
Preparing HP-UX Software for IA-64
Debbie Lienhart

Hewlett-Packard Company
3404 E. Harmony Road, MS 7
Fort Collins, CO 80528-9599

(970) 898-4227
(970) 898-7734 (FAX)

debbie@fc.hp.com

IA-64 is Intel's next generation 64-bit architecture for microprocessors. It contains the 64-bit Instruction Set
Architecture (ISA) developed jointly by Hewlett-Packard Company and Intel Corporation, as well as an IA-
32 compatible component. (IA-32 is Intel's 32-bit architecture, also known as x86. IA-32 chips include the
486, Pentium®, and Pentium II®.) The 64-bit ISA is based on the EPIC architecture technology, also
jointly defined by HP and Intel. EPIC stands for Explicitly Parallel Instruction Computing. IA-64 supports
both 32-bit and 64-bit computing environments and is compatible with HP's existing PA-RISC (Precision
Architecture Reduced Instruction Set Computing) architecture.

HP-UX on IA-64
HP-UX for IA-64 is a version of HP-UX 11.x. The same HP-UX version will run on both PA-RISC and
IA-64 systems, and will be compiled from common source for compatibility. The environment (commands,
utilities, user interfaces, shell scripts, and so on) will be the same on PA-RISC and IA-64 systems.
IA-64 supports both big Endian and little Endian operating systems. HP-UX has always been a big Endian
operating system, and will continue to be so on IA-64. This means that HP-UX applications will be able to
read their existing binary data on IA-64.

There are a few planned differences between HP-UX on PA-RISC and IA-64. In particular, HP-UX on IA-
64 will have a different run-time architecture, object file format, and debug information format. The
different run-time architecture is needed to support IA-64. The new object file and debug information
formats will make HP-UX more similar to other UNIX operating systems. These new formats will make it
easier for software development tool providers to support HP-UX, and should result in more software
development tools for HP-UX. The HP-UX implementation will also have some minor changes to support
IA-64. For example, the kernel data structures will need to be updated to handle all of the registers on IA-
64. These changes should only affect kernel-intrusive software.

Software Compatibility
Well-behaved PA-RISC binaries that run on HP-UX 11.x will run on HP-UX on IA-64. The new IA-64
architecture was designed to enable binary compatibility with the PA-RISC architecture. Source
compatibility will also be provided between HP-UX 11.x on IA-64 and HP-UX 11.x on PA-RISC.

In general, well-behaved applications are those that are not sensitive to the architecture or operating system
implementation. Well-behaved applications follow these general guidelines for compatibility:

• Use only public APIs.
• Adhere to required practices that are specifically documented.
• Do not use features that are specifically described as having platform, architecture, or

configuration limitations.
• Do not decompose an HP-UX product and then re-use the results of the decomposition.

These guidelines are described in more detail in the Coding Practices for Compatibility paper, which can be
found in the HP-UX 11.x Software Transition Kit.

Deciding Whether to Run PA-RISC or Native IA-64 Binaries
Both well-behaved PA-RISC and native IA-64 HP-UX binaries will run on HP-UX on IA-64. Native IA-64
binaries will run faster because they will be compiled to expose the parallelism in the code and will be
optimized to take advantage of the architectural features and resources of IA-64.

Many applications will have acceptable performance without being recompiled for IA-64. The capability to
run both existing PA-RISC and native IA-64 binaries allows HP customers and ISVs to make an
incremental transition to HP-UX on IA-64, as illustrated in the following two examples.

In the first example, suppose you want to run several of your applications on an IA-64 based system. You
can start by using native versions of just the architecture-sensitive applications, while running all other
well-behaved applications in compatibility mode on IA-64. You can then update the latter applications to
native versions over time. The primary benefit of this approach is that you need not wait until you have
native versions of all your applications to make them available on IA-64. By changing one application at a
time, it will also be easier to diagnose any problems that may occur during the transition. Plus, system
performance will improve as more of your applications become native.

For the second example, suppose you have an application that is composed of many processes, and the
different processes have varying levels of architecture- and performance-sensitivity. In this case, you can
start by compiling native versions of just the architecture-sensitive processes of your application, while
leaving the rest to run in compatibility mode. This allows you to provide the application to your customers
as early as possible. You can then compile native versions of the performance-sensitive processes in order
to provide a high-performance version to your customers. Eventually, you might want to compile native
versions of all the processes, if an all-native version of your application would be easier for you to build
and support long-term.

As you can see from these examples, you have a great deal of flexibility when transitioning your software
to HP-UX on IA-64. You can either leave your well-behaved PA-RISC binaries running in compatibility
mode on IA-64, or re-compile them into native IA-64 binaries. You also have the option of transitioning
processes incrementally within an application to native IA-64. This inherent flexibility allows you to get up
and running on IA-64 much faster on HP-UX than with other enterprise UNIX operating systems.

HP-UX 11.x Software Transition Kit
The HP-UX 11.x Software Transition Kit (STK) is the foundation for HP's IA-64 software transition tools
and processes. You can use the STK now to prepare most of your existing PA-RISC binaries and source
code for HP-UX on IA-64. HP continues to add information about transitioning software to IA-64 to the
STK as it becomes available.

As explained earlier, well-behaved PA-RISC binaries that run on HP-UX 11.x will also run on HP-UX on
IA-64. To make your well-behaved PA-RISC binaries ready for IA-64, you can test them on HP-UX 11.x
on PA-RISC with the qualification process described in the STK.

How to Prepare Your Source Code for HP-UX on IA-64
Native binaries will provide the best performance on the IA-64 architecture. You can create a native binary
by compiling on IA-64. The version of HP-UX fully supporting IA-64 will be source-compatible with the
current HP-UX version 11.x. Thus, the following subsections outline the steps you can take now on HP-UX
11.x to make your source code ready for IA-64. Exceptions are listed in the section Software Which Cannot
be Pre-Enabled on HP-UX 11.x.

Resolve IA-64 Transition Issues
The first, key step in preparing your source code for IA-64 is following the porting processes
(investigating, planning a port, and performing a port to HP-UX 11.x) that are documented in the HP-UX
11.x Software Transition Kit (STK). You can use the scansummary and scandetail file scanners
included in the STK to identify transition issues, such as API changes, in your source code files.

To identify the planned differences between PA-RISC and IA-64 that will affect your source code or
binaries, you will need to scan your source code files using the IA64 classification option with the file
scanners. For example, to get a summary output report listing only the IA-64 API transition issues in a
particular source code file, run the scansummary tool on the command line like this:
scansummary +C IA64 source_file

Once you have run the file scanners to identify all the IA-64 API transition issues in your source code files
and have completed a porting plan, follow the porting process to resolve the necessary transition issues in
your source code. Pay special attention to resolving any Non-critical Non-standard (NcNs) impacts in your
source code for APIs that are likely to cause compatibility problems.

If you cannot resolve an API impact that is specific to IA-64, you may not be able to fully prepare your
source code for IA-64 at this time. In this case, resolve all the transition issues you are able to now, keeping
track of the transition issue(s) that will require more work later.

Use Kernel Threads Instead of DCE Threads
HP-UX DCE threads were based on an early draft of POSIX threads, and there are some significant
differences between that draft and the final standard, which is implemented as the kernel threads set of
APIs. Like DCE threads, kernel threads allow you to develop multi-threaded applications. However, kernel
threads provide finer granularity for optimizing performance in applications that can exploit a threaded
architecture. HP-UX 11.x contains thread-safe libraries for C++, Pascal, math/vector, networking, and the
dynamic loader, based on the POSIX 1003.1c standard.

DCE threads will still be available for IA-64, though they may be obsoleted in the future. For more
information on using kernel threads, see the paper Introduction to Kernel Threads in the STK.

Use Shared Libraries
Shared libraries are preferred over archive libraries during the transition to IA-64 for the following reasons:

• Shared libraries avoid binding architecture dependencies into the application. This is especially
important for PA-RISC applications running on IA-64.

• Defect fixes are picked up automatically when a library is patched.
• The performance difference between archive and shared libraries is decreasing as new run-time

architectures are optimized for shared libraries.

Use pstat(2) to Read System Files
If any of your code reads system files directly, such as /dev/kmem, revise your code to use pstat(2)
routines to get system information instead. This is because system files will likely have different formats on
IA-64 based systems. By using pstat(2), information can be retrieved about the following:

• Memory -- static, dynamic, shared, virtual
• System CPU processors
• System processes and messaging
• Disks, swap space, and file systems
• Semaphores

See the pstat(2) man page for more information. Note: The pstat(2) routines are HP-specific
routines and are not available on other vendor platforms.

Also, if you have 32-bit applications that you will deploy on IA-64, you must use the pstat() wrappers
turned on with -D_PSTAT64 to function correctly.

Make 64-bit Applications 64-bit Clean
Many operating systems that currently have only 32-bit support, including Microsoft Windows®, will be
available in 64-bit versions for the first time for IA-64. While HP-UX and these other operating systems

will continue to provide support for 32-bit applications, you may want to take this opportunity to create a
64-bit version of your application. Since HP-UX 11.x already provides 64-bit support, you can make your
software ready for 64-bit mode on HP-UX now so you do not encounter as many changes later.

Different data models are used in 32- and 64-bit UNIX computing, including HP-UX. The data model used
in 32-bit UNIX computing is called ILP32, meaning that integers, longs, and pointers are all 32-bit data
types. The data model used in 64-bit UNIX computing is called LP64, meaning that longs and pointers are
64-bit data types, while integers remain as 32-bit data types. Some existing C and C++ code assumes that
integers, longs, and pointers are the same size. Because these assumptions are not true in LP64, some
executables will have defects when they are compiled for 64-bit mode.

Problems can arise, however, when you try to make 32- and 64-bit applications interoperable. The
difference in the size of the ILP32 and LP64 data models and in system address space can create problems
when data is transferred from a 32-bit application to a 64-bit application or operating system, and vice
versa. These differences can adversely affect the sharing of data between applications, sharing of data
between an application and the operating system, communication between processes, working with large
files, loading processes, and working with graphical interfaces. For more information, see the white paper
Interoperability of 32- and 64-Bit Applications on 64-Bit HP-UX in the STK.

Tools and Guidelines for Making Source Code 64-bit Clean
If any of your applications will be compiled for 64-bits, they should be 64-bit clean. Tools to help make
your code 64-bit clean include using lint, compiling in ANSI C or aC++, and using the portable header
file <inttypes.h>.

The following guidelines will also help make your code 64-bit clean:
• Use the same source code and header files for both 32- and 64-bit applications.
• Use appropriate data types consistently and strictly. For example, use off_t consistently for file

offsets and fpos_t for file positions.
• Use integral types in <inttypes.h>, where applicable, instead of ints and longs.
• Use fixed/scalable width integral types, algorithms, and masks as appropriate. Fixed types remain

a consistent size on 32- and 64-bit platforms. For example, use int32_t, defined in
<inttypes.h>, if ints and longs should be 32-bits in your application. Scalable types can
grow and scale to future architectures, such as IA-64, without source code modifications.

• Perform boundary checking on integral type ranges.
• Update 64-bit code in cases where 32- and 64-bit processes share the same memory segment.

Compile on HP-UX 11.x
Finally, you can make most of your source code ready for IA-64 by compiling it on HP-UX 11.x. The IA-
64 compilers will be compatible with the current HP-UX 11.x compilers. HP will provide the C, ANSI
C++, COBOL, Fortran90, and Java compilers for HP-UX on IA-64. The C, ANSI C++, and Fortran90
compilers will generate both 32- and 64-bit code. The Cfront C++, Fortran77, and Pascal compilers will be
obsoleted for IA-64, so you should move code off them now. Note, however, that the Cfront C++ run-time
environment will still be available for running any existing (PA-RISC) Cfront binaries you may have.

The C compiler and C Lint in HP-UX 11.x have a +M1 option that you can use to identify compiler and
linker options that will either change or be obsoleted for IA-64.

Optimization will be increasingly important on IA-64. The IA-64 compilers will use optimization
techniques based on the current PA-RISC compilers. Therefore, you should experiment with higher levels
of optimization and Profile Based Optimization (PBO). Optimizing now will not only expose defects in
your code, but it will also result in a faster PA-RISC application.

Software Which Cannot be Pre-enabled on PA-RISC
Most source code can be made ready for IA-64 now on HP-UX 11.x on PA-RISC. However, software with
either assembly language code or kernel-dependent code, or any software that is sensitive to either the
different run-time architecture, the new 32-bit object file format, or the new debug format of IA-64 cannot
be pre-enabled now.

This section describes these exceptions. If you have source code that you cannot pre-enable for IA-64 now
on HP-UX 11.x, contact HP via the HP Developer’s Resource web site (http://devresource.hp.com).

Assembly Language Code
You cannot pre-enable applications with assembly language code because the new IA-64 instruction set is
vastly different from the PA-RISC instruction set. If you have any assembly language applications needing
to be compiled on native IA-64, you must re-code and performance tune the assembly language source.

Kernel-Dependent Code
The HP-UX kernel will require changes to support IA-64 fully. This may cause changes to kernel drivers
and other code accessing kernel data structures. Hence, if your code is kernel-dependent (for example,
kernel drivers), you cannot pre-enable it on HP-UX 11.x.

Software Sensitive to the Different Run-time Architecture
The IA-64 run-time architecture is different from that on PA-RISC. If you have software that is sensitive to
the run-time architecture, you will need to update it for IA-64 and then compile it on native IA-64.

Software Sensitive to the New 32-bit Object File Format
The HP-UX object file format for IA-64 will be based on ELF. ELF (Executable Linking Format) is an
industry-standard object file format.

The current 64-bit version of HP-UX 11.x on PA-RISC uses the ELF-64 object file format. ELF-64 is, for
the most part, a simple extension of the ELF-32 format, as originally defined by AT&T Corporation.

For 32-bit object files on IA-64, HP-UX will change from SOM object file format to ELF-32 object file
format. The SOM (System Object Model) format is a 32-bit, HP-proprietary object file format for all
releases of HP-UX on PA-RISC. Although moving to the ELF-32 object file format will require changes to
software that manipulates object files, it will be easier for you to maintain this software on multiple UNIX
systems in the future.

Software Sensitive to the New Debug Format
Finally, the format for debug information will also change for IA-64. The new format should be easier to
work with, but the change will affect debuggers and other software that read and write debug information.
Therefore, such software cannot be pre-enabled for IA-64 now on HP-UX 11.x.

Conclusion
HP-UX systems based on Itanium, Intel’s first IA-64 processor, will soon be available. These systems will
run both native IA-64 HP-UX binaries, as well as most PA-RISC binaries. In either case, you can use the
HP-UX 11.x Software Transition Kit (http://devresource.hp.com/STK) to prepare your software now.

http://devresource.hp.com/STK

	Preparing HP-UX Software for IA-64
	
	HP-UX on IA-64
	Software Compatibility
	Deciding Whether to Run PA-RISC or Native IA-64 Binaries
	HP-UX 11.x Software Transition Kit

	How to Prepare Your Source Code for HP-UX on IA-64
	Resolve IA-64 Transition Issues
	Use Kernel Threads Instead of DCE Threads
	Use Shared Libraries
	Use pstat(2) to Read System Files
	Make 64-bit Applications 64-bit Clean
	Tools and Guidelines for Making Source Code 64-bit Clean

	Compile on HP-UX 11.x

	Software Which Cannot be Pre-enabled on PA-RISC
	Assembly Language Code
	Kernel-Dependent Code
	Software Sensitive to the Different Run-time Architecture
	Software Sensitive to the New 32-bit Object File Format
	Software Sensitive to the New Debug Format

	Conclusion

