
BR Toolset

Binary Relocatable Utilities for RTE

14Jan00

Prepared for InterWorks 2000
by Alan Tibbetts



BR Tools  1

Binary Relocatables on the HP1000
There is a secret weapon that is part of program development on the HP1000.  That secret
weapon is the binary relocatable file format.  The binary relocatable file (B.R. for the rest
of this paper) is an intermediate step between source files and object files.  Although
there are other operating systems which use an intermediate format similar to RTE B.R.
files, they do not use them in such a prominent and useful way in the software
development process as RTE does.  This paper will discuss the features of B.R. files
which are important to the application programmer and how to use some utilities to make
the most of this secret weapon.

Some History
In the beginning, when computers had vacuum tubes and giants walked the Earth (Von
Neumann, Turing, et al), computers were programmed by entering the binary values for
the instructions and data directly into computer memory.  As time passed, it became
obvious that human beings are not that good at handling massive amounts of ones and
zeroes in the raw, so the first assemblers were invented to allow the programmer to work
with a more readable form of input.  Although the terse and cryptic mnemonics of
assembly language will never be mistaken for real human language, they are a vast
improvement over binary, octal, or hex codes.  Later still, compilers were invented to
make programs look more like human language, starting with FORTRAN, COBOL,
ALGOL and the like.  The trend of abstraction of the languages continued through
generations of computers and operating systems.  As we enter the first year of the twenty-
first century, we now have numerous so-called high level languages, some of which are
actually used for useful work rather than existing simply as laboratory curiosities.

In the biological sciences, there is a saying that ontogeny recapitulates phylogeny.  It
seems to me that there is a similar effect in computers.  Each new computer which is
introduced seems to repeat the developmental steps of the history of computing.  The
HP1000 certainly conformed to that pattern.  At the time of its introduction, it had only
the most rudimentary of software systems.  It was programmed in Assembler which
directly generated machine codes for the program to be run.  There was no mass storage,
and therefore no file system.  The human programmer was expected to take care of the
details of where in memory the program would run and where the data would be stored.
If more than one person worked on a program, they had to assign physical addresses
where subroutines would be stored and linked into the mainline code.

Although this was barely adequate for the 4K words of memory that the HP2116 had at
its introduction, it became too cumbersome to use manual methods when folks started
working with greater amounts of memory.  By the time of the HP2100A, most machines
were sold with 16K of memory, and quite a few with 32K, the maximum the machine
could address!  It was obvious by this time that programming was too complicated to
have each project team invent its own methods for talking to I/O devices, and the first
Operating Systems were invented.  The first O.S. for the HP1000, the SIO System, used
modules which were at fixed addresses in memory.  The problems of trying to assign
fixed addresses that would be acceptable for a wide range of customer configurations
were almost insurmountable.  A partial solution for the problem was to make the sources
to the HP provided code available to the end users.  From a support person’s point of
view, this is far from ideal.  A solution was sought that would allow HP to ship binary



BR Tools  2

code, but in a format that could be assigned (“relocated”) to any address in memory.  The
solution took the form of the B.R. format.

The B.R. Format in a Nutshell
The concept is really simple to explain.  One of the more important tasks of a compiler is
to figure out where everything (code and data) is going to be at run time and then form
instructions that will perform the desired actions.  When the programmer writes “LDA
FOO” or “Status = Foo + Bar”, it has to be changed into something very, very specific for
the computer to execute.  The “LDA FOO” must be transformed into “LDA from
location 14302" for example.  Remember, the computer is only a very high speed idiot
aspiring to rise to the status of imbecile someday.  The conflicting requirements that the
location must be precisely known, but we have no idea where the end user is going to put
the code means that there is no simple answer.  The complicated answer was to alter the
assembler and the compiler so that they emit machine codes just as before, but with the
origin of the code set at zero for every module and with each instruction which contained
an address flagged for later alteration by a new step in the process that was called
“loading”.  We now call the process “linking”.  Problem number one solved; we can put
our code anywhere in memory.  Problem number two: if the code is movable, how do we
know how to call one module from another?  The solution was to hand the problem off to
the loader as well.  The compiler was made intelligent enough that calls to subroutines
which were not coded in the source file it was working on were assumed to be
somewhere else, external to the current source, so it made a special notation in the B.R.
file that indicates that the module needs some other module of a given name.  The
compiler also published the names of each of the subroutines in the current module to the
B.R. file so that those subroutines would be available to satisfy the requests from other
modules.  Thus the compiler made available the entry points and externals so that the
linker could weave together the separate modules into an executable program.

More Details
Programs are not composed of just programs and subroutines.  There are also data
structures, common, and other things that you might want to reference from a separate
module.  The B.R. format allows for references to these entities also.  The package of
code that I have been referring to as a module is also called a compilation unit.  At the
first statement of a program, function, subroutine, or block common, the Fortran compiler
emits a B.R. NAM record.  The END statement in Fortran causes it to finish up the
compilation process and emit a B.R. END record.  Whatever came between the NAM and
END records was the compilation unit.  The same structure is built by the other high level
languages on the HP1000, and must be built manually by the assembly language
programmer.

A unique feature of the HP1000 is the microcoded instructions which replace subroutines
in the relocatable library.  We refer to these entry points as RPLs and they are used by the
linker to “educate” the code so that it does in-line instructions instead of invoking the
subroutines of the same name.

The B.R. format also allows for various directives to be passed on to the linker to tell it
such things as program priority, system common access, security access levels and so on.



BR Tools  3

Renovation and Renewal
The original B.R. format restricted the length of external names to 5 characters.  When
the HP2100 was supplanted by the 21MX which allowed a much larger address space,
limitations that were acceptable in the old days became too confining for more modern
coding styles.  RTE-4 introduced extended memory addressing and laid the groundwork
for the virtual memory addressing of RTE-6.  Obviously, the B.R. format had to change
to accommodate these constructs.  While they were at it, the re-designers of the B.R.
format added features that allowed even more information to be carried from the sources
through to the linker, such as the file name of the source file for each module, and date
stamps to show when a given module was compiled.  They also added INFO records to
pass information needed by the Symbolic Debug program.

Prepared for the Future
The update to the B.R. format defined some more features that were regrettably never
implemented.  If there had been funding to do it, the compilers could have been enhanced
to pass data type information in each entry or external record to allow the linker to do
type checking even for languages such as Fortran that do not do compile time type
checking.  As is true of most of RTE software, the good folks at Hewlett-Packard have
documented the B.R. format to the end user.  This has been handy on several occasions,
allowing me to create a set of tools that let me tap into the wealth of information that the
B.R. format makes available.

The Tools of Your Trade
The tools that I will discuss in the paper are:

NAMBR Display module information in a library

SRCBRSearch B.R. files

GETBR Copy a module from within a B.R. library to a file

DELBR Delete a module from a B.R. library

MERGE Create (B.R.) library files

LINDX Create indexed B.R. library files

IMREL Inverse macro assembler

NAMBR

NAMBR is used to display information about the modules contained in a B.R. file.  The
NAM record for each module is displayed followed by listings of the entry point and
external reference records.  For HP supplied code, the NAM record contains the part
number, the revision code, and a date stamp when the module was last edited.
Sometimes there is a short description field as well.  It is unfortunate, but most of the
code written outside HP did not put as much information in the NAM records.  NAMBR
is used when you want an overview of a library.  The runstring for NAMBR is:



BR Tools  4

NAMBR MASK

where MASK is a file mask specifying the file or files to be displayed.

 SRCBR

SRCBR is used to search B.R. files for a given module name, entry point, or external
reference.  It is the ideal tool to use when you cannot remember which library contains
the undefined entry point that the linker is complaining about.  Of course you could
attempt to find the missing name in the RTE manuals, assuming that you have a current
copy handy, but why not search the libraries on the machine you are using?

SRCBR was invented to assist in Y2K remediation efforts.  I wanted to search for all
references to GetTime in a large customer application.  I thought of using GREP to
search the sources, but decided against it for several reasons.  First, the DG program from
the contributed library is faster than GREP so it would have been the tool of choice.
Second, I was not sure that I had been given a complete set of sources.  In the case where
I am wanting to find which HP library contains a missing routine, I almost never have
access to sources.  Third, the customers sources each had a comment header blocks at the
start of each file.  That is good.  Most of the comment headers were created by copying a
template file, so they often claimed to reference routines that were not actually used.
That is bad.  By using SRCBR to find only those files that actually invoked the GetTime
subroutine, I did not waste time examining files with misleading comments.

The invocation for SRCBR is:

SrcBR Type Name Mask <990311.0015>
Type = "MO"   to search on module name

= "EN"   to search on entry point name
= "EX"   to search on external reference name

Name = name of module, entry point, or ext. ref. to find
Mask = file mask specifying files to be searched.

 ":::5" will be appended to the mask for you.

GETBR

GETBR is used to extract a module from a library.  I have used it when I wanted to use
IMREL to recreate a pseudo-source for a customer module for which the true source was
no longer available.  I have also used it to extract the set of HP subroutines that are
referenced by one of my programs to create a merged file that will load without
depending upon the libraries at a customer site.  For example, I used it to allow me to
load some utilities that I have written using the HpZ routines onto an RTE-4B system.
Of course this technique won’t always work because some of the modules in the HP
library are very O.S. revision dependant, but most of the HpZ routines will run even in an
RTE-2 system, as long as the CPU has X and Y registers.  The invocation for GETBR is:

GetBR Lib_FileName Module     <990222.2331>
Lib_FileName is the name of the library to be searched,

/libraries/$BigLb.Lib for example
Module is the name of a module to be found
and then extracted into a file named "module.rel"



BR Tools  5

DELBR

DELBR is used to create a copy of a library, leaving out one of the modules.  Usually this
is done so that a more recent, hopefully bug free, version of the module can be appended
using MERGE.  The invocation for DELBR is:

DelBR Lib_FileName Module Out_FileName     <970801.1706>
Lib_FileName is the name of the library to be searched,

"/libraries/$BigLb.Lib" for example
Module is the name of a module to be found

and then deleted from the file
Out_FileName is the name of the output file to create

IMREL

IMREL is the Contributed System Library program that creates a pseudo-source for a
given module.  It is an accurate source because it can be run through MACRO/1000 to
create a relocatable file that is identical to the one that you started with, but of course all
comments are missing.  I have actually read authors that have claimed that comments
should not be needed in a well written program with well chosen names for variables.  If
you agree with them, you still won’t like the output from IMREL, because all of the
labels and names of internal variables are machine generated and convey no information
other than the line number where the are defined.  Turning IMREL output back into a
reasonable MACRO source takes a good bit of patience and a lot of experience.  If the
original source was Fortran, the challenge is even greater, so IMREL is used only when
all other methods to find the sources have failed.

MERGE and LINDX

MERGE and LINDX are the standard HP supplied programs for concatenating and
indexing libraries.  You are probably already familiar with their operation and the
documentation is in the HP manuals, so these programs will not be described in further
detail here.

Program Availability
The sources for BR Tools are available in the RTE CSL or by e-mail from the author.


