
Subnetting

Subnetting: Why???

- Network has exceeded limits of a single LAN and run out of IP Addresses
- Isolate traffic of a specific node or group of nodes
- Divide a network into logical segments
- Improve throughput of network

Subnetting: Definition

- An optional addressing scheme that allows you to partition the host address portion of an IP address into discrete subnetworks
- Implemented by the keywords netmask or subnet mask which identifies the bits used to mask out the network portion of the IP Address
- Network portion is always masked out by using binary 1's

Subnetting: Binary

 $2^0 = 1$

 $2^1 = 2$

 $2^2 = 4$

 $2^3 = 8$

 $2^4 = 16$

 $2^5 = 32$

 $2^6 = 64$

 $2^7 = 128$

Subnetting: Default Class A Netmask

Class A Network

Default netmask = 255.0.0.0

14.23.190.4

network host portion portion

Subnetting: Default Class B Netmask

Class B Network

Default netmask = 255.255.0.0

142.23.190.4

network host portion

Subnetting: Default Class C Netmask

Class C Network

Default netmask = 255.255.255.0

212.23.190.4

network host
portion portion

- Subnets for a netmask are determined by working with the subnet field bits (those that extend into the node address portion of the IP address)
- The following example illustrates a node in a network with an IP address of 212.23.190.98 and a netmask of 255.255.255.224
- The subnet value field bits are 224

Convert the 224 subnet field to binary

$$224 = 11100000$$

$$2^7 + 2^6 + 2^5 = 32 + 64 + 128 = 224$$

- The subnet field extends into the first three bits of the node potion of the IP address
- Five bits remain for the node portion.

224 = 11100000

- All 0's or all 1's are not allowed for the subnet field
- All 0's for the node field is reserved for the subnet (network) address
- All 1's for the node field is reserved for the subnet (broadcast) address


Subnet	Value	Subnet	Hosts IP	Broadcast
Field		Address	Address	Address
0000000	0	212.23.190.0	212.23.190.1 - 30	212.23.190.31
00100000	32	212.23.190.32	212.23.190.33 - 62	212.23.190.63
01000000	64	212.23.190.64	212.23.190.65 - 94	212.23.190.95
01100000	96	212.23.190.96	212.23.190.97 - 126	212.23.190.127
10000000	128	212.23.190.128	212.23.190.129 - 158	212.23.190.159
10100000	160	212.23.190.160	212.23.190.161 - 190	212.23.190.191
11000000	192	212.23.190.192	212.23.190.193 - 222	212.23.190.223
11100000	224	212.23.190.224	212.23.190.225 - 254	212.23.190.255

Note: Values in red are not within the valid range

- What are the range and values of the subnets for a node in a network with an IP address of 132.23.190.84 and a netmask of 255.255.192.0
- Let's begin by defining the subnet value field bits => 192

Convert the 192 subnet field to binary

$$192 = 11000000$$

2 subnet 6 node field bits

$$2^7 + 2^6 = 64 + 128 = 192$$

- The subnet field extends into the first two bits of the node potion of the IP address
- Six bits remain for the node portion

Subnet	Value	Subnet	Hosts IP	Broadcast
Field		Address	Address	Address
0000000	0			
01000000	64			
10000000	128			
11000000	192			

Let's just fill in the subnet field ...

Remember: Values in red are not within the valid range

Subnet	Value	Subnet	Hosts IP	Broadcast
Field		Address	Address	Address
0000000	0	132.23.0.0	132.23.0.1 -	132.23.63.255
			132.23.63.254	
01000000	64	132.23.64.0	132.23.64.1 -	132.23.127.255
			132.23.127.254	
10000000	128	132.23.128.0	132.23.128.1 -	132.23.191.255
			132.23.191.254	
11000000	192	132.23.192.0	132.23.192.1 -	132.23.255.255
			132.23.255.254	

Now, let's complete the subnet spreadsheet with the appropriate ranges and values

