows the default behavior of
F$CVTIME() if no arguments are provided.

The default value for “string” is the current date
and time.

66July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Common Lexical Functions
F$CVTIME(), Continued…

Date Formats:

Comparison

YYYY-MM-DD HH:MM:SS.CC

Absolute

DD-MMM-YYYY HH:MM:SS.CC

Delta

+/-DDDDD HH:MM:SS.CC

This slide illustrates the date/time formats used
and returned by F$CVTIME(). Times can be
returned in comparison format which is suitable
for “IF” statements, absolute format which is
suitable for /AFTER, /BEFORE and /SINCE
qualifier values, or delta format which is
suitable for use in other date expressions to
arrive at another date based on the delta
expression.

Note, however, that F$CVTIME() cannot
calculate the delta between two date/time
expressions.

67July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Common Lexical Functions
$ vbl = F$GETDVI(dev_name, keyword)

“dev_name” is a valid device name
“keyword” is a quoted string

Examples:
$ FBLK = F$GETDVI(“DUA0”,”FREEBLOCKS”)

$ MNTD = F$GETDVI(“DKA500”,”MNT”)

$ DVNM := DUA0:

$ VLNM := VOLNAM

$ VNAM = F$GETDVI(DVNM, VLNM)

The F$GETDVI() function is useful for retrieving
information about system devices and disk/tape
volumes.

The examples show some of the information
that can be returned by F$GETDVI(). Notice
that either literal strings or symbols can be used
as arguments to DCL lexical functions.

68July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Common Lexical Functions
$ vbl = F$QETQUI(-

function,-

item,-

value,-

keyword(s))

See the on-line help for descriptions.

More during the Advanced section...

F$GETQUI() is a useful, if rather complex
lexical function.

We won’t go into great detail about it at this
point in the session. Later in this session, we
will show how a batch job can use F$GETQUI()
to get information about itself. A little later, we’ll
discuss using F$GETQUI in a loop to get
information about queues and the jobs in them.

See also the on-line HELP and the DCL
Dictionary for additional information about
F$GETQUI().

69July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Common Lexical Functions
$ VBL = F$GETJPI(pid, keyword)

Examples:
$ USN = F$GETJPI(0, “USERNAME”)
$ MOD = F$GETJPI(0, “MODE”)

F$GETJPI() can be used to get information
about your own process or about any other
process to which you have access. Normal
rules of OpenVMS privilege apply: to get
information about other processes within your
UIC group, you need GROUP privilege; to get
information about processes outside of your
UIC group, you need WORLD privilege.

For information about the current process,
specify the PID argument as a zero(0) as
shown in the examples, or as a null string.

70July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Recurring Batch Jobs
Jobs can reSUBMIT themselves - use the
F$GETQUI lexical function to obtain the needed
information:

$ vbl = F$GETQUI(“DISPLAY_JOB”, -
item,, “THIS JOB”)

Useful items:
QUEUE_NAME, FILE_SPECIFICATION, AFTER_TIME,
others.

Here’s where we start to discuss batch jobs that
can reSUBMIT themselves.

Information that the job may need, such as the
queue name, the job name, the procedure
name, etc. can either be hard-coded or it can
be retrieved using the F$GETQUI() lexical
function by specifying “THIS_JOB” as the fourth
parameter.

See the DCL Dictionary or the on-line HELP for
more items that can be retrieved.

71July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Daily Batch Jobs

Daily Jobs
Get the /AFTER time:
$ AFTER = F$GETQUI(“DISPLAY_JOB”,-
 “AFTER_TIME”,,-
 “THIS_JOB”)

Add one day to it:
$ NEXT = F$CVTIME(“’’AFTER’+1-”,-
 “ABSOLUTE”,)

Here’s an illustration of one method for getting
some of the information needed to allow a
batch job to SUBMIT itself for the next day.

72July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Weekly Batch Jobs

Weekly Jobs
Get the /AFTER time:
$ AFTER = F$GETQUI(“DISPLAY_JOB”,-
 “AFTER_TIME”,,-
 “THIS_JOB”)

Add seven days to it:
$ NEXT = F$CVTIME(“’’AFTER’+7-”,-
 “ABSOLUTE”,)

Here’s an illustration of one method for getting
some of the information needed to allow a
batch job to SUBMIT itself for next week.

73July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

SUBMIT/AFTER

ReSUBMIT the job for the next run:

$ SUBMIT/AFTER=“’’NEXT’”
or

$ SUBMIT/AFTER=&NEXT

Here’s an example of how to use the calculated
next run time to reSUBMIT the job for the next
run.

Two methods of symbol substitution are
illustrated.

The first method uses “apostrophe
substitution” within a quoted string. This
preserves case and embedded spaces.

The second method uses ampersand
substitution which also preserves case and
embedded spaces.

74July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Select Tasks by Day
Get the current day name,

look for tasks for that day.
$ TODAY = F$CVTIME(,, “WEEKDAY”)
$ PRC_NAME := [.‘TODAY’]WEEKLY.COM
$ FSP = F$SEARCH(PRC_NAME)
$ IF FSP .NES. “” THEN -
$ @ &FSP

Example Path
[.SUNDAY]WEEKLY.COM

Here’s an illustration of one method for finding
tasks to be performed on a specific day.

Notice that the day name is used as the name
of the subdirectory where the tasks (procedures)
for that day will be found.

The symbol substitution methods used in the
example will be discussed in more detail in the
Intermediate portion of this session.

75July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Select Monthly Tasks by Day
Get the current day number,

look for tasks for that day.
$ TODAY = F$CVTIME(,, “DAY”)
$ PRC_NAME := [.‘TODAY’]MONTHLY.COM
$ FSP = F$SEARCH(PRC_NAME)
$ IF FSP .NES. “” THEN -
$ @ &FSP

Example Path
[.01]MONTHLY.COM

Here’s an illustration of one method for finding
tasks to be performed on a specific day of the
month.

In this case, the day number is used as the
name of the subdirectory where the tasks
(procedures) for that day will be found.
Specifically, the tasks for the first day of the
month will be run.

The symbol substitution methods used in the
example will be discussed in more detail in the
Intermediate portion of this session.

76July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Select Last Day of the Month

Get the current day number +1, see if it’s

 the first of the month.
$ TOMORROW = F$CVTIME(“+1-”,, “DAY”)
$ IF TOMORROW .EQ. 1 THEN -
$ statement

Here’s an illustration of one method for
determining whether the current day is the last
day of the month.

77July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Select Yearly Tasks by Date
Get the current day and month numbers,

look for tasks for that day.
$ TODAY = F$CVTIME(,, “MONTH”) + -

F$CVTIME(,, “DAY”) ! String values!
$ PRC_NAME := [.‘TODAY’]YEARLY.COM
$ FSP = F$SEARCH(PRC_NAME)
$ IF FSP .NES. “” THEN -
$ @ &FSP

Example Paths:
[.0101]YEARLY.COM
[.0731]YEARLY.COM

Here’s an illustration of one method for finding
tasks to be performed annually.

In this case, both the month number and the
day number are used as the name of the
subdirectory where the tasks (procedures) for
that day will be found. Specifically, the tasks for
the first day of the first month and the 31st day
of the seventh month will be run.

The symbol substitution methods used in the
example will be discussed in more detail in the
Intermediate portion of this session.

78July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Q / A

Speak now or forever

hold your peas.

Let’s take a moment to discuss questions that
have come up in our discussion so far...

79July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Break Time !

We’ll continue in a few minutes!

Time for a quick break!

The Intermediate portion of this session will
follow immediately after a short break.

80July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Agenda - Intermediate
SUBROUTINE - ENDSUBROUTINE

CALL subroutine [p1[p2[…]]]

Why CALL instead of GOSUB?

More Lexical Functions
F$SEARCH
F$TRNLNM
F$ENVIRONMENT
F$PARSE
F$ELEMENT

Now, we’ll get deeper into some of the more
advanced functions like complex internal
subroutines, some more lexical functions, ...

81July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Agenda - Intermediate, Cont’d

F$SEARCHing for files

File I/O

Process Permanent Files (PPFs)

File Read Loops

Using F$ELEMENT to parse input strings

F$ELEMENT loops

Symbol Substitution
Using Apostrophes (‘symbol’, “’’symbol’”)
Using Ampersand (&)

...processing wildcarded file specifications,
reading and writing disk files and process
permanent files, parsing strings and parameters,
and using symbol substitution.

82July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

More Internal Subroutines

$ CALL subroutine_name[p1[p2[...]]]
.
.
.

$subroutine_name: SUBROUTINE
$ statement(s)
$ EXIT
$ ENDSUBROUTINE

DCL provides internal SUBROUTINEs that act
like external procedures. This allows for easier
parameter passing than GOSUB, also.

83July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Why CALL?
• The CALL statement allows parameters to be
passed on the command line.

• SUBROUTINEs act like another procedure depth.
(Can be useful when you don’t want local symbols
to remain when the subroutine completes.)

The CALL statement allows parameters to be
passed to the SUBROUTINE.

SUBROUTINEs act like another procedure
depth. Local symbols are local to the subroutine
and global symbols are visible to the
SUBROUTINE and the code that CALLs it.

84July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Searching for Files
F$SEARCH(string_expression)

ddcu:[dir]FILE.TXT

ddcu:[*]FILE.TXT

ddcu:[dir]*.DAT

ddcu:[dir]*.*

Use for finding files with/without wild

cards.

Here’s a deeper look at the F$SEARCH lexical
function.

F$SEARCH() is useful for finding files using
both absolute and wildcarded file specifications.

If the file you specify is not found, F$SEARCH
returns a null string.

If you supply a wildcarded filespec, F$SEARCH
returns the next matching filespec on each
subsequent invocation. When there are no
more matching files, a null string is returned.

85July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

File Search Loops
$ SV_FSP :=

$LOOP_1:

$ FSP = F$SEARCH(P1)

$ IF FSP .EQS. “” THEN GOTO EXIT_LOOP_1

$ IF SV_FSP .EQS. “” THEN SV_FSP = FSP

$ IF FSP .EQS. SV_FSP THEN GOTO EXIT_LOOP_1

$ statement(s)

$ SV_FSP = FSP

$ GOTO LOOP_1

$EXIT_LOOP_1:

To avoid locked loops, check that the filespec.

Returned by F$SEARCH() is not the same as the

last iteration.

Here’s an example of a loop which uses
F$SEARCH.

Note that if the search specification is not
wildcarded, F$SEARCH will return the same
string over and over. The example shows how
to avoid locked loops by saving the filespec
after each invocation and comparing the
previous string to the current string. If they
match, exit the loop.

86July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Multiple F$SEARCH Streams

To have more than one F$SEARCH()

stream, specify a context identifier.

Examples:

$ vbl1 = F$SEARCH(SRC1, 111111)

$ vbl2 = F$SEARCH(SRC2, 121212)

You can have more than one F$SEARCH
stream at a time. Just supply a unique context
identifier for each stream.

87July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

File I/O Statements

OPEN - Make a file available

READ - Get data from a file

WRITE - Output data to a file

CLOSE - Finish using a file

DCL provides four statements for performing
file I/O: OPEN, READ, WRITE and CLOSE.

Use OPEN to begin using a file.

Use READ to get data from a file.

Use WRITE to write data to a file or to update
existing records.

Use CLOSE to finish using a file and release
the associated resources.

88July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

File I/O - OPEN
$ OPEN logical_name filespec

$ OPEN

/ERROR=label

/READ

/WRITE

/SHARE={READ|WRITE}

The OPEN statement establishes a “channel
identifier” which you can use in READ and
WRITE statements as well as in the CLOSE
statement to finish using the file.

/READ opens the file for reading. The file must
exist.

/WRITE opens the file for writing. If not
accompanied by /READ, a new file is created.

/SHARE specifies how other I/O streams may
use the file.

/ERROR is used to specify a label where
control should be transferred when an error
occurs.

89July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

File I/O - READ
$ READ logical_name symbol_name

$ READ
/DELETE
/END_OF_FILE

/ERROR
/INDEX

/KEY

/MATCH
/NOLOCK

/PROMPT

/TIME_OUT ! Terminals only

The READ statement retrieves data from a file.

The qualifiers shown provide for labels to
receive control in case of error or at end of file,
and provide ways to specify a key to match,
which index to search, how to match the key
value specified (RMS indexed files), a prompt
string to use when READing from a terminal,
and a TIME_OUT value for a time to wait for
input from a terminal.

90July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

File I/O - WRITE
$ WRITE logical_name symbol_name

$ WRITE

/ERROR

/SYMBOL ! Use for long strings

/UPDATE

The WRITE statement is used to write data to a
file or to update an existing record in a file.

/ERROR is used to specify a label where
control should be transferred when an error
occurs.

/UPDATE is used to update an existing record.

/SYMBOL is used to write strings longer than
255 bytes.

91July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

File I/O - CLOSE
$ CLOSE logical_name

$ CLOSE

/ERROR

/LOG

The CLOSE statement is used to finish using a
file. The buffers are flushed and all associated
resources are released.

/ERROR is used to specify a label where
control should be transferred when an error
occurs.

/LOG is used to avoid an error and a message
when closing a file that isn’t open.

92July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Process Permanent Files (PPFs)
Four PPFs:

SYS$INPUT (UN*X equivalent: stdin)
SYS$OUTPUT (UN*X equivalent: stdout)
SYS$ERROR (UN*X equivalent: stderr)
SYS$COMMAND (no UN*X equivalent)

Starting with OpenVMS V7.2, the PIPE command adds:
SYS$PIPE (no UN*X equivalent)

DCL has access to the Process Permanent Files
or I/O streams associated with a process. Some of
these have parallels in the UN*X and
DOS/Windows worlds.

SYS$INPUT is equivalent to the UN*X standard
input (stdin) stream.

SYS$OUTPUT is equivalent to the UN*X standard
output (stdout) stream.

SYS$ERROR is equivalent to the UN*X standard
error (stderr) stream.

SYS$COMMAND has no UN*X equivalent.

SYS$PIPE is present when using the PIPE
command.

93July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Process Permanent Files (PPFs)

SYS$INPUT (UN*X equivalent: stdin)
Points to your terminal or the current command procedure,
unless you redirect it:

$ DEFINE SYS$INPUT filespec
$ DEFINE/USER SYS$INPUT filespec

The SYS$INPUT stream, which is equivalent to the
UN*X standard input (stdin) stream, usually points
to your terminal.

When a DCL procedure is invoked, SYS$INPUT
points to the current procedure. Similarly, when a
DCL procedure is SUBMITted to batch,
SYS$INPUT points to the current procedure.

SYS$INPUT can be redirected using DEFINE (or
ASSIGN). If DEFINEd in /USER mode, it will be
DEASSIGNed when a program is run and that
program terminates. If DEFINEd in
/SUPERVISOR mode (the default if no access
mode is specified in the DEFINE (or ASSIGN)
command) or an “inner” (more privileged) mode, it
remains in effect until explicitly DEASSIGNed.

94July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Process Permanent Files (PPFs)

SYS$OUTPUT (UN*X equivalent: stdout)
When interactive, points to your terminal, unless you
redirect it:

$ DEFINE SYS$OUTPUT filespec
$ DEFINE/USER SYS$OUTPUT filespec

In batch, points to the job log unless you redirect it.

The SYS$OUTPUT stream, which is equivalent
to the UN*X standard output (stdout) stream,
usually points to your terminal.
When a DCL procedure is invoked using
/OUTPUT, SYS$OUTPUT points to the file
specified. Similarly, when a DCL procedure is
SUBMITted to batch, SYS$OUTPUT points to the
batch job's log file (if any).
SYS$OUTPUT can be redirected using DEFINE
(or ASSIGN). If DEFINEd in /USER mode, it will
be DEASSIGNed when a program is run and that
program terminates. If DEFINEd in
/SUPERVISOR mode (the default if no access
mode is specified in the DEFINE (or ASSIGN)
command) or an “inner” (more privileged) mode,
it remains in effect until explicitly DEASSIGNed.

95July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Process Permanent Files (PPFs)

SYS$ERROR (UN*X equivalent: stderr)
When interactive, points to your terminal, unless you
redirect it:

$ DEFINE SYS$ERROR filespec
$ DEFINE/USER SYS$ERROR filespec

In batch, points to the job log unless you redirect it.

The SYS$ERROR stream, which is equivalent to
the UN*X standard error (stderr) stream, usually
points to your terminal.
When a DCL procedure is invoked using
/OUTPUT, SYS$ERROR points to the file
specified. Similarly, when a DCL procedure is
SUBMITted to batch, SYS$ERROR points to the
batch job's log file (if any).
SYS$ERROR can be redirected using DEFINE (or
ASSIGN). If DEFINEd in /USER mode, it will be
DEASSIGNed when a program is run and that
program terminates. If DEFINEd in
/SUPERVISOR mode (the default if no access
mode is specified in the DEFINE (or ASSIGN)
command) or an “inner” (more privileged) mode, it
remains in effect until explicitly DEASSIGNed.

96July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Process Permanent Files (PPFs)

SYS$COMMAND (No UN*X equivalent)
When interactive, points to your terminal, unless you
redirect it:

$ DEFINE SYS$COMMAND filespec
$ DEFINE/USER SYS$COMMAND filespec

In batch, points to the current procedure unless you
redirect it.

The SYS$COMMAND stream has no UN*X
equivalent.

For an interactive process, SYS$COMMAND
always points to your terminal, unless you
explicitly redirect it. For a batch job,
SYS$COMMAND always points to the current
procedure.

SYS$COMMAND can be redirected using
DEFINE (or ASSIGN). If DEFINEd in /USER
mode, it will be DEASSIGNed when a program is
run and that program terminates. If DEFINEd in
/SUPERVISOR mode (the default if no access
mode is specified in the DEFINE (or ASSIGN)
command) or an “inner” (more privileged) mode,
it remains in effect until explicitly DEASSIGNed.

97July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

File I/O - READ Loops

$ OPEN/READ INFLE MYFILE.DAT
$READ_LOOP:
$ READ/END=EOF_INFLE INFLE P9
$ statement(s)
$ GOTO READ_LOOP
$EOF_INFLE:
$ CLOSE INFLE

Here’s an example of a loop to read a file and
process its records.

The /END_OF_FILE qualifier is used to direct
control to the “EOF_INFLE” label at end of file.

98July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Hands-on Exercise
Hands-on Exercise: DIRECTORY in DCL

Elements:
F$SEARCH()
F$FILE_ATTRIBUTES()
F$FAO()
WRITE SYS$OUTPUT

Time for a hands-on exercise!

Let’s write a Directory procedure using DCL.

The DCL elements we’ll use are:
o F$SEARCH()
o F$FILE_ATTRIBUTES()
o F$FAO()
o WRITE SYS$OUTPUT

F$FILE_ATTRIBUTES() and F$FAO() are new
to our discussion. We’ll only use a small
handful of their keywords and directives. We'll
go over them briefly, first.

99July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Hands-on Exercise
Hands-on Exercise: DIRECTORY in DCL

Element: F$SEARCH(fsp[, stm_id)
fsp: Wildcarded File Specification

.;*
stm_id: not used

We’ve already talked about F$SEARCH().

We’ll be F$SEARCHing for all the files in the
current directory.

We’ll have a single F$SEARCH() stream, so we
won’t be using the stream_id parameter.

100July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Hands-on Exercise
Hands-on Exercise: DIRECTORY in DCL

Elements: F$FILE_ATTRIBUTES(fsp,attr)

fsp: Filespec returned by F$SEARCH()

attr: We’ll use these:
EOF – Count of blocks used
ALQ – Allocation quantity
CDT – File Creation Date

F$FILE_ATTRIBUTES() is new to our
discussion. It returns information about files. It
has many keywords.

We’ll use these F$FILE_ATTRIBUTES()
keywords to get attributes of the files we find
using F$SEARCH():

o EOF is the count of blocks actually used by
data in the file.

o ALQ is the count of blocks allocated to the
file.

o CDT is the creation date of the file.

101July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Hands-on Exercise
Hands-on Exercise: DIRECTORY in DCL

Elements: F$FAO(mask, variable(s))

mask: We’ll use these directives
!n< and !> - Enclose an expression
!nAS – ASCII string
!nSL – Signed Longword

n is an optional field size

F$FAO() (formatted ASCII Output) is also new
to our discussion. We’ll use only three of its
simpler directives.

The “!n<“ and “!>” operators indicate that the
string which results from the expression within
them should be of a specified length: n bytes.
The results will either be padded or truncated
as needed.

The “!AS” operator means that an ASCII string
is expected in the output.

The “!SL” operator means that a signed
longword integer is expected in the output.

102July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Hands-on Exercise
Hands-on Exercise: DIRECTORY in DCL

Elements: WRITE SYS$OUTPUT exp[,...]

We’ll use:
WRITE SYS$OUTPUT F$FAO(...)

We’ve already discussed using WRITE to
output data. In this exercise, we’ll WRITE our
output data to the SYS$OUTPUT stream.

103July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Hands-on Exercise
Hands-on Exercise: DIRECTORY in DCL

1. Build a loop using F$SEARCH() to find all the files in the
current directory.

2. For each file, use F$FILE() to get the EOF size, the ALQ
size and the creation date (CDT), each into a separate
variable, and use WRITE SYS$OUTPUT and F$FAO() to
display the file specification and the file information.

3. Exit the loop when no more files are found.

Here’s the description of the design for the
procedure we’ll write:

First, use F$SEARCH() to find all the files in the
current directory.

Second, use F$FILE to get the EOF and ALQ
sizes as well as the creation date (CDT) for
each file; use WRITE SYS$OUTPUT and
F$FAO() to display the data in neat columns.

Exit the loop when there are no more files to
display.

No time limit, no wrong answers.

104July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Parse - F$ELEMENT()
$ vbl = F$ELEMENT(index, delim, string)

index - an integer value
delim - the delimiter character
string - the string to parse

F$ELEMENT() returns the delimiter character when
no more elements exist.

Example:
$ ELEM = F$ELEMENT(0, “,”, P1)

Moving on to some more advanced lexical
functions, we start with F$ELEMENT. Use this
to parse strings by searching for specific
characters, such as comma, pipe symbol,
space, etc.

The “index” starts at zero. The “delim”
parameter can be any single character.

If the value of “index” points to an element
beyond the end of the string, the function
returns the delimiter character.

105July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

String Parsing Loops

$ CNTR = 0
$LOOP_1:
$ ELEM = F$ELEM(CNTR, “,” P1)
$ CNTR = CNTR + 1
$ IF ELEM .EQS. “” THEN GOTO LOOP_1
$ IF ELEM .EQS. “,” THEN GOTO EXIT_LOOP_1
$ statement(s)
$ GOTO LOOP_1
$EXIT_LOOP_1:

Here’s an example of a loop for retrieving all
the elements of a string. In the example,
elements of the string are delimited by
commas.

Note that the index is incremented before the
element returned is examined. This is one way
to help avoid locked loops. Ignoring null
elements might not always be desirable.

When F$ELEMENT returns a comma, control is
transferred to the EXIT_LOOP_1 label.

106July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Symbol Substitution
Two forms of symbol substitution:

&symbol_name

‘symbol_name’ or “’’symbol_name’”

Let’s look at symbol substitution. DCL provides
two “passes”: one for symbols preceded by an
ampersand (“&”) and another for symbols
preceded by an apostrophe, or two
apostrophes when used within a quoted string.

107July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

“Apostrophe” Substitution

Use the apostrophe to replace part of a string (or
command)

$ CMD := DIRECTORY/SIZE=ALL/DATE

$ 'CMD'

$ CMD := DIRECTORY/SIZE=ALL/DATE

$ WRITE SYS$OUTPUT “$ ''CMD'”

Symbol substitution with the apostrophe causes
the contents of the variable to be added to the
command buffer as string data. Individual
command elements (separated by “whitespace”)
will be treated as individual elements.

When executing a DCL procedure with VERIFY
on (SET VERIFY), the results of the substitution
will appear on your screen or in the log file.

When using apostrophe outside of a quoted
string, use a single leading and trailing
apostrophe.

When using apostrophe within a quoted string,
use two leading apostrophes and a SINGLE(!)
trailing apostrophe.

108July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Ampersand Substitution

Use the ampersand to insert an entire string as a
single entity.

$ ME = “David J Dachtera”

$ DEFINE MY_NAME &ME
$ SHOW LOGICAL MY_NAME
 "MY_NAME" = "David J Dachtera" (LNM$PROCESS_TABLE)

Note that case and formatting (spaces) are preserved.

Symbol substitution with the ampersand causes
the contents of the variable to be added to the
command buffer as string data. Individual string
elements (separated by “whitespace”) will be
treated as part of a single element, as illustrated
in the example. Case is preserved.

Ampersand substitution is only used outside of
quoted strings.

109July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Symbol Substitution
Order of Substitution:

1. Apostrophe(‘)

2. Ampersand(&)

Symbol substitution occurs in the order shown.

First, symbols preceded by apostrophes are
processed. When expanded, the value of a
symbol preceded by apostrophe is treated as
one or more “words” or tokens.

Second, symbols preceded by an ampersand
are processed. The value of a symbol preceded
by an ampersand is treated as a single “word”
or token.

110July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Symbol Substitution
Command line length limits:

Before symbol substitution: 255 bytes

4095 bytes (V7.3-2 and later)

After symbol substitution: 1024 bytes

8192 bytes (V7.3-2 and later)

(Thanx to Alex Daniels for pointing out V7.3-2 new features.)

The maximum length of a command line before
symbol substitution is 255 bytes in OpenVMS
up to and including V7.3-1. As of V7.3-2 and
later, this increased to 4095 bytes.

DCL has a somewhat larger internal buffer
which allows for the results of symbol
substitution.

See the HELP topics “=“ and “:=“ for further
information. (Steve Hoffman)

111July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Symbol Substitution - Examples
Apostrophe Substitution

$ type apost.com
$ text = "This is an example of apostrophe substitution”
$ write sys$output "''text'"

$ set verify
$ @apost.com
$ text = "This is an example of apostrophe substitution”
$ write sys$output "This is an example of apostrophe
substitution”
This is an example of apostrophe substitution

Here is an example of symbol substitution using
the apostrophe (“’”) operator.

With VERIFY “on”, we can see that when
invoked, the contents of the symbol named
TEXT will appear within the quotes, either on
the screen or in a log file (batch job log, or
/OUTPUT when invoked interactively or from
another procedure).

112July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Symbol Substitution - Examples
Ampersand Substitution

$ type ampers.com
$ text = "This is an example of ampersand substitution”
$ define lnm &text
$ show logical lnm

$ @ampers.com
$ text = "This is an example of ampersand substitution”
$ define lnm &text
$ show logical lnm
 "LNM" = "This is an example of ampersand substitution"
(LNM$PROCESS_TABLE)

Here is an example of symbol substitution using
the ampersand (“&”) operator.

With VERIFY still turned “on”, we can see that
when invoked, the contents of the symbol
named TEXT do not appear in the output until
the SHOW LOGICAL command is issued.

113July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Symbol “Scope”
Determine symbol scope for the current procedure
depth:

$ SET SYMBOL/SCOPE=(keyword(s))
- [NO]LOCAL
- [NO]GLOBAL

Can help prevent problems due to symbols defined
locally at another procedure depth or globally.

Controlling symbol scope can help control
confusion when a symbol name is used in more
than one nested procedure.

When symbol scope is set to NOLOCAL, local
symbols from lesser procedure depths are
“invisible” to the current procedure depth all
“greater” depths.

When symbol scope is set to NOGLOBAL,
global symbols are “invisible” to the current
procedure depth all “greater” depths.

114July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Symbol “Scope”

$ SET SYMBOL/SCOPE=(keyword(s))

Other Qualifiers: /ALL, /VERB and /GENERAL

/VERB applies only to the first “token” on a command line.

/GENERAL applies to all other “tokens” on a command line.

/ALL applies to both.

Other SET SYMBOL/SCOPE qualifiers control
how the symbol scoping rules are applied.

/VERB applies to the first “token” (or “word”) on
a command line.

/GENERAL applies to all other “tokens” (or
“words”) on a command line.

/ALL applies to all of the “tokens” (or “words”)
on a command line.

“Words” are delimited by the space (ASCII 32)
character for DCL’s purposes.

115July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

String Operations

Concatenation:
$ vbl = string1 + string2

Example:
$ PROC = F$ENVIRONMENT(“PROCEDURE”)
$ DEVC = F$PARSE(PROC,,, “DEVICE”)
$ DRCT = F$PARSE(PROC,,, “DIRECTORY”)
$ FLOC = DEVC + DRCT

Connecting two or more shorter strings together
is known as “concatenating”. The original
strings remain unchanged. The target string
includes the contents of the original strings as
one longer string. No spaces or other
characters are inserted or appended.

The example illustrates the use of the
F$ENVIRONMENT and F$PARSE lexical
functions. Two elements of the procedure file
specification are then concatenated together for
use later on in the procedure.

116July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

String Operations

Reduction:
$ vbl = string - substring

Example:
$ DVN = F$GETDVI(“SYS$DISK”, “ALLDEVNAM”)
$ DNM = DVN - “_” - “:”
$ SHOW SYMBOL DNM
 DNM = “DJVS01$DKA0”

Removing a substring from a longer string is
known as string reduction. The first instance of
the substring is removed from the longer string,
and the result is stored in the target symbol.

The example illustrates stripping the
underscore and colon from a device name.

117July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

String Operations

Substring Replacement:

$ vbl[start,length] = string

Example:
$ nam := hydrichlor
$ nam[4,1] := o
$ show symbol nam
 NAM = “HYDROCHLOR”

Substrings within a longer string can be
replaced. The starting position and the length of
replacement (in bytes) are indicated within the
square brackets following the name of the
target string. The colon-equal operator (“:=“)or
the colon-equal-equal operator (“:==“) MUST be
used for this type of assignment.

The example illustrates replacing a single
character near the middle of a string.

118July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

String Operations

Binary Assignment:

$ vbl[start_bit,bit_count] = integer

Examples:

$ CR[0,8] = 13
$ LF[0,8] = 10
$ ESC[0,8]= 27
$ CSI[0,8]= 155

Binary values can also be assigned using the
square brackets following the name of the
target symbol.

The equal operator (“=“) or equal-equal
operator (“==“) MUST be used for this type of
assignment.

The first value within the brackets is the bit
displacement into the target field. The second
value is the number of bits to be affected by the
assignment.

119July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

DCL “Arrays”
DCL does not support arrays in the usual sense.
However, you can use a counter within a loop to
create a list of variables:

$ CNTR = 0
$LOOP:
$ CNTR = CNTR + 1
$ FIELD_’CNTR’ = vbl
$ IF CNTR .LE. 12 THEN -
$ GOTO LOOP

While DCL does not support arrays in the
sense of subscripted variables as one might
find in a 3GL, a counter can be used to
sequentially create variables with a number
appended to the variable name. This can be
done using symbol substitution to create a
target variable name, as shown the example.

120July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Integer Operations
DCL supports the four basic arithmetic operations:

+ Add

- Subtract

* Multiply

/ Divide

DCL can perform arithmetic operations on
integer values. Integers are treated as signed
longword (32 bit) values.

121July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Boolean Operations
DCL supports assignment of boolean

values:

$ vbl = (condition)

Examples:
$ TRUE = (1 .EQ. 1)
$ FALSE = (1 .EQ. 0)

The “truth” value of conditional expressions can
be assigned to variables for use in multiple
comparisons within a procedure.

122July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Logical Operations
DCL supports logical AND, OR and NOT

$ vbl = (int1 .AND. int2)

$ vbl = (int1 .OR. int2)

$ vbl = (.NOT. int3)

Examples:

$ STATUS = &$STATUS

$ SEVERITY = (STATUS .AND. 7)

$ FAILURE = (.NOT. (SEVERITY .AND. 1))

$ EXIT_STATUS = (STATUS .OR. %X10000000)

DCL provides the logical AND and logical OR
boolean operators, and the NOT operator.

The examples show the use of the .AND., .NOT.
and .OR. operators. Notice that FAILURE is
taken as the logical NOT of a condition that
would indicate success.

123July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

“Result Codes”
DCL commands and VMS programs return their
completion status by way of two “permanent”
symbols:

$STATUS
• 32-bit status of the most recent command
• Bit 28 (%10000000) is the “quiet” bit

$SEVERITY
• three lowest-order bits of $STATUS
• $SEVERITY = ($STATUS .AND. 7)

DCL commands and VMS programs return their
completion status by way of two “permanent”
symbols: $STATUS and $SEVERITY. These
symbols cannot be deleted, nor can their value
be changed by using an assignment statement.

$STATUS contains the entire 32-bit status word
returned by the command or program. If bit 28
(the “quiet” bit) is not set, an error message will
appear after the command or program exits.

$SEVERITY contains the value of the three
low-order bits of $STATUS.

124July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

“Result Codes”
Examples:
$ EXIT %X10000012 ! “Quiet” bit set

• No Message is displayed

$ EXIT %X12

%SYSTEM-E-BADPARAM, bad parameter value

$ show symbol $S*

 $SEVERITY == "2"

 $STATUS == "%X00000012”

• Note that these are STRING values!

Here are some examples of $STATUS and
$SEVERITY.

In the first example, the “quiet” bit is set. As a
result, no error message is displayed. The
values of $STATUS and $SEVERITY are set
according to the value specified on the EXIT
statement.

In the second example, the “quiet” bit is NOT
set, the error message is displayed.

Note that $STATUS and $SEVERITY are
STRING symbols, although their contents are
integer values.

125July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

“Result Codes”
Some DCL commands do not change the values of
$STATUS and $SEVERITY:

$ CONTINUE
$ IF
$ THEN
$ ELSE
$ ENDIF

$ EOD
$ GOTO
$ RECALL
$ SHOW SYMBOL
$ STOP[/IDENT]
$ WAIT

Others...

Not all DCL commands and statements change
the value of $STATUS and $SEVERITY. The
ones that do not are “internal” to DCL.

Listed are most of the DCL commands and
statements that do change the value of either
$STATUS or $SEVERITY. There are others not
listed here that are rarely used, but are
documented (DEPOSIT, EXAMINE).

126July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Error Trapping
Using the “ON” statement, you can set

the level of error trapping:

$ ON WARNING THEN statement

$ ON ERROR THEN statement

$ ON SEVERE_ERROR THEN statement

$ ON CONTROL_Y THEN statement

The most recent “ON” statement

determines the action taken.

Through the use of the “ON” statement, you
can control how DCL behaves when various
types of errors or events occur.

A WARNING event occurs when the severity is
zero(0) (($STATUS .AND. 7) .EQ. 0).

An ERROR event occurs when the severity is
two(2) (($STATUS .AND. 7) .EQ. 2).

A SEVERE ERROR event occurs when the
severity is four(4) (($STATUS .AND. 7) .EQ. 4).

Only the most recent “ON” statement takes
effect.

127July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Error Trapping
“ON” statement order of precedence:

$ ON WARNING THEN statement
WARNING or greater

$ ON ERROR THEN statement
Error or greater (WARNING action becomes CONTINUE)

$ ON SEVERE_ERROR THEN statement
Severe_Error or greater (WARNING and ERROR action
becomes CONTINUE)

The “ON” statement’s order of precedence is:

ON WARNING effects “warning” events and
greater.

ON ERROR effects “error” events and greater.
The “ON WARNING” action becomes
CONTINUE.

ON SEVERE ERROR effects “severe error”
events and greater. The “ON WARNING” and
“ON ERROR” actions become CONTINUE.

128July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Error Trapping
Turn error trapping off or on:

$ SET NOON

No “ON” action is taken.

$ SET ON

The current “ON” action is taken in response
to an event.

Through the use of the “ON” statement and the
“SET ON” and “SET NOON” statements, you
can control how DCL behaves when various
type of errors or events occur.

SET NOON allows your DCL code to detect
and process the $SEVERITY of the most recent
command (not all commands cause a change
of $STATUS and $SEVERITY).

129July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Handling Errors

$ SET NOON

$ statement

$ STATUS = &$STATUS

$ SEVERITY = (STATUS .AND. 7)

$ IF SEVERITY .EQ. 0 THEN -

$ GOSUB ANNOUNCE_WARNING

$ IF SEVERITY .EQ. 2 THEN -

$ GOSUB ANNOUNCE_ERROR

$ IF SEVERITY .EQ. 4 THEN -

$ GOSUB ANNOUNCE_FATALERROR

This code segment illustrates how to trap and
handle errors without DCL’s intervention.

After the “statement” is executed, the value of
$STATUS is saved, and the SEVERITY is
derived from the saved STATUS.

Different actions are taken depending upon the
value of the SEVERITY symbol.

130July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Lexical - F$TRNLNM
Use to translate logical names.
$ vbl = F$TRNLNM(-

logical_name,-

table_name,-

index,-

mode,-

case,-

item)

Does NOT support wildcard look-ups!

Now, we’ll look at some more lexical functions.

F$TRNLNM() is used to get the translation of a
logical name, isolate the translation to a specific
logical name table, index or mode, or to
determine such characteristics about a logical
name.

Notice that F$TRNLNM() does NOT support
wildcarded logical name expressions.

F$TRNLNM() supercedes the older
F$LOGICAL() which is deprecated.

131July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Lexical - F$ENVIRONMENT
Get information about the process

environment.

$ vbl = F$ENVIRONMENT(keyword)

Some useful keywords:

CAPTIVE “TRUE” or “FALSE”

DEFAULT Current default ddcu:[dir]

MESSAGE Qualifier string

PROCEDURE Fully qualified filespec.

Others...

The F$ENVIRONMENT() lexical can be used to
get information about the current process
environment.

The example keywords shown are some of the
more useful keywords. Other keywords are
available to determine the CONTROL
characters currently enabled, the current
procedure depth, the current DCL prompt string,
the current default file protection, the current
symbol scope, etc.

132July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Lexical - F$ENVIRONMENT
A useful example:

$ SET NOON

$ DFLT = F$ENVIRONMENT(“DEFAULT”)

$ MSG = F$ENVIRONMENT(“MESSAGE”)

$ SET DEFAULT ddcu:[dir]

$ SET MESSAGE/NOFACI/NOSEVE/NOIDE/NOTEXT

$ statement(s)

$ SET MESSAGE’MSG’

$ SET DEFAULT &DFLT

This example illustrates one method of
suppressing messages selectively. The
technique shown is to use the
F$ENVIRONMENT lexical to save the
MESSAGE display state, change it to what is
wanted, then change it back to the original
state.

133July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Lexical - F$PARSE
Use to verify or extract portions of a file

specification.

$ vbl = F$PARSE(-

filespec,-

default_spec,-

related_spec,-

field,-

parse_type)

The F$PARSE() lexical can be used to verify a
file specification or to extract portions of a valid
file specification.

The “parse_type” keywords are
SYNTAX_ONLY and NO_CONCEAL.

SYNTAX_ONLY parses a file spec and returns
values whether the specified file and/or path
exists or not.

NO_CONCEAL can be used to get the
translation of a logical defined with the
CONCEALED translation attribute.

134July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Lexical - F$PARSE
A useful example:

$ DFSP = F$ENVIRONMENT(“DEFAULT”) + “.COM”

$ FSP = F$PARSE(“LOGIN”, DFSP)

$ SHOW SYMBOL FSP

 “FSP” = “MYDISK:[MYDIR]LOGIN.COM;”

Another use of F$PARSE is to complete a
partial file specification, applying default values
for those portions not specified.

The example shown illustrates how “LOGIN”
can be expanded by applying appropriate
default values for the other portions of the file
specification.

135July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Lexical - F$PARSE
Another useful example:

$ PROC = F$ENVIRONMENT(“PROCEDURE”)

$ DEVC = F$PARSE(PROC,,, “DEVICE”)

$ DRCT = F$PARSE(PROC,,, “DIRECTORY”)

$ DFLT = F$ENVIRONMENT(“DEFAULT”)

$ FLOC = DEVC + DRCT

$ SET DEFAULT &FLOC

$ statement(s)

$ SET DEFAULT &DFLT

This example illustrates how F$PARSE can be
used to extract portions of a file specification.

In the example, a new default disk and directory
specification is derived from the disk and
directory where the currently executing DCL
procedure is found, the current default disk and
directory are saved, then the new default is
applied. A (series of) statement(s) is(are)
executed, then the original default disk and
directory specification is restored.

136July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Lexical - F$PARSE
Getting the parent directory:

$ FLSP := ddcu:[dir]

$ DEVC = F$PARSE(FLSP,,, “DEVICE”)

$ DRCT = F$PARSE(FLSP,,, “DIRECTORY”)

$ DRCT = DRCT - “][“ - “]” + “.-]”

$ PRNT = F$PARSE(DEVC + DRCT)

This example illustrates how F$PARSE can be
used to determine the parent directory of a
directory.

In the example, the trailing “]” is reduced from
the string and “.-]” is appended indicating that
we’re looking for the directory above the last in
the path.

137July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Lexical - F$PARSE
Verify that a path exists:

$ FLSP := ddcu:[dir]

$ FLOC = F$PARSE(FLSP)

$ IF FLOC .EQS. “” THEN –

$ WRITE SYS$OUTPUT “% Path not found”

This example illustrates how F$PARSE can be
used to verify that a path exists.

In the example, a file location is passed to
F$PARSE(). If the device is MOUNTed and the
directory exists, F$PARSE() will return the
device and directory specification with “.;”
appended; if not, a null string is returned.

138July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Lexical - F$GETQUI
Get information about queues and jobs

on them.

$ vbl = F$GETQUI(-

function,-

item,-

object_identifier,-

flags)

Can be complicated, is definitely useful.

The F$GETQUI() lexical function can be used
to get information about queues and the jobs on
those queues.

F$GETQUI() can be complicated to use; but its
usefulness is well worth the effort.

139July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Lexical - F$GETQUI
Functions:

CANCEL_OPERATION

DISPLAY_ENTRY

DISPLAY_FILE

DISPLAY_FORM

DISPLAY_JOB

DISPLAY_MANAGER

DISPLAY_QUEUE

TRANSLATE_QUEUE

This slide lists some of the available function
codes. Using these, your procedure can get
information about a queue, an entry, a form, a
job (where the entry number is not yet known),
a queue manager or a logical queue.

The CANCEL_OPERATION function can be
used to intentionally destroy the current context.
This is useful before creating a new context, to
ensure that any previous context has been
cleared.

140July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Lexical - F$GETQUI
Some useful items:

AFTER_TIME

FILE_SPECIFICATION

ENTRY_NUMBER

JOB_NAME

QUEUE_NAME

QUEUE_PAUSED

QUEUE_STOPPED

There’s LOTS more item codes!

This slide lists just a few of the many items that
can be returned about a queue, a job, a form,
etc.

The DCL Dictionary, Volume 1 is very useful to
have at hand when using F$GETQUI(), as all of
the available functions, item codes and other
arguments are listed.

141July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Lexical - F$GETQUI
Typical usage:

 1. Use DISPLAY_QUEUE to establish

 a queue context (object=“*”)

 2. Use DISPLAY_JOB to display jobs

 on the queue (object=“*”).

 3. Loop back to #2 until no more jobs.

 4. Loop back to #1 until a null queue

 name is returned.

When getting information about all the jobs on a
queue, first create the queue context using
DISPLAY_QUEUE. Then use DISPLAY_JOB
repeatedly to loop through all the jobs in the
queue.

142July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Lexical - F$GETQUI
To retrieve multiple items about a queue

or a job, use the FREEZE_CONTEXT

flag on all but the last F$GETQUI for that

item.

Example:

$ QN = F$GETQUI(“DISPLAY_QUEUE”,”QUEUE_NAME”,-

“*”, “FREEZE_CONTEXT”)

$ NN = F$GETQUI(“DISPLAY_QUEUE”,-

”SCSNODE_NAME”, “*”,)

When displaying multiple items about a queue,
a job, etc., use the FREEZE_CONTEXT flag on
all the items but the last. This prevents the
current context from being advanced to the next
queue, job, etc. until all the needed items about
each queue, job, etc. have been retrieved.

143July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Lexical - F$GETQUI
Symbols can be useful for shortening statements
using F$GETQUI:

Example:

$ DSPQ := DISPLAY_QUEUE

$ QUNM := QUEUE_NAME

$ FZCT := FREEZE_CONTEXT

$ SCNN := SCSNODE_NAME

$ QN = F$GETQUI(DSPQ, QUNM, “*”, FZCT)

$ NN = F$GETQUI(DSPQ, SCNN, “*”,)

Using symbols instead of string literals can help
shorten DCL statements that use F$GETQUI
and other lexicals that require keywords.

For example, here are the same two
statements from the previous slide. Notice that
they now fit on a line without continuation or
wrapping.

This costs some environment space, but it’s
usually worth it.

144July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

F$GETQUI - Loop
F$GETQUI() Loop Example:

$ DSPQ := DISPLAY_QUEUE

$ DSPJ := DISPLAY_JOB

$ QUNM := QUEUE_NAME

$ JBNM := JOB_NAME

$ FZCT := FREEZE_CONTEXT

$ ALJB := ALL_JOBS

$ JNXS := "JOB_INACCESSIBLE"

$ SAY := WRITE SYS$OUTPUT

$! Continued on the next slide...

This slide and the next illustrate how to use
F$GETQUI() in a loop to display the queues on
the system and the jobs in them.

This slide shows the symbols set up to replace
string literals.Those symbols will be used in the
next slide.

Note that for DISPLAY_JOB, standard rules of
OpenVMS privileges apply: in order to display
jobs that do not belong to your UIC, your
process must have OPER privilege.

145July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

F$GETQUI - Loop
$ TEMP = F$GETQUI("")

$QLOOP:

$ QNAM = F$GETQUI(DSPQ,QUNM,"*")

$ IF QNAM .EQS. "" THEN EXIT

$ SAY ""

$ SAY "QUEUE: ", QNAM

$JLOOP:

$ NOXS = F$GETQUI(DSPJ,JNXS,,ALJB)

$ IF NOXS .EQS. "TRUE" THEN GOTO JLOOP

$ IF NOXS .EQS. "" THEN GOTO QLOOP

$ JNAM = F$GETQUI(DSPJ,JBNM,,FZCT)

$ SAY " JOB: ", JNAM

$ GOTO JLOOP

This slide and the previous illustrate how to use
F$GETQUI() in a loop to display the queues on
the system and the jobs in them.

This slide shows the actual loop to do the work.
This code was modified from an example in the
on-line HELP for the F$GETQUI() lexical
function. See HELP Lexicals F$GETQUI, and
the Examples subtopic.

Note that for DISPLAY_JOB, standard rules of
OpenVMS privileges apply: in order to display
jobs that do not belong to your UIC, your
process must have OPER privilege.

146July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

F$GETQUI - Caveat

VMS provides only ONE queue context per process.

Using SHOW QUEUE in between F$GETQUI()
invocations will destroy the current queue context.

The previous slide described a loop to display
queues and the jobs in them. To do this, we
first establish a “queue context” using
DISPLAY_QUEUE so we can then use
DISPLAY_JOB to get information about the
jobs in each queue (if any).

However, OpenVMS provides only one queue
context per process. If SHOW QUEUE is used
in between F$GETQUI() invocations, the
process’s queue context is destroyed and the
next invocation of F$GETQUI() may produce an
error or unpredictable results.

147July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Lexical - F$CVTIME
Most useful for adding and subtracting days,

hours, minutes and/or seconds to/from a date.

Examples:
$ NEXT_WEEK = F$CVTIME(“+7-”, “ABSOLUTE”,)

$ MONTH_END = (F$CVTIME(“+1-”,, “DAY”) .EQ. 1)

$ YEAR_END = (MONTH_END .AND. -

 (F$CVTIME(“+1-”,, “MONTH”) .EQ. 1))

$ NOW = F$CVTIME(,, “TIME”)

$ LATER = F$CVTIME(,, “TIME”)

$ ELAPSED_TIME = -

F$CVTIME(“’’LATER’-’’NOW’,, “TIME”)

The F$CVTIME() function returns multiple
elements of a date/time expression. It also
performs conversion from one format to another,
and allows for the addition or subtraction of
days, hours, minutes, seconds, etc. from a
known date/time or the current date time.

The examples show how to:

1. get the date/time for a week from now.

2. see if tomorrow is the first of the month/year.

3. get an elapsed time based on a starting time
and an ending time (may not cross midnight
more than once!).

148July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Lexical - F$EXTRACT
Use to extract substrings.

$ vbl = F$EXTRACT(-

offset,- ! Zero relative!

length,-

string)

Note:

The offset is “zero-relative”; i.e., starts at zero(0).

Earlier in this session, we looked at substring
replacements. The F$EXTRACT() lexical
function allows substring extraction.

The original string is left unchanged; only the
contents of the requested substring are
returned.

Note that the offset is “zero-relative”. The first
character in a string has an offset of zero(0).
The offset of the last character in a string is
equal to the length of the string minus one(1) .

149July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Lexical - F$GETDVI
Use to get information about devices.

$ vbl = F$GETDVI(“ddcu:”, item)

Some useful items:

ALLDEVNAM

FREEBLOCKS

LOGVOLNAM

MAXBLOCK

TT_ACCPORNAM

Many others…

The F$GETDVI() lexical is used to get
information about devices in the system, or to
see if a device exists.

Some of the valid items are listed. Many more
items are available.

150July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Lexical - F$EDIT
Use to modify strings.

$ vbl = F$EDIT(string, keyword(s))

Keywords:

COLLAPSE

COMPRESS

LOWERCASE

TRIM

UNCOMMENT

UPCASE

The F$EDIT() lexical function is used to modify
strings.

Strings can be COLLAPSEd (all spaces and
TABs are removed), COMPRESSed (spaces
and TABs between words are reduced to a
single space), converted to upper (UPCASE) or
LOWERCASE, TRIMmed of leading and trailing
spaces and TABs, and comments can be
stripped off (UNCOMMENT). The comment
delimiter is the exclamation point(“!”).

151July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Lexical - F$GETJPI
Use to get information about your process

or process tree.

$ vbl = F$GETJPI(pid, item)

To get info. about the current process, specify PID

as null (“”) or zero(0).

Example:
$ MODE = F$GETJPI(0, “MODE”)

The F$GETJPI() lexical function is used to get
information about the current job or process.

To get information about the current process,
specify the PID as a null string (“”) or a zero(0).

The example shows how to retrieve the mode
of the current process. This could also be
retrieved using the F$MODE() lexical function.

152July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Lexical - F$GETJPI

Some useful items:

IMAGNAME

MASTER_PID

MODE

PID

PRCNAM

USERNAME

WSSIZE

This slide shows just a few of the more useful
items than can be retrieved for a process. Many
item codes are available.

Refer to the on-line HELP or DCL Dictionary,
Volume 1 for a complete listing.

153July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Lexical - F$GETJPI

A note of caution:

The AUTHPRIV and CURPRIV items
can return strings which are too long to
manipulate in V7.3-1 and earlier.

A note of caution about a couple F$GETJPI()
items codes:

The AUTHPRIV and CURPRIV items can
return strings which are too long to manipulate.
Use them with caution.

154July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Lexical - F$GETSYI
Use to get information about the system.

$ vbl = F$GETSYI(item[,nodename][,cluster_id])

Can be used to retrieve the value of any system

parameter, as well as values associated with some

other keywords (see HELP or the DCL Dictionary).

Some useful items:

CLUSTER_MEMBER HW_NAME

CLUSTER_ FTIME NODENAME

CLUSTER_ NODES

The F$GETSYI() lexical function can be used to
retrieve many useful items of information about
the running OpenVMS system.

Any system parameter value can be retrieved,
as well as some information about the cluster
and the hardware on which the system is
running.

155July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

F$CONTEXT and F$PID
Use to locate selected processes.

Use F$CONTEXT to set up selection

criteria.

Use F$PID to locate selected processes.

When used together, the F$CONTEXT and
F$PID functions provide a means to look up
processes on the system by a number of
selection criteria.

156July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

F$CONTEXT and F$PID
Use F$CONTEXT to set up process

selection criteria.

$ TMP = F$CONTEXT(“PROCESS”, -

CTX, “MODE”, “INTERACTIVE”, “EQL”)

$ TMP = F$CONTEXT(“PROCESS”, -

CTX, “NODENAME”, “*”, “EQL”)

Selection criteria are cumulative.

Use the F$CONTEXT function to set up your
process selection criteria. This allows a
programmatic way of locating processes by
name, by mode, by UIC, etc. without the need
to use intermediate files or parse the output of a
DCL command such as SHOW SYSTEM.

Multiple selection criteria can be specified by
issuing multiple invocations of F$CONTEXT.
The context constructed this way can be used
with the F$PID function in a loop to return the
PIDs of all processes matching the selection
criteria specified. When there are no more
matching processes, F$PID() returns a null
String.

157July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

F$CONTEXT and F$PID
Use F$PID to locate selected processes

using the context symbol set up by

F$CONTEXT():

$LOOP:

$ PID = F$PID(CTX)

$ IF PID .EQS. “” THEN GOTO EXIT_LOOP

$ statement(s)

$ GOTO LOOP

$EXIT_LOOP:

$ IF F$TYPE(CTX) .EQS. “PROCESS_CONTEXT” THEN -

$ TMP = F$CONTEXT(“PROCESS”, CTX, “CANCEL”)

Once you have set up your selection context,
pass that context symbol to F$PID() and invoke
it in a loop until a null string is returned by
F$PID().

By default (null context), F$PID() will return the
PIDs of all processes in the system (local to a
cluster node).

To locate all processes in the cluster matching
the other selection criteria, include an
F$CONTEXT invocation specifying an item
code of NODENAME, a matching string of “*”
and a match criterion of “EQL”.

158July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Other Lexical Functions
Lexicals

 A set of functions that return information about character

 strings and attributes of the current process.

 Additional information available:

 F$CONTEXT F$CSID F$CVSI F$CVTIME F$CVUI F$DEVICE

 F$DIRECTORY F$EDIT F$ELEMENT F$ENVIRONMENT F$EXTRACT

 F$FAO F$FILE_ATTRIBUTES F$GETDVI F$GETJPI F$GETQUI F$GETSYI

 F$IDENTIFIER F$INTEGER F$LENGTH F$LOCATE F$MESSAGE F$MODE

 F$PARSE F$PID F$PRIVILEGE F$PROCESS F$SEARCH F$SETPRV

 F$STRING F$TIME F$TRNLNM F$TYPE F$USER F$VERIFY

Other lexical functions exist as well as those
discussed in this presentation. The slide shows
the output of “HELP Lexical” and shows all of
the available lexical function names.

Refer to the DCL Dictionary, Volume 1 for
complete information on the available lexical
functions.

159July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Q & A

Speak now or forever hold your peas.

Let’s pause to answer any questions there may
be about what we’ve covered in this section!

160July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Break Time !

We’ll continue in a few minutes!

Time for a quick break!

The Advanced portion of the DCL Programming
session will follow immediately after a short
break.

161July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Agenda - Advanced
Logical Name Table Search Order

Tips, tricks and kinks

F$TYPE()
Tips, tricks and kinks

F$PARSE()
Tips, tricks and kinks

Loops using F$CONTEXT(), F$PID()
Select processes by name, node, etc.

In the advanced section, we’ll discuss using
ampersand’s (&) special characteristics to your
advantage – assign the entire content of a
string to a logical name, preserving case and
spacing.

We’ll talk about F$TYPE() and some ideas on
how to use it.

We’ll talk about using F$PARSE() to validate
and navigate paths.

We’ll talk some more about using
F$CONTEXT() and F$PID().

162July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Agenda - Advanced, Cont’d

Using F$CSID() and F$GETSYI()
Get/display info. about cluster nodes

The PIPE command
Usage Information
Techniques

• Reading SYS$PIPE in a loop
• Getting command output into a symbol
• Symbol substitution in “image data”

We’ll see how to use F$CSID() and F$GETSYI()
to return information about cluster nodes, with a
practical example.

We’ll take a look at the PIPE command, and
examine in detail its flexibility and intricacies.
We’ll see how to use PIPE to get the output of a
command into a symbol, and explore other
PIPE “magic”.

163July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Logical Name Table Search Order
$ show logical/table=lnm$system_directory

(LNM$SYSTEM_DIRECTORY) [kernel] [shareable,directory]
 [Protection=(RWC,RWC,R,R)]
[Owner=[SYSTEM]]

.

.

.
 "LNM$FILE_DEV" [super] = "LNM$PROCESS”
 = "LNM$JOB”
 = "LNM$GROUP”
 = "LNM$SYSTEM”
 = "DECW$LOGICAL_NAMES”
 "LNM$FILE_DEV" [exec] = "LNM$PROCESS”
 = "LNM$JOB”
 = "LNM$GROUP”
 = "LNM$SYSTEM”
 = "DECW$LOGICAL_NAMES"

Logical Name Search Order is determined by a search
list logical name called LNM$FILE_DEV. It is found in
the LNM$SYSTEM_DIRECTORY logical name table.
Some DCL features use a logical name called
LNM$DCL_LOGICAL which points to LNM$FILE_DEV.

The slide shows how LNM$FILE_DEV is set up in an
unmodified OpenVMS system.

Note that LNM$FILE_DEV lists other logical names
which point to the actual logical name tables being
referenced.

164July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Logical Name Table Search Order
Modifying the search order:

If no CMEXEC privilege:
$ DEFINE/TABLE=LNM$PROCESS_DIRECTORY LNM$FILE_DEV -

LNM$PROCESS,LNM$JOB,LNM$GROUP,LNM_APPL,LNM$SYSTEM

With CMEXEC privilege:
$ DEFINE/TABLE=LNM$PROCESS_DIRECTORY/EXEC LNM$FILE_DEV -

LNM$PROCESS,LNM$JOB,LNM$GROUP,LNM_APPL,LNM$SYSTEM

Logical Name Search Order can be modified by
DEFINE-ing (or ASSIGN-ing) LNM$FILE_DEV in your
LNM$PROCECSS_DIRECTORY logical name table.

Executive mode is preferable if you have CMEXEC
(Change Mode to Executive) privilege. However,
supervisor (the default) mode will suffice for most
applications.

165July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Logical Name Table Search Order
Lexical Functions Caveat:

F$TRNLNM() uses the LNM$FILE_DEV search list.
F$TRNLNM() should be used for all new development.

F$LOGICAL() uses a hard-coded search list.
F$LOGICAL() is deprecated.

It is important to use the F$TRNLNM() lexical function to
get the translation of logical names rather than the
deprecated F$LOGICAL() lexical function.

The reason is the F$TRNLNM() uses the
LNM$FILE_DEV search list. F$LOGICAL() uses a hard-
coded search list.

166July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Lexical Function - F$TYPE()
Used to get the datatype of a symbol’s contents
or the symbol type.
$ vbl = F$TYPE(symbol_name)

Returns:

“STRING”
Symbol contains an ASCII character string (non-numeric)

“INTEGER”
Symbol contains a numeric value (string or longword)

“PROCESS_CONTEXT”
Symbol was established by F$CONTEXT()

“” (null string)
Symbol was not found in the environment

The F$TYPE() lexical function returns the datatype of
the contents of a symbol - INTEGER or STRING, the
symbol type (PROCESS_CONTEXT), or returns a null
string if the named symbol does not exist in the
environment.

Note that except for PROCESS_CONTEXT symbols,
F$TYPE() returns the datatype of the contents of a
symbol and not the data type of the symbol itself.

The next slide illustrates this with some examples...

167July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Lexical Function - F$TYPE() Examples

$ a1 = "1234”
$ a2 = "01B7”
$ a3 = 1234
$ a4 = %x01b7
$ show symbol a%
 A1 = "1234”
 A2 = "01B7”
 A3 = 1234 Hex = 000004D2 Octal = 00000002322
 A4 = 439 Hex = 000001B7 Octal = 00000000667
$ say := write sys$output
$ say f$type(a1)
INTEGER
$ say f$type(a2)
STRING
$ say f$type(a3)
INTEGER
$ say f$type(a4)
INTEGER

In the examples, we can see that while a symbol may
actually be a character string, F$TYPE() indicates the
datatype of the content of the symbol.

Symbol A1 contains the string “1234”, but F$TYPE()
reports that it contains an integer value.

Symbol A2 contains the string “01B7”. F$TYPE() reports
that it contains a string value because of the presence of
the letter “B”. F$TYPE() doesn’t know about
hexadecimal!

Symbols A3 and A4 illustrate that integer symbol values
can be in decimal or hexadecimal. Octal (%O) is valid,
also, but is not shown here.

168July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

F$CONTEXT(), F$PID() Loops
Sample loop to find processes:
$ ctx :=
$ IF F$EXTR(0, 1, P1) .EQS. "%”
$ THEN
$ PID = F$FAO("!XL", &P1)
$ ELSE
$ if p1 .eqs. "" then p1 := *
$ TMP = F$CONTEXT("PROCESS", CTX, "PRCNAM", P1, "EQL")
$ if p2 .eqs. "" then p2 = f$getsyi("nodename")
$ TMP = F$CONTEXT("PROCESS", CTX, "NODENAME", P2, "EQL")
$ PID = F$PID(CTX)
$ IF PID .EQS. "" THEN EXIT %X8EA !Process not found
$ ENDIF
$RELOOP:
$ GOSUB OUTPUT_PSTAT
$ IF F$TYPE(CTX) .NES. "PROCESS_CONTEXT" THEN GOTO EXIT
$ PID = F$PID(CTX)
$ IF PID .NES. "" THEN -
$ GOTO RELOOP
$EXIT:

Here is an example of using F$CONTEXT() to find either
a specific process by name, or processes that match a
wildcarded name.

Some other twists:

If P1 is a hexadecimal expression, P1 is used as the PID
of the process to be examined. Otherwise, it is treated
as a portion of a process name.

If P2 is not specified, it is assumed that only the local
node is to be searched. If P2 is specified as another
node name, only that node will be searched. If P2 is
specified as a wildcard (“*”), all nodes of the cluster will
be searched.

The OUTPUT_PSTAT routine is executed for each
process found to display process information.

169July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Using F$CSID() and F$GETSYI()
Sample Loop to get cluster node info:

$ CONTEXT = "”
$START:
$ id = F$CSID(CONTEXT)
$ IF id .EQS. "" THEN EXIT
$ nodename = F$GETSYI ("NODENAME",,id)
$ hdwe_name = F$GETSYI("HW_NAME",,id)
$ arch_name = F$GETSYI("ARCH_NAME",,id)
$! ARCH_NAME with ID works on V7.2 and later only.
$ soft_type = F$GETSYI("NODE_SWTYPE",,id)
$ soft_vers = F$GETSYI("NODE_SWVERS",,id)
$ syst_idnt = F$GETSYI("NODE_SYSTEMID",,id)
$ gosub op_node_info
$ GOTO START

This an example from a DCL proc. written by the author
of this presentation to get and display information about
the cluster and the nodes in it.

This illustrates how to use F$CSID() in a loop to get the
Cluster System ID. for each node in the cluster, one
node at a time, then use F$GETSYI() to get information
about each node.

Mostly useful in system administration duties.

170July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

PIPE

PIPE command
Introduced in OpenVMS V7.2
Early PIPE has issues:

• mailbox quotas
• synchronization.

O.k. in V7.3 and later

The PIPE command appeared in OpenVMS
V7.2, but had some issues initially. The PIPE
line could not accept large amounts of data,
and synchronization between pipeline elements
was troublesome at times. All of these issues
are resolved in V7.3 plus the PIPE-related
ECOs. In V7.3-1 and later, PIPE is very stable
and usable.

PIPE works by executing each (set of)
command(s) in a separate subprocess (called a
“subshell” in UN*X-land).

171July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

PIPE
PIPE command

Pipeline syntax is essentially the same as UN*X, except
for the PIPE verb:

$ PIPE/qualifier(s) command | command ...

The syntax of the PIPE command is essentially
the same as it in UN*X-land, except, of course,
for the PIPE verb itself.

172July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

PIPE
$ PIPE/qualifier(s) command | command ...

- SYS$OUTPUT of one command becomes SYS$INPUT of
the next, except when invoking a DCL proc.

- Sometimes need to distinguish between SYS$INPUT and
SYS$PIPE

- SYS$COMMAND is not changed

Like UN*X pipelines, the output stream of the
first command becomes the input stream of the
next, an so on to the end of the pipeline. To do
this, PIPE introduces another PPF (Process
Permanent File) called SYS$PIPE which is
usually the same as SYS$INPUT.

However, sometimes SYS$INPUT and
SYS$PIPE behave differently. For example,
when a DCL procedure is invoked in a pipeline,
SYS$INPUT points to the procedure instead of
being the same as SYS$PIPE.

Note that SYS$COMMAND is always
unchanged in the pipeline.

173July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

PIPE
PIPE command

- Not all programs and commands expect input from
SYS$INPUT (COPY, SEARCH, PRINT, etc.)

Not all programs and commands expect to read
input from the SYS$INPUT stream. Good
examples are commands like COPY, SEARCH
and PRINT. For SEARCH, SYS$PIPE is useful
as the input file.

PRINT is not very useful in a pipeline because
it expects a file specification for one or more
disk files that can be passed along to a print
symbiont. This differs from UN*X where stdout
can be piped to LPR. A partial work-around is
that a spooled device can be specified as the
final output target; however, no print /FORMs
can be specified.

174July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

PIPE
PIPE command

- Redirection is available for SYS$INPUT, SYS$OUTPUT
and SYS$ERROR

- Can only use output redirection for the last element in a
pipeline

- No append operator (“>>”) for output redirection. Use
“APPEND SYS$PIPE output_file” as the last element of
the pipeline.

PIPE supports redirection of SYS$INPUT
(“stdin”), SYS$OUTPUT (“stdout”) and
SYS$ERROR (“stderr”).

Note, however, output redirection is only
allowed for the last element of a pipeline, and
that PIPE does not provide for an append
operator. The work-around is to use “APPEND
SYS$PIPE output_file” as the last element of
the pipeline.

175July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

PIPE
PIPE command

Multiple commands can be specified in a subshell:

$PIPE -
(command ; command ; …) | -

command

- Semi-colon (“;”) must be surrounded by white space.

The PIPE command supports multiple
commands in a pipeline element (“subshell”).
This is done by enclosing the commands in
parentheses and separating them using semi-
colons (“;”). Note that “white space” is expected
on either side of the semi-colon to ensure that it
is not part of a file specification or other syntax
element.

176July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

PIPE
PIPE command

Conditional operators:

&&
Continue if previous command returns a success
status

||
Continue if previous command returns a failure
status

The PIPE command provides conditional
operators to control the sequence of events in a
pipeline based on the completion status of the
command elements in the pipeline.

Double-ampersand (“&&”) allows that pipeline
processing can continue only if the preceding
element returns a “success” status.

Double-vertical-bar (“||”, same as the pipe
symbol, but two of them) allows that pipeline
processing can continue only if the preceding
element returns a “failure” status

177July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

PIPE
PIPE command

Other operators:

&
Commands up to “&” execute asynchronously in a
subprocess. Equivalent to SPAWN/NOWAIT.

The PIPE command provides that a portion of a
pipeline can be executed asynchronously in a
separate (set of) subprocess(es). This is done
using the ampersand symbol (single “&”). The
pipeline element(s) preceding the ampersand
will be executed in a (set of) subprocess(es).

The effect of the ampersand operator is similar
to SPAWN/NOWAIT: the subprocess(es) are
created, and they process independently of the
parent process which proceeds immediately
without waiting for the subprocess(es) to
complete.

178July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

PIPE
PIPE command

TEE?
• The HELP for PIPE includes an example of a TEE.COM that can

be used at the user’s discretion.
$PIPE -
command | -

@TEE filespec | -
command …

In UN*X-land, usually a command called “tee”
is provided so that data flowing through the
pipeline can be “tapped” and copied to a
separate file.

While OpenVMS does not provide a supported
TEE command, the on-line HELP for PIPE
includes an example TEE.COM that can be
extracted (cut and paste works well) and allows
that data flowing through a pipeline can be
copied to a disk file for other uses.

179July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

PIPE

$! TEE.COM - command procedure to
$! display/log data flowing
$! through a pipeline
$! Usage: @TEE log-file
$!
$ OPEN/WRITE tee_file 'P1’
$ LOOP:
$ READ/END_OF_FILE=EXIT SYS$PIPE LINE
$ WRITE SYS$OUTPUT LINE
$ WRITE tee_file LINE
$ GOTO LOOP
$ EXIT:
$ CLOSE tee_file
$ EXIT

Here’s the example TEE.COM from the on-line
HELP for PIPE, slightly reformatted to fit the
slide. Some comments were also removed.

Very “quick-and-dirty”. Essentially, all this does
is read data from the pipeline and write it to two
different outputs: SYS$OUTPUT and the disk
file specified when the procedure was invoked.

Like all DCL procedures, this has the limitations
of DCL’s string processing capabilities. As long
as the input record is 510 bytes or less, this
should work fine, except that “WRITE tee_file
LINE” may need the /SYMBOL qualifier.

180July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

PIPE
$! WYE.COM - command procedure to display
$! and log data flowing through
$! a pipeline
$! Usage: @WYE log-file
$!
$ OPEN/WRITE tee_file 'P1’
$ LOOP:
$ READ/END_OF_FILE=EXIT SYS$PIPE LINE
$ WRITE SYS$OUTPUT LINE
$ WRITE tee_file LINE
$ WRITE SYS$COMMAND LINE
$ GOTO LOOP
$ EXIT:
$ CLOSE tee_file
$ EXIT

Write two copies of the pipeline data:
$ PIPE -

command | -
(OPEN/WRITE SYS$COMMAND filespec ; -
 @WYE filespec ; CLOSE SYS$COMMAND) | -
command

Adding one line of code:

$ WRITE SYS$COMMAND LINE

…to TEE.COM produces WYE.COM. This
could even be used to make two copies of the
data in the pipeline, if you needed to.

181July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

PIPE
PIPE command

Sub-process performance
• Can be improved by using these qualifiers:

- /NOLOGICAL_NAMES
- /NOSYMBOLS

VMS’s subprocess performance is sometimes
berated because of the amount of overhead
imposed as compared to the way UN*X does it.

This overhead can be reduced if the pipeline
elements do not need to inherit either symbols
or logical names from the parent process.

In such case, use the /NOLOGICAL_NAMES
and/or /NOSYMBOLS qualifier(s), as needed.

182July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

PIPE
PIPE command

Restrictions:
• PIPEs cannot be nested. However, if a .COM file appears as a

PIPE element, it can invoke another PIPE.
• Don’t use “<“ or “>” in path specifications. Use “[“ and ”]” instead.
• No “append output” operator (“>>”)
• No “2>&1”

SYS$OUTPUT and SYS$ERROR are the same unless
SYS$ERROR is redirected (“2>”).

• Complex PIPEs may require an increase in the user’s PRCLM
quota (subprocess limit).

The PIPE command has some restrictions:

•PIPEs cannot be nested. However, if an
element of the pipeline invokes a DCL
procedure, PIPE in that procedure is legal.
•Because PIPE uses “<“ and “>” for redirection
of input and output respectively, they cannot be
used in file specifications. Use “[“ and “]”
instead.
•There is no append output operator (“>>”).
•There is no “2>&1” operator. SYS$OUTPUT
and SYS$ERROR are the same unless
SYS$ERROR is redirected.
•Complex PIPElines may spawn many
subprocesses. Users may need more PRCLM
to accommodate this.

183July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

PIPE
PIPE command

Some commands make no sense in PIPEs:
• SUBROUTINE - ENDSUBROUTINE
• EXIT, RETURN
• GOTO or GOSUB
• IF-THEN[-ELSE]-ENDIF

Some DCL statements are used to redirect
logical flow (EXIT, RETURN, GOTO, GOSUB,
IF-THEN[[-ELSE]-ENDIF])or enclose
subprogram units (SUBROUTINE,
ENDSUBROUTINE).

Thus they make no sense in a pipeline.

184July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

PIPE
PIPE command

Image verification is “off” by default
• (SET VERIFY=IMAGE ; command)

Image data verification is turned off by default
in a pipeline. This can make debugging a bit
difficult.

To turn image data verification on in a pipeline,
specify multiple commands in a pipeline
element (subprocess or “subshell”) and use
SET VERIFY=IMAGE to turn on image data
verification.

185July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Hands-on Exercise
Incorporate PIPE into the DIRECTORY in

DCL exercise.

New Elements:
PIPE
READ, /END_OF_FILE
F$PARSE()

Now, let’s put we’ve learned to work.

Let’s modify our DCL DIRCETORY procedure
to read file specifications from the pipeline
instead of using F$SEARCH().

New elements we’ll use in this procedure are:
o READ and the /END_OF_FILE qualifier
o The F$PARSE() lexical function.

We’ll use the PIPE and DIRECTORY
commands to generate the list of file
specifications our new procedure will process.

186July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Hands-on Exercise
Incorporate PIPE into the DIRECTORY in

DCL exercise.

New Element: PIPE cmd | cmd

Here’s a brief summary of the PIPE command.
Refer to the on-line HELP if you need to.

187July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Hands-on Exercise
Incorporate PIPE into the DIRECTORY in

DCL exercise.

New Element: READ/END=lbl lnm sym

Instead of using F$SEARCH() to retrieve the
file specification, we’ll use the “real”
DIRECTORY command to generate them (hey
- this *IS* just a DCL programming exercise,
after all!).

188July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Hands-on Exercise
Incorporate PIPE into the DIRECTORY in

DCL exercise.

New Element: F$PARSE(fsp,,, item)
fsp – Filespec read from SYS$PIPE
item – We’ll use these:

NAME
TYPE
VERSION

We’ll use F$PARSE() to get those portions of
the file specifications that we want to display:

The NAME

The fileTYPE extension

The version number

189July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Hands-on Exercise
Incorporate PIPE into the DIRECTORY in

DCL exercise.
- Modify the code from the previous exercise to READ

the filespec from SYS$PIPE instead of using
F$SEARCH(). EXIT the proc. at end of file.

- Use F$PARSE() to get the name, extension and
version into separate variables. WRITE that out along
with the file information.

So, here’s the design for the modified program:

Using the code from the previous exercise as a
starting point, replace F$SEARCH() with a
statement to READ from SYS$PIPE and
transfer to control to the end of the loop at
/END_OF_FILE. (Hint: Take an example from
TEE.COM.)

Use F$PARSE() to get just the name, extension
and version number for each file specification;
get the other file information (EOF size, ALQ
size, Creation DaTe) using F$FILE(), and
output everything to SYS$OUTPUT by way of
F$FAO().

190July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Hands-on Exercise
Incorporate PIPE into the DIRECTORY in

DCL exercise.
3. Write a “shell” procedure to use PIPE:

• Use DIRECTORY/NOHEAD/NOTRAIL to generate a list of
files to SYS$OUTPUT.

• Invoke the exercise proc. to read file specifications from the
pipeline and display the attributes for each file.

As a sort of bonus, write a “shell” procedure to
invoke the modified DCL DIRECTORY
procedure in a PIPE:

Use DIRECTORY/NOHEAD/NOTRAIL to
generate a list of file specifications.

Invoke the modified DCL DIRECTORY
procedure to display the file information.

191July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

PIPE: Command Output -> Symbol
Get the current count of interactive logins into a
symbol.

$ PIPE -
SET LOGINS | -
(READ SYS$PIPE P9 ; DEF/JOB P9 &P9)

$ P9 = F$TRNLNM(“P9”)
$ LOGINS = F$INTEGER(F$ELEM(2, “=“, P9))

Requests are frequently heard for the ability to
get command output into a symbol for further
processing.

The example here gets the number of
interactive logins seen by VMS into a symbol.

Note that within the pipeline itself, only the
logical name in the job table is created. The
translation of the logical name is handled in the
mainline. This is to keep the length of the PIPE
command and its elements within length limits.

192July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

PIPE: Symbols in Image Data
Use symbols to provide input to a program:

$ USNM = F$GETJPI(0, “USERNAME”)
$ PIPE -

(WRITE SYS$OUTPUT “SET ENV/CLU” ; -
 WRITE SYS$OUTPUT “DO SHOW USER/FULL “, USNM) | -
RUN SYS$SYSTEM:SYSMAN

Questions often arise about using symbol
substitution in “image data” (data passed to a
program within a procedure). Programs do not
translate symbols the way DCL does. So, we
need to find a work-around.

PIPE affords us this capability. We can write to
the SYS$OUTPUT stream of the first pipeline
element which becomes the SYS$INPUT (or
SYS$PIPE) stream of the next pipeline
element.

The example shows one way to do this. The
SYSMAN program is used as an example of a
program to which one might pass symbol
values as part of the “image data”.

193July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

PIPE: File List for ZIP from DIRECTORY
Use the DIRECTORY command to selectively
provide a list of files to be archived using ZIP for
OpenVMS:

$ PIPE –
DIRECTORY/NOHEAD/NOTRAIL/MODIFIED/BEFORE=date –
ZIP/LEVEL=8/VMS archive_name/BATCH=SYS$PIPE:

Sometimes, we need to select files to be
archived using selection criteria that are not
supported by the compressed achive utility.
Using ZIP’s “batch” feature, we can utilize
DIRECTORY’s ability to select files by date,
size and other criteria and pass that file list to
ZIP in a pipeline.

The example shows one way to do this. Others
are possible, of course.

194July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Q & A

Speak now or forever hold your peas.

Let’s pause to answer any questions there may
be about what we’ve covered in this section!

195July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Thank You!

Congratulations!

You survived!

We’ve barely scratched the surface of what can
be done using DCL as a programming
language.

Your own imagination, coupled with the
documentation and the on-line HELP, will guide
you on to many new procedures and useful
everyday tools!

196July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Thank You!

Remember to fill out the evaluation forms!

If evaluation forms are available, please
remember to fill them out and return them to the
presenter.

197July 2004 DCL Programming Hands-on Session - HPworld 2004, Chicago, IL

Co-produced by:

