
Strobe Data, Inc 03/14/00 for Interworks 2000 page 1

RTE application migration to Windows 2000
Al Morgan, Jerome Hodges, and Ellen Oliver

Strobe Data, Inc

Legacy system problem

The digital computer has safely ushered in the in the new millennium, leaving us with a stockpile
of canned goods and unused generators in the basement, and a dusty 20th century computer legacy. The
minicomputer revolution of the 1970s and 1980s is now dim, musty history. A new generation of
technology professionals never met the computer for the "common man" -- 16 bit minicomputers which
plucked the power of digital computing out of government laboratories and industrial collossi and offered
it to small business, to high school labs, to small town governments. Those "affordable", "low priced"
computers morphed themselves into the embedded processors we take for granted today, burrowing into
weapons systems, into simulators, into automobile and aerospace test devices, into telephone switching
circuits, into automated billing systems, into oil pipelines, and even into the very manufacturing processes
which ran the assembly lines which produced them.

Having created the ubiquitous matrix which became the substance of the computer age, the
minicomputers were unceremoniously swept ashore like so much flotsam by a wave of new generation
everyman computers -- the Apple/Macintosh, the "IBM" PC, the SUN workstation, the Unix workstation.
One by one, the manufacturers announced that they no longer could, or would, manufacture the old standby
Data General Novas, the DEC PDP-11s, the IBM 360s, etc. And now, the venerable HP1000 will shortly
add to that list.

End-of life for a computer family is not solely a determination on the part of the manufacturers
that a market no longer exists for the "old stuff". It is not necessarily an admission that the "new stuff" is
faster, cheaper, better", or that the paradigm shift we are experiencing today "dooms" pre-existing
technology. The very components used in their manufacture are no longer made. So not only does the
dreaded phrase "end-of-life" mean you can't buy the systems anymore; there will shortly come a time when
they will no longer be maintainable. That presents a huge problem for the computer industry and its
customers.

Billions of lines of code written for these obsolete computers represent hundreds of thousands of
applications forced to find completely new computer hardware homes. This "legacy" software ranges from
simple database-type applications such as bookkeeping and accounting to the brains behind complex radar
systems at the heart of air traffic control systems and the multi-nation networks which predict the weather.
Some of this "legacy" software runs the flight simulators that train airline pilots. "Legacy" software tests
the missile engines which lift space modules into orbit. This "legacy" software still manufactures and tests
modern 21st century DRAM and processor chips, not to mention the motherboards and device controllers
which make eCommerce possible. Banking functions, stock trades, communications networks world-wide
still depend on this legacy software. And we should not forget weapons systems developed during the Cold
War, systems still maintained by every major government in the world.

Ironically, while Hewlett Packard thrusts its way into the forefront of 21st century technology, the
chips fueling its new products are still being manufactured by legacy system software.

How do we transport or "migrate" this legacy software to computer hardware manufactured from
modern components? The answer varies in difficulty and complexity depending on the application. We can
categorize most of them as follows:

1) Custom applications which can now be replaced by off-the-shelf software
2) Simple data display systems written in compiler languages such as Fortran or COBOL which can

easily be recompiled with minor changes to run on other hardware

Strobe Data, Inc 03/14/00 for Interworks 2000 page 2

3) Database manipulation systems which can be restructured and run under database management
software similar to the software used on the minicomputer

4) Scientific and statistical analysis which can be rewritten in modern higher order languages and
application generators, or can be replaced by packages such as SPSS or SAS on new generation
hardware,

5) Complex data analysis and display systems written around special data gathering and/or display
devices not available on new generation hardware,

6) Complex networks of complex data analysis and display,
7) Large assembly language applications,
8) Time critical applications such as in process control or robotics or telemetry where the time

critical problems have been solved by using special characteristics of obsolete hardware
9) True real-time applications where the computer hardware is tied very tightly to the timing of real-

time responses,
10) Embedded applications dependent upon custom hardware for which no modern interfaces exist,
11) Embedded and mission critical software about which specific expertise no longer exists to assist in

migration,
12) Bureaucratically certified software such as the software in commercial and military flight

simulators, in-flight systems, booster engine test equipment for manned space craft, critical
medical devices, etc.

What we mean by migration

Let us consider a typical custom application running on some model of an HP 1000 A-series or
M/E/F series computer with a suite of peripherals. Its software "platform" is probably some version of RT6
or RTE, an operating system tailored closely and specifically to the basic hardware architecture in all its
peculiar nuances. The application itself was probably written in a higher order language such as Fortran, or
even ADA. Parts or even all of it might possibly have been written in Assembly Language.

Suppose that we wish to port this application to a modern platform. Hewlett Packard offers a
migration path which looks like this.

HP1000 hardware

RTE-A
FORTRAN,
ASM
Application

Strobe Data, Inc 03/14/00 for Interworks 2000 page 3

From our twelve item list above, we can find classes of applications for which this may just be the
ticket. It has the advantage of completely divorcing the application from twenty-year old components; and
as long as there is a reasonably long life expectancy for HP's proprietary 32-bit hardware, we are not going
to have to face the migration problem all over again in the near future. HP offers assistance and suites of
tools to aid in recompiling and rewriting the RTE/application interface into a UNIX/application interface.

However, for those enterprises preferring Wintel architecture and Windows, this is a difficult
migration requiring more than recompiling, and if migration tools exist, they are hard to find. A certain
amount of program restructuring and rewriting is doubtless in the offing just to get the legacy software
communicating with Windows devices. Unless one adores writing Windows drivers and DLLs, this is not a
particularly pleasing prospect, even with the help HP has recently offered with its Windows 2000 training
and tools. If the application was not already in a 4th Generation package form (an Image application for
example) there's going to be a lot of work to do and a lot of uncertainty about project time lines, cost,
staffing, etc. As Charles Finley told us last August, migrating large legacy systems is not something for the
faint hearted with shallow purses.

Wintel computer

Windows 2000

Applicat
n

HP1000 hardware

RTE-A
FORTRAN

Application

HP Pa-RISC hardware

UNIX
FORTRAN

Application

HP 1000 hardware

RTE-A
FORTRAN,
ASM
Application

Strobe Data, Inc 03/14/00 for Interworks 2000 page 4

Migration nightmares

Not many organizations have pockets deep enough or courageous enough souls to come through
unscathed. Strobe has often been the beneficiary of migration projects gone awry. We have a number of
entertaining war stories to tell -- of well-intentioned people trying to prop up one failing system long
enough to get some buggy package installed in its stead.

There is one classic migration example which illustrates its most dramatic pitfalls -- one that has
been written about over the years, but is still not fully understood by people not close to the industry. The
FAA Air Traffic Control Modernization was initiated in the late 1970s and formally got underway in the
early 80s. A principal target was the radar control system based on vacuum tube generation Univacs. IBM
was initially awarded the largest computer project ever funded by Congress to make the modernization
happen. For decades this effort passed though contractor after contractor with incremental funding
increases. The project scaled up, the project scaled down. It broke up into smaller pieces several times. But,
finally, as the millenium drew to a close, the migration truly began to happen -- nearly 20 years and billions
of dollars later. At one point in this 20 year period, when failing computers were making headlines at
Chicago's O'Hare International, the migration engineers actually tried to put out a contract to restart the
assembly line for those Univacs. Only, of course, no one could replicate them. There were no parts.

Let's look at the project from the vantage point of folk history, having had no direct first-hand
experience with it, and imagine what the engineers faced. In the first place, this was a Government contract.
Everything was done by the book using the most up-to-date project management tools, starting with a set of
specifications.

One would think a set of specifications for an existing system would not be difficult to write. Not
so when requirements creep takes over. New capabilities were added, resulting in a system more complex
than the one being replaced. And that makes sense, since the new computer hardware had more capability
than the old hardware, right?

Specifications agreed upon, the design phase began, including hardware interfaces. New radar
equipment was contemplated. By the time the designers had a decent handle on the hardware interfaces,
new hardware was proposed. That changed the specifications and changed the design and that ate up more
time and resources. By the time the implementation phase came around, the computer hardware proposed
was itself becoming obsolete, and that meant proposing a new platform, which meant redoing the
specifications, which meant redoing the design.

It is easy to see how this project began chasing its tail in an endless round of specification,
modification of specification, design, redesign, modification of redesign and then partial implementation.
In the meantime, computer hardware became more powerful, capable of providing hitherto unimagined
features -- features which became incorporated into the latest round of specification, redesign, re-
implementation. The Mother of All Migrations had spawned the Ultimate Impossible Task bogged in tail-
eating Requirements Creep.

Several lessons emerge.
• Writing new specifications for an existing system is harder than it appears. First of all, the

existing system has "evolved" from its original form over a period of years and is more
complex than it was initially meant to be. Secondly, it takes more discipline than most mortals
possess to ignore new capability and resist the human desire to make the new version bigger
and grander than the old version.

• The original systems were written in an environment were engineers had fewer resources and
were forced into efficiencies which seem unnecessary today. As capability grew, features
were "tacked on" becoming a part of "must have" requirements list. A system which in its day
had been a large project has mushroomed into a gigantic one in danger of falling into the pit
of the unmanageable.

Strobe Data, Inc 03/14/00 for Interworks 2000 page 5

• In today's computing environment, hardware evolves so fast that it is difficult to complete the
implementation of a complex system before the platform initially chosen goes obsolete. And
the corollary observation is that engineers can't resist the lure of faster, cheaper, bigger, better.

• Migrating from a 1980s platform with little in common with Year 2000 architectures requires
one wholesale migration step. It is difficult to accomplish piecemeal. In fact, architecting a
system which integrates pieces of the old with pieces of the new can itself take so much effort
that by the time you have any part of it done, you are back to the problem that the target
hardware has moved on and you are still stuck with an obsolete system when you finally get
done.

• Even when the migration is, for the most part, successful, retraining is expensive and
emotionally stressful. When people have become accustomed to the quirks of a system that
never "worked right" and are then given an entirely different user interface for another system
that still doesn't "work right" (only in a different way) productivity can suffer for a long time.

We personally know MIS and project managers who ultimately lost their jobs over what seemed in
the beginning to be a "simple" migration project

An "ideal" migration method

One problem overlooked when contemplating a total rewrite of the application is the psychic toll
this drastic rehosting takes. It is akin to building a new Titanic in the mid-ocean while the original Titanic
is approaching the iceberg. This may be possible if the Titanic is a whale boat, but can't be done for
something the size and complexity of an ocean liner no matter how many people you put on the job, no
matter how hard they work.

What is needed is a softer, gentler and foolproof short term migration approach. The ideal would
look like the following diagram.

Suppose we pick up both the operating system, RTE, along with the application, and surround it
with an interface to Windows, an interface transparent to RTE. Since the application communicates with
the outside world through RTE, the application operates unchanged. If we suitably design the interface,

Wintel computer

Windows 2000

Windows Driver

RTE

Application

Strobe Data, Inc 03/14/00 for Interworks 2000 page 6

RTE communicates with the Windows Driver by means of RTE's existing hardware level I/O commands
controlling HP1000 peripherals. If we suitably design the interface, RTE is never the wiser, as those
machine level I/O commands are interpreted and passed on to Windows as PC device commands.

On the other side of the equation, Windows blindly operates normally. We have installed a
complex device driver resembling the other Windows device drivers, obeying all its arcane Windows
device driver rules.

Simple? Well, for the enterprise depending upon its legacy software, it's simple indeed. And in
theory, at least, it allows for step-wise migration to the Windows environment by moving parts of the
application piece-meal out of the RTE domain and into the Windows domain. Nothing has to be done in
one grand, risky step.

Problems of the "ideal" migration method

Simple for the migrator, not so simple for the designer of this method. However, if this "ideal
migration" path can be accomplished (and we at Strobe are confident it can be done since we have done it
for other 16-bit minicomputers) what are the principal problems we are left with?

• Processor Speed and throughput. From the diagram it would appear that we have to
execute two extra layers of software every time an I/O process is invoked -- RTE plus the
Windows driver software. And this is undeniably true. However, even though the HP1000
A900 has a 133 nsec memory cycle time (approximately 75 MHz), the Intel architecture is a
teeny-tiny bit faster -- 500+ MHz with every expectation that we have not yet seen the limits
of performance increase in this architecture. Not only does this approach make use of the
performance gains we read about daily, it turns out that Strobe's implementation of this
"layered" approach teaches us that the Windows part of the system has so little to do that it is
essentially idling. The performance issues are entirely on the RTE side where the architecture
for this solution should at least match RTE performance on the A900. Our experience tells us
that throughput eventually becomes dramatically greater as modern chip technology
progresses.

HP 1000 A900 Specifications and Performance Figures
Word Size 16 bits

Instruction Set 292 instructions
Time Base Generator Interrupt 10-millisecond intervals

Cache Size 4 kbytes
Cache Cycle Time 133 nanoseconds (~ 75 MHz)

Cache Fault Processing Time 532 to 931 nanoseconds
Main Memory Cycle Tim Read: 532 nanoseconds

Write: 400 nanoseconds
Average Effective Memory Access ~ 181 nanoseconds, assuming an 88% cache hit rate

Interrupt Latency (w/o DMA) 3.7 to 19 microseconds (4 microseconds typical)
Maximum Achievable DMA Rate Input: 1.85 million words per second

Output: 1.5 million words per second

• Operator retraining. On the surface, since the outermost layers are a Wintel computer and
Windows, one would expect the operator to find himself in a modern icon-laden GUI
environment much different from the old RTE/applications user interface. To be sure, the
systems manager has the option of adding Windows utilities operated in the standard
Windows formats to the overall application. However, the application itself runs its usual user
interface through RTE, just as it always did. The PC monitor emulates the system console. PC
serial ports support PCs running terminal emulations -- or retain the old terminals, if that
makes sense. In short, the user interface looks the same and no retraining is needed.

Strobe Data, Inc 03/14/00 for Interworks 2000 page 7

• Support for custom hardware. This problem by itself has doomed attempts to migrate
embedded systems software to new platforms and caused expensive redesign and rewriting of
applications. While much of what was considered "custom" hardware in the 1980s appeared
in various forms for modern platforms in the 1990s (a circumstance which allows the system
manager to configure a PC with an analogous I/O properties) there still exists custom
hardware too specialized to find its way into today's mass market. The ideal solution would
have the PC generate the signals needed to communicate with custom hardware. In its past
solutions Strobe solved this problem by including a real live controller card associated with
the Windows Driver. One of the nifty characteristics of this controller card is its ability to
generate the actual backplane signals of the old minicomputer. When RTE generates I/O
signals for the HP1000 backplane, those signals are still sent to the custom hardware exactly
as they always were.

• I/O speed and throughput. One lovely characteristic of the HP1000 that makes it difficult to
discard is its high speed communications and I/O. Windows running on commodity systems,
although gaining in this area, still cannot provide the I/O throughput of a well-stocked A-900.
While the Wintel world struggles to push into the performance envelope of HP1000, the
migrator can put off a commitment to Wintel compatible communications devices by making
use of the backplane signal generation capability to continue to drive controllers for the
HP1000 devices. In many cases, the performance disparity is an artifact of Windows itself and
the demands of its re-entrant multiprocessing. By suitably configuring Windows and
dedicating it to the HP1000 application, much of its I/O sluggishness disappears. An empirical
note: Strobe Data has found that Windows disk caching offers by itself a significant boost in
legacy system performance with some of the PDP-11 and Nova emulations. We expect a
similar boost in performance here.

Interrupt Latency for Several Operating Systems
Manufacturer Operating System Hardware Platforms Interrupt Latency

Hewlett-Packard HP-RT HP 742rt, 743rt, 744rt 100 µs
Silicon Graphics IRIX SGI Workstations 200 µs

VenturCom RTX for NT x86 50 µs
Lynx LynxOS x86 PC, Power PC 14 µs

QNX Software QNX 4 X86 PC 4.3 µs
Hewlett-Packard RTE-A HP 1000 Model A900 ~ 4 µµµµs (3.7 - 19µµµµs)

Microware Systems OS-9 x86 PC, Power PC 3 µs
(Excerpted from “An Introduction to Real-Time Computing”, presented by Michael W. Thome, Digital Automation
Associates, Inc., HP World 99 proceedings, San Francisco, CA and added HP 1000 A900.)

• "Conversion". How much work does it take to move the operating system, the applications
software, and all the data from the HP1000 to the PC in a form acceptable to the Windows
Driver? How can RTE boot itself, load the application, save its files without its SCSI or HPIB
disk? The answer lies in the fact that RTE, through the Windows Driver, is actually reading
and writing a standard PC disk. Windows disk formats are quite different from RTE formats
requiring the Windows Driver to translate from one format to the other. "Empty" PC container
files "emulating the HP1000 disks are created by a special utility. Then, using the HP1000
backplane signals supplied by the controller card, the user runs RTE and copies the contents
of his HP1000 disks onto those container files, using RTE disk copy commands. It is a
"conversion process" timed in minutes, not days, weeks or years.

For the greatest body of applications needing a migration path to and through Windows, these
problems loom largest, but, as you can see, this "embedding" approach solves or mitigates them. However,
a class of applications exists where the problems are not solved so readily merely by embedding the
minicomputer operating system and the application in this special Windows Driver. We're talking here
about real-time and/or timing critical applications.

Strobe Data, Inc 03/14/00 for Interworks 2000 page 8

Real-time systems present special Windows migration problems

Where data acquisition, organization and analysis is concerned, time is indeed relative. The system
manager cares about the amount of time and system resources a batch process chews up. A data entry
operator cares when system response seems "slow" and the computer can't keep up with her fingers. But as
long as response seems humanly reasonable the data entry operator won't demand too much of a raise, and
the system manager learns to become philosophic about batch execution times. No one crashes. No one
burns.

Those systems we label "real time" are another story altogether. Generally, a real time system
requires some kind of computer response coordinated with the real world demands of some piece of
machinery. Some of that equipment is operated by humans in situations where human response time is
being measured or trained. The classical example is, of course, the flight simulator. Robotics is another area
requiring time-critical computer I/O. Process control systems offer another example where time (δt) is a
fundamental input variable.

In a real time system, you can't mess with "time" very much and remain viable. Unfortunately, in
the Windows environment, clock interrupts are subject to the same whims of Windows management as all
the other interrupts. For many applications where δt is large, this is not likely to represent a crisis,
particularly where one is replacing a slow CPU with a much faster one which has to sit and wait a long time
for the next real time clock signal. However, there are applications where any degree of uncertainty about
when the clock interrupt is likely to occur is totally unacceptable.

The real time clock

Removing this obstacle to migration requires a reliable real time clock signal and that means
bypassing Windows. Strobe has solved this problem by executing time sensitive software on the controller
board with a real time clock independent of time sources under the control of Windows on the
motherboard.

This approach does not completely solve the problem of maintaining δt properly. One of the
biggest headaches Strobe experiences with its migration solution comes about because our minicomputer
replacement products end up several times faster than the old hardware. In some applications where
computer programmers have inserted their own time delays the problem is not that δt gets too big for the
application. The problem is that it shrinks. Computations which might have taken 100 milliseconds before
the migration, might now be done in 10 milliseconds, and the programmer who just "knew " that there was
no way the sine calculation could be finished before the expected device interrupt would occur is now in
for an unpleasant surprise and THREE sine calculations are done on the same data before the next clock
tick causes regurgitation of an input buffer's contents. We once saw a case where characters were fed to the
screen so quickly that phosphorous didn't register them and eye never saw them. The program didn't work
anymore. There was no screen display.

No matter how quickly and efficiently the embedded operating system and applications software
are executed in our "ideal migration" model, it is essentially impossible to faithfully replicate the execution
times of individual computer instructions. That is a given. However, the controller card gives us yet
another bit of apparatus -- something to tackle the timing problem. The controller board has its own internal
clock, its own crystal with a adjustable frequency. Strobe found that by allowing the end-user to change
the frequency of this clock, the application and operating system can be slowed down to some point where
the overall execution times of critical loops match the original well enough to allow the system to operate
normally.

Strobe Data, Inc 03/14/00 for Interworks 2000 page 9

The case of mysteriously disappearing resources

Windows itself presents additional challenges. Vanilla Windows is flexible and general purpose. -
- but this comes at a price. Windows doesn’t treat the HP 1000 emulation as anything special. All bets are
off: no guarantees for critical time response! If it’s left up to Windows, a video game, e-mail or web
surfing session can gobble up all available resources. Generous, wonderful Windows will happily host a
roomful of resource stealers. So while it may be tempting to expand the operational environment of the
application into the plugged in world we are accustomed to for other applications, the system configurator
must provide enough discipline to preclude Internet surfing multiplexed with a solitaire session from
appearing on the computer running the nuclear reactor.

Attractions of running real-time systems under Windows

The fact that the nuclear reactor operator might be tempted to use Windows' "spare" resources to
play "Minesweeper", is a tribute to Windows as THE STANDARD for desktop operating systems. As
such, Windows offers all of its benefits to the real-time legacy system emulation. No one argues against
Windows being ubiquitous. general-purpose, and flexible.

Okay, we’ve said we love Windows, now let us count the ways ...

Probably the biggest attraction to legacy system owners is the price of the Windows hardware.
Just consider the cost of rebuilding or even locating replacement dishwasher-sized disk drives that are
pricey, slow, expensive to service and prone to failure (from head crashes, unseasoned technology, etc.).
They often only have about 20 Megabytes of storage and replacement media (if available) are hard to
locate. This is not to say that there are some resourceful people in business reviving units. However, the
market shows that it is often more lucrative to try to adapt inexpensive, next generation hardware to work
in the legacy systems.

By the way, if the hardware isn’t robust enough for one’s tastes, such user’s cannot argue that PC
pricing at it’s commodity levels argues for adoption of a “disposable hardware” philosophy; replacements
are so inexpensive, you can afford to throw away bad units, and quickly and easily replace the bad with
new units.

Another advantage is the free speedup available as modern technology advances. Ignoring the
earlier arguments about timing and the adjustable real-time clock, some RTE systems will be able to run
full flat out without any slowdown. And these speedups roll up “for free” as upgraded versions appear.

Some people argue that Windows NT has always been a “half-a-step-behind” accepting the latest
popular technology. But even USB is coming to Windows 2000. The fact is that the PC platform does
eventually pick up the latest hardware (except for some of the gargantuan-sized technology) making those
advances available to legacy software.

All the office software and suites that permeate the typical desktop PC will be seamlessly
accessible to and from the legacy system, GUI, Windows and Novell networking, spreadsheet display and
word processing of database software.

Summary

A Windows platform for legacy systems is a desirable way to step into the 21st century, but
migration can be a nightmare.

Many organizations approach software migration as a total re-write of the application --
restructure, rearchitect, re-code. Where this can be done easily it makes a lot of sense. Where this re-write

Strobe Data, Inc 03/14/00 for Interworks 2000 page 10

approach cannot be done easily but where powerful migration tools are available for a new much desired
host, a migration plan can be crafted with a varying degree of confidence in ultimate success at a price the
organization can afford. If this migration plan takes years to accomplish, the organization would probably
be much better off with something like the embedding approach described above, especially for the short
term while it is finding out just how deep the doo-doo is that it is wading into.

Moving the operating system and the application, unchanged, onto a Windows platform has been
accomplished for other minicomputers and it is to be expected that it can be done for the HP1000.

Real-time applications present special challenges which make them particularly difficult to
migrate. The bad news is that timing requirements challenge this embedding approach as well. The good
news is that even those timing problems and constraints have been overcome for other minicomputers, and,
again, one can expect similar solutions will work for the HP1000.

And, finally, as Windows consolidates its position as the world's most popular operating system,
the advantages of integrating legacy software into a modern Windows environment becomes more apparent
to migration decision makers. Strobe hopes it will be in a position to make that decision a no-brainer.

