
Tutorial: An Introduction to Shared Memory

William Sumner

Hewlett Packard Corporation
3000 Waterview Parkway
Richardson, Texas 75080

Voice: 972-497-4642
Fax: 972-497-4245

bill_sumner@hp.com

mailto:bill_sumner@hp.com

Introduction and Background
This paper presents a short tutorial on the use of shared memory and memory-mapped
files in a multi-process or multi-threaded environment. It is meant to be an introduction
to the topics and not an exhaustive nor an in-depth study. It presents the basic definitions
for the terms used, introduces the system calls available in this area, and discusses the
concepts necessary for using shared memory and memory-mapped files. Additionally it
attempts to mention the key difficulties that may trip-up the first-time user.

To prepare for this discussion, it is helpful to start with a common set of definitions for
the terms in use. The remainder of the talk will expand on each of these.

In this paper the term UNIX refers to the generic UNIX-style operating system while the
term HP-UX refers to the Hewlett Packard implementation of UNIX.

A Process is the context for everything a user does in a UNIX system. It holds things
like the userid, the group-id, a set of environment variables and the program that we are
running. Of particular interest to this talk -- a process has a virtual address space and is a
container for one or more threads of execution.

The Virtual Address Space is a range of addresses, unique to this process, into which
we can map various items of storage. These items include an executable program, a
private memory area for our stacks and heaps, and a jumptable through which we request
operating system services, among others. This paper concentrates on two items which
may be shared among two or more virtual address spaces -- a memory-mapped file, and a
shared memory segment.

The term Shared Memory Area will be used in this paper to refer to either a memory-
mapped file, or a shared memory segment without regard to which one it really is--
because most of the principles operate the same on both. There is only one physical copy
of a given shared memory area regardless of how many processes have mapped it into
their virtual address space. All of the processes read and write the same physical copy.
When a process changes the value of a shared data item, the new value is seen
immediately by all of the processes.

A Shared Data Item is any data item that is accessed (for read or write) by more than
one thread. This paper only discusses shared data items in a shared memory area.
Although many of the principles also apply to the private data area of multi-threaded
applications, this paper will not address sharing data items in a process's private data
area.

Data items within a shared data area may be allocated either statically or dynamically.
A typical static shared data item might be a:

• Lock
• Simple Data Item (char, int, ulong, etc.)
• Structure

• Vector of Structures or Simple Data Items (Buffer, Multi-dimensional array)
• Pointer

A typical dynamically allocated data item might be a:
• Lock
• Structure
• Vector of Structures or Simple Data Items
• Complex Organization of Structures

• Linked List
• Queues and Stacks

• Structures containing pointers to Structures
• Hash Table
• Tree

A Thread is UNIX's abstraction of a processor. It is a virtual central processing unit,
complete with registers (all the data contents of a real processor), a private stack, and
optionally some private thread-local storage. A multi-threaded application can use any of
the following kinds of threads:

• Multiple processes, each with one or more kernel threads accessing a shared
memory area or a memory-mapped file. Subject of this paper.

• Multi-threaded process (Kernel threads)............................... Some applicability.
• Lightweight processes (User threads) Not covered herein

• M x N Threads (Combination of Kernel and User Threads). Not covered herein

Additionally, the access patterns for the shared data items determine the complexity of
the programming task.

• No Writers -- Static read-only data
• No problem, everybody just reads it.
• Typical case: Multiple processes running the same program

• One Writer, One or more Readers
• Typical case: Data for an online, web-server catalog
• Writer may need to say, "New data available."
• Reader may need to say, "I'm finished."

• Multiple Writers (Including "read and update")
• Typical case: Online order processing updating inventory

As the complexity of the access pattern increases, so does the need for synchronization of
the threads. The synchronization process includes notification, locking, and the use of
semaphores.

Process Structure, Threads and Shared Memory Area,

Process Structure
Let's take a look at the structure of a typical process. It's a container for memory and one
or more threads. In HP-UX, the memory is divided into quadrants, each of which is 1/4
of the process's total virtual memory range.

Q1: Read-only area for programs
Q2: Data area private to this process and its threads
Q3: Memory shared with other processes

 (Shared memory segments and memory-mapped files)
Q4: HP-UX (Read-only) (Gateway page, I/O maps, etc.)

By default a process has this memory structure and one thread.

Q1:
Q1 contains the executable text of the program that this process is running. This is
always read-only, so we are not really concerned with any memory-sharing in this
quadrant. However, HP-UX does it for us and we get the benefit somewhat indirectly.
When 100 processes are all running the same program (say "vi"), HP-UX loads only one
copy into real memory and points all 100 processes at that one copy -- saving lots of real
memory that can be used for other things.

Q2:
Q2 is the private data area of a process. This area is shared among all threads belonging
to this process but is not shared with other processes. Note that when a process forks1 --
creates a child -- the child process gets a copy of this area. The child does not share the
Q2 space.

Most programs run as a single process with a single thread. In this case, the one thread
simply considers the Q2 data area as private to itself and uses it. On the other hand, if the
program creates additional kernel threads or uses the lightweight-thread package (LWP),
then some or all of the data items in Q2 can be shared among the multiple threads of this
process. The shared items need to be protected against simultaneous update -- as
described later in the section on locks.

Q3:
When we talk about sharing memory between two processes, we are talking about the Q3
memory area -- either shared memory segments allocated with shmem() or memory-
mapped files allocated with mmap(). In HP-UX, chunks of shared memory in Q3 are
mapped into the same virtual memory address in all of the processes that share the

1 Depending on how you do the "fork()", and up until you do the "exec()" it is possible to share this area. However, the
child is not allowed to change anything in this area before the "exec()". If it does, the results are undetermined (read
"usually catastrophic"); therefore, we are going to ignore this special condition and move on.

memory area. That is, the shared memory area starts on the same virtual address in each
process virtual space.

Other UNIX systems may map the shared memory segment into a different starting
virtual address in each process. In general, UNIX systems only guarantee that the
displacement into the shared memory area is the same for each process -- not the starting
address. This means that any pointers to data items within the shared memory must be
self-relative or must be displacements from the start of the area. They cannot be real
pointers. In general, in order to write a program which uses shared memory in a portable
manner across multiple implementations of UNIX, you should expect that the shared
memory area will be mapped into a different contiguous virtual address range in each
process which uses it.

Q4:
Q4 is shared read-only among all processes. It is the portion of HP-UX that is visible to
user programs (e.g.: The gateway page that provides entrances to all system services.)

Threads
Let's look at a typical thread. A thread is a virtual processor with a private stack and
private thread-local storage. The register contents of the thread, the thread's stack, and
any thread-local storage are never shared with another thread. When UNIX executes a
thread, it loads all of the register values and other processor contents that belong to this
thread into a real processor and runs the thread by jumping to the next instruction of the
thread. Whenever UNIX suspends a thread, it copies all of the processor contents for that
thread into (UNIX private) storage before UNIX leaves the thread. Essentially, the
registers and other processor contents are private to the thread. They are never shared.
Likewise, the thread's stack is always private to the thread. Data items on the stack are
never shared with another thread. A thread may also own data items in thread-local
storage. These items are also private to the thread and will never be shared with another
thread.

Storage which is not shared

• The stack of each thread is always private to that thread.
• Thread-local storage is private to each thread
• The processor registers are private to each thread

Shared Memory Areas
A shared memory area is created as a global, named entity within the UNIX machine.
Subsequently, each process that wants to use the shared memory area maps the area into
the process' virtual memory. When each process is finished using the shared memory
area, the process removes the mapping from the process' virtual address. When the
application is completely finished with the shared memory area, it is removed from the
system (destroyed). Removing the shared memory area from the UNIX system is a
separate operation from unmapping it. In the case of a shared memory segment this is a

call to shmctl(). In the case of a memory-mapped file, the file is deleted using the
standard file system mechanisms.

It is quite normal for programs within an application to expect that their shared memory
areas just exist under all normal circumstances. Programs within the application simply
assume that the shared memory exists, map it into their data area and begin using it. The
one-time creation of the shared memory area and the (possibly never) deletion of the
shared memory area are handled as exceptions to the norm by special programs.

The next two sections describe the system calls used for each type of shared memory
area.

Creating and Using a Shared Memory Segment
This section uses the description of each system service call as the title for the discussion
of how that call is used. The system services are presented in the order in which they
would normally be used in the application.

#include sys/types.h
#include sys/ipc.h
#include sys/shm.h
The application using a shared memory segment should include these system headers in
all programs.

key_t ftok(char* path, int id)
In order to create a shared memory segment or to access one that has already been
created, we first need a key that we can use as the name of the segment. The key must be
unique within the system and UNIX has its own idea of what a key should look like. The
system call ftok() creates and returns a key based on the path to a file and an integer.
This file will not be read nor written, and its contents are not what is mapped into the
virtual memory -- ftok only needs the character string of the path. However, the path
must be to a valid file that the program is authorized to read. A common practice is to
use the full pathname of the program executable for the primary program in the
application. Note that the same path and id will always return the same key_t value; so
we just need to decide which path and id all the programs will use. If an application uses
several shared memory segments, it normally uses the same path for all of them and uses
a different integer (id) for each segment.

int shmget(key_t key, int size, int shmflg);
The key is used as input to shmget() which returns an integer shared-memory-id (always
positive). If the IPC_CREAT flag is set in shmflg (shmflg | IPC_CREAT) then a new shared
memory segment is created and its shared-memory-id is returned. If IPC_CREAT is
clear, the segment associated with this key must already exist in the system and the
shared-memory-id of the existing segment is returned. On failure shmget() returns (-1)

and errno provides the details of the error. On success, we have a positive integer shared-
memory-id.

void* shmat(int shmid, void* shmaddr, int shmflg)
This system call maps the shared memory segment identified by the shared-memory-id
(shmid) into the data area of the calling process and returns the starting address of the
segment. shmaddr is normally specified as zero in order to allow the system complete
freedom to select the appropriate address. The flags in shmflg allow mapping the
segment as a read-only area, or as read/write. The address returned by shmat() is the base
pointer used for all access to the shared memory segment.

At this point, the program is ready to use the shared memory segment.

In an HP-UX system, the virtual address returned to any process will always be the same
for any given segment. That is, a segment will have the same virtual address in all
processes that map it. This means that it is possible to use absolute pointers among the
data items within the shared memory segment. Note that this is not the case in other
UNIX systems.

int shmdt(char* shmaddr)
This call is normally used just before each program exits to delete the mapping of the
segment from the process' virtual address space. Even if all processes delete the
mapping, the shared memory segment is retained by UNIX until it is removed via
shmctl(IPC_RMID) or the ipcrm command. This makes it possible for a subsequent
execution of the application to map the shared memory segment and begin using the
shared data items within it -- just as they were left when the segment was unmapped.

shmctl(int shmid, int cmd, int, struct shmid_ds* buf)
This function provides a wide variety of control options for the shared memory segment.
The specific operation is determined by the value of cmd:

IPC_STAT: Copy the information structure associated with this shared
memory id into the structure pointed-to by buf.

IPC_SET: Set the userid, groupid or mode of the shared memory
segment. Normally you must be superuser or the creator of
the segment to change this.

IPC_RMID: Remove the shared memory identifier from the system after
all processes that are currently mapping this segment have
released it. The resources will be reclaimed and the data in
the memory segment will be lost.

Normally the last program of an application session will use IPC_RMID to remove the
shared memory from the system.

Commands for Manipulating Shared Memory Segments
UNIX provides two commands for manipulating shared memory segments. The ipcs
command reports on shared memory segments. The ipcrm command removes a message

queue, a semaphore set, or a shared memory segment from the system. These commands
can be used interactively or can be placed into a shell script as part of the application.

Creating and Using a Memory Mapped File
This section uses the description of each system service call as the title for the discussion
of how that call is used. The system services are presented in the order in which they
would normally be used in the application.

There is nothing special about the creation of a memory mapped file -- only in how an
application uses it. Almost any UNIX disk file can be memory mapped. A simple
program to create and initialize a memory mapped file would open the file, ask how big it
should be, write that many zero bytes into the file using write(), and close the file.

#include sys/types.h
#include sys/ipc.h
#include sys/mman.h
Each program should include these headers which define the function prototypes and data
typedefs.

open(char* path, int oflag)
The program opens the file to be memory mapped using the standard open() system call.
This returns an integer file descriptor for the file.

caddr_t mmap(caddr_t addr, size_t len, int prot, int flags, int fd, off_t off)
The integer file descriptor is used as the fd input to mmap(). This system call returns the
address where the shared memory area begins. The program assigns this to a void pointer
which is used as the base pointer for all accesses to the shared memory area. Input
parameters to mmap() are as follows:

addr: The requested virtual address within the process to map the file. This
should normally be zero to allow UNIX complete flexibility in selecting an
appropriate virtual address within your process.

len: The requested length (in bytes) to map. This is normally a well-known
value within the application. The size of the file can be obtained with
standard directory calls or the (ls -l) command.

prot: PROT_READ, PROT_WRITE, PROT_EXEC, PROT_NONE

flags:
MAP_SHARED Writes will change the common copy
MAP_PRIVATE Writes will create a private page (common copy not
chgd)

fd: File descriptor of the file to map. It must be currently open for read (if
PROT_READ is set) and open for write (if PROT_WRITE is set).

off: Offset into the file (byte displacement) which will be mapped to the starting
address of the shared memory area. The range (off, off+len) will be

mapped into (start, start+len) where start is the returned starting address of
the shared memory area.

The program is now ready to use the memory-mapped file.

munmap(caddr_t addr, int len)
This system call unmaps a range of addresses from the process. Normally a program
doesn't bother with unmapping the memory-mapped file. It just stops using the shared
memory area. When the program exits, the mapping is released.

Intermediate Summary
OK, to summarize, we have a couple of different types of shared memory areas -- shared
memory segments and memory-mapped files. After either type is created and mapped
into one or more processes, the contents of the shared area are accessed just like any
other area of memory. Because we allowed UNIX to select the starting address of the
shared memory area, all of the accesses to it will be handled through a base pointer which
was returned to the program by the UNIX system call.

The shared memory area has a name (either a key or a filename) to identify it uniquely.
When any given shared memory area is mapped into multiple processes, all processes
access the same physical copy of the shared memory area. Updates made by one process
are seen immediately by all of the other processes.

Shared Data Items
Now that we understand how the shared memory area is mapped into the various
processes which are sharing it; let's look at how to organize the data items within the
shared memory area. Static allocation of the data items is the easier to program and
provides a lot of functionality in a straightforward manner. Dynamic allocation of data
within the shared memory segment provides substantially more flexibility at a
substantially higher complexity of programming.

Static Data Allocation
Static data allocation is simply using a fixed layout of the shared memory area. The
easiest way to do this is in "C" is to declare a structure that describes all of the data
within the shared segment. The pointer to the start of the shared segment is declared to
be a pointer to this type of structure. All data items in the shared segment are data items
in the structure, and all are accessed through the structure and the base pointer to it.

Case 1 -- Example: Web Server CGI Programs
Static allocation is particularly useful in situations where one process is the writer and
many other processes are the readers. When only one thread updates the shared area,
and when there are no complex organizations (e.g.: linked lists, hash tables) it is rarely
necessary to lock the data items before using them. The writer simply stores the values
into the data items and the readers read the values whenever they want them. Mapping a
shared memory area is fast, so the CGI programs simply map the shared memory, send
the data to the client, and exit.

Case 2 -- Example: Image Processing Application
A second typical use is where two or more processes operate on a single large data array
but only one process uses it at a time. An example would be an image-processing
application where the programs are small in relation to the size of the digital image being
manipulated. A control program creates the shared segment, loads the picture, and then
runs a series of image manipulation programs -- each of which maps the shared segment
into itself, operates on the image, and exits.

Case 3 -- Communications or Database Server Application
A third example is the situation of a pair of processes, each of which uses a portion of the
shared area to send messages to the other process. This is very effective when the
messages are so large that copying them through a pipe would affect performance. In this
example a single process acts as the server for other programs in other processes --
synchronizing updates to a central database or managing telecommunications for all of
the programs. The server copies the data directly from the database or communications
line directly to the shared memory segment for the receiving application program.

Synchronization between processes
In some applications, it may not be necessary to provide any synchronization among the
processes using a shared memory segment. In the case 1 above, each "reader" may be an
HTTP process running a CGI script within a web server. When the HTTP process runs, it
maps the shared memory segment and retrieves the latest information to send to the
client. Whenever the information changes, some process running a program from a local
login or telnet session simply changes the data item in the shared memory segment. The
next time an HTTP process runs, it will retrieve the updated data. In this case, there is no
synchronization whatsoever between reader and writer. Note that the HTTP processes
didn't even exist when the shared memory area was created.

In other applications using shared memory segments it is necessary for one process to be
able to "tap the other process on the shoulder". In case 2 above, the control process
simply runs one child at a time and waits for the child to exit before running the next one.
The program in the child process maps the shared memory segment, updates it, and exits.
The UNIX-provided "child is finished" interrupt is sufficient communication between the
processes.

In case 3 above, one process places the (large) message into its portion of the shared
memory segment and needs to notify the other process to retrieve the message. Although
message queues and semaphores can be used for this purpose, I have found that the most
simple and straightforward mechanism is a pair of UNIX-pipes between the processes.
Initialize the pipes in non-buffering mode and use the write() system call to send a short
message (a few bytes) as a command to the other process. If the processes are parent and
child, these can be unnamed pipes. If the processes are not so closely related, then use
sockets or named pipes instead. An additional advantage of using pipes is that a process
can use the select() system call to manage it's input queue. This is very useful when one
of the processes is actually a server talking to 20 or 30 other processes, with 20 or 30
shared memory segments and 20 or 30 pairs of pipes -- one pair to each of the other
processes.

Dynamically-allocated Data
Applications which use dynamically allocated data within shared memory areas tend to
be the more complicated ones. Typically, there are multiple processes or multiple threads
of execution simultaneously updating both the contents of the data items and their
organization (the pointers among them).

Case 4 -- Example: Multi-Processor Number Grinder
We can have a multi-threaded application where several threads place service requests
into a linked-list that is used by another thread as an input queue. We now have multiple
threads (possibly in multiple processes) allocating and filling each linked-list item (the
contents) and then adding it to the linked-list (the organization) -- with another process
removing the items from the linked-list, processing the requests, and releasing the linked-
list item. This is a very low-overhead method for synchronizing multiple processors.

Suppose that the application is a three-dimensional simulation where the program divides
the total job into lots of subcubes and assigns a thread to each subcube. Because of data
differences among the subcubes, some threads will finish before others, place their results
onto the input queues of other threads, read their own input queue and press on --
allowing each thread to work continuously without waiting for the others.

Case 5 -- Example: Object Oriented Database
Another common scenario is a complex organization of structures that contain pointers to
other structures -- for example, an in-memory, object-oriented database. This can be
implemented in "C" by defining each structure type in a header file, dynamically
allocating a place in the shared data area for each structure instance, and then using
standard "C" expressions to manipulate the in-memory data items, to create pointers
among the structure instances, and to follow the pointers from structure to structure.

These examples demonstrate three areas that are somewhat unique to dynamically
allocated data items -- pointers among data items, functions to allocate and free portions
of the shared segment, and locks to synchronize access among multiple threads.

Pointers:
In the general case, pointers to data items in a shared memory area or a memory-mapped
file require special consideration because the starting address of the shared memory or
memory-mapped file will not always be the same. When the starting address of the
shared area changes, the addresses of all the data items within that shared area change
also. This can happen several ways -- even in HPUX where each shared-memory
segment is always mapped to the same virtual address in each process that
simultaneously uses that segment.

1. A memory-mapped file is stored on disk between uses. Each time the
file is mapped into virtual memory the starting address may be different.

For example: the virtual address range that maps the file today may be
unavailable when the file is first mapped tomorrow.

2. Some versions of UNIX will map a shared memory segment at different
virtual addresses in different processes even when the processes are using
the segment simultaneously.

In order to handle different starting addresses for a shared data area, we don't store the
actual address of the data item in the pointer. We store a relative value and add a
correction each time the pointer is used. There are two common ways to do this: self-
relative "pointers" and displacements from the start of the shared area.

Self-relative "Pointers"
Self-relative "pointers" are long integers that store the difference between the address of
the data item and the address of the pointer itself. Note that this difference may be
positive or negative so the integer needs to be signed. Regardless of where the shared
memory area starts, the distance between the "pointer" and the data item within the area
doesn't change. Whenever the pointer is used, we simply add the address of the "pointer"
to the value stored in the "pointer". Cast the address to (char*) to do the add and then
cast the sum to be a pointer to the correct data type.

Displacements
The second common method is for the "pointer" to hold the displacement of the data item
from the start of the shared memory area. Every time the "pointer" is stored, we subtract
the starting address of the shared memory area -- and then add it back each time the
"pointer" is used (with appropriate casts to (char*) and to the data type).

A variation on the displacement method relies on the data items being aligned on their
natural boundaries. Data items in the shared area are referenced by their index from the
starting address. Multiple base pointers -- one for each data type that may be stored in
the shared area -- point to the start of the shared area. Each of these base pointers points
to the same address -- the start of the data area, which normally is aligned on a page
boundary. Since we know the data type of each item in the shared area, each reference
to it is merely its index from the base pointer of the correct data type.

Functions to Allocate and Free Portions of the Shared Area
In any shared memory scenario that dynamically allocates and frees portions of the area,
you must provide your own functions for this purpose. The standard MALLOC() and
FREE() don't handle shared memory segments. Additionally, it normally is impossible to
expand the size of the shared memory segment (or the memory-mapped file) during the
execution of your program. The scenario that works on all implementations is to start
with a shared memory area larger than will ever be used, map it all into a single
contiguous range of virtual memory, and then provide your own allocate() and
deallocate() functions to subdivide it.

Locks
When multiple threads are simultaneously updating the data items in a shared memory
segment, we need a mechanism to keep one thread from running over another one. An
example from everyday life is a traffic intersection (let's say that both streets are one-
way). Only one car at a time can use the intersection. If two cars try to cross at the same
time, we have a collision. This is undesirable, so we install a traffic light, a mechanism
to ensure that only one car goes through at any given time -- even if two cars arrive at the
same time.

Locks in a computer are similar to the traffic light. Even if two threads arrive at the lock
at the same time on different processors, only one thread is allowed through and the other
thread is forced to wait. Locks synchronize the use of those portions of the code where
we must have only one thread executing at a time. For example: updating the linkage
pointers of a linked-list. There are several data items (the backward and forward
pointers) which must all be updated together or we end-up with the problem of the "next"
item in the list not pointing to the "previous" one. We cannot allow one thread to start
updating the pointers and simultaneously have another thread trying to update them
differently. In order to synchronize the threads through this "critical section" of code we
create a lock to control access to the code section. Each thread "acquires" the lock before
beginning its updates and "releases" the lock after it finishes. While the lock is held
(acquired) by any thread, any other thread which tries to acquire that lock is forced to
wait until the first thread releases the lock.

At the lowest level, locks are implemented by the hardware of the computer system. In
UNIX, they are abstracted as semaphores, which are manipulated with the following
system calls:

• semget() to create the semaphore.

• semctl() to initialize the semaphore to "unlocked"
• semop() to lock and unlock the semaphore

See the man pages for the exact format and parameters of these system calls. Essentially
the semaphore is created using semget() and then initialized to a value of 1 using semctl().
To acquire the lock, each thread calls semop() to decrement the value of the semaphore.
If the semaphore value is 1, the value is decremented to zero and the thread proceeds. If
the semaphore is already 0, the thread is put to sleep until the semaphore goes positive.
To release its lock, the thread calls semop() to increment the value. When the value goes
positive, any threads sleeping (waiting for this semaphore) are awakened, allowed to
compete for the semaphore. One thread wins and the others go back to sleep.

Locks are often thought-of as being assigned to particular data items -- such as to an
instance of a structure. In order to update the contents of an instance of a structure, the
code acquires the lock for that instance, updates the contents (as many of the data items
that it wants to), and releases the lock. In this manner, all of the updates to that structure
instance are consistent with one another.

A less obvious example is a counter. Acquire the counter's lock, increment the counter,
and release the lock. The reason is that the action of incrementing the counter requires
multiple instructions in the processor (load value into a register, add 1, store value). With
a counter unprotected by a lock, if an interrupt occurs between the load and the store,
another thread could update the counter. When the interrupted thread resumes, it then
stores its (now stale) value into the counter -- resulting in the counter value erroneously
reflecting only a single increment.

When locks are used with a complex organization of structures such as a linked list, or
trees of structures containing pointers to other structures; it is generally best to assign
separate locks to protect the navigation (usually one lock for all the pointers) and then an
individual lock per structure instance to protect the contents of that structure (that
instance). In order to update the contents of a structure instance, the code acquires the
navigation lock; follows the pointers until it arrives at the structure of interest; locks the
contents lock for that instance; unlocks the navigation lock; updates the structure
contents; then unlocks the contents lock.

Summary
Shared memory segments and memory-mapped files are standard services provided by
UNIX systems. Each of these two types of shared memory allows multiple processes to
access the same physical memory pages.

Shared memory areas provide a very high-speed method for communicating among
multiple programs and multiple processes -- communication at the speed of the processor
itself. When one process stores data in the shared memory area, a reference from any of
the processes retrieves the updated value. Shared memory allows applications to be
organized as multiple programs -- with the obvious advantages to implementation,
enhancements, and ongoing maintenance.

Within a shared memory area, the data items can be allocated either as a static structure
where only the contents (the values) change; or the data items can be dynamically
allocated as needed -- connected in real time into complex organizations. Static
allocation provides simplicity of programming, while dynamic allocation provides
ultimate flexibility to handle real-time changes. The programmer must supply the
allocation and deallocation functions to subdivide the shared memory area.

Shared memory areas will not always begin at the same virtual address, so pointers in
shared data should be self-relative or be displacements from the start of the area. Where
multiple threads are updating the same shared data item, the data item should be
protected with a lock to ensure that each set of updates is consistent.

	Tutorial: An Introduction to Shared Memory
	Introduction and Background
	Process Structure, Threads and Shared Memory Area,
	Process Structure
	Q1:
	Q2:
	Q3:
	Q4:

	Threads
	Storage which is not shared

	Shared Memory Areas
	Creating and Using a Shared Memory Segment
	Commands for Manipulating Shared Memory Segments
	Creating and Using a Memory Mapped File

	Intermediate Summary

	Shared Data Items
	Static Data Allocation
	Case 1 -- Example: Web Server CGI Programs
	Case 2 -- Example: Image Processing Application
	Case 3 -- Communications or Database Server Application
	Synchronization between processes

	Dynamically-allocated Data
	Case 4 -- Example: Multi-Processor Number Grinder
	Case 5 -- Example: Object Oriented Database

	Pointers:
	Self-relative "Pointers"
	Displacements

	Functions to Allocate and Free Portions of the Shared Area
	Locks

	Summary

