
d

lass
ent

ed

p

Queues and Parallel Processing (B.06.00)

Summary
This OTN explains the new queue system and parallel processing functionality introduced in
OpenMail version 6.0.

The following topics are covered:

• How the new Queue Manager process manages the message queues in memory an
communicates with queue reader processes.

• The Message Pool, where details of all the in transit messages are held on disk.

• The POISON and IDEL queues and the new message deletion system.

• How to configure and monitor multiple readers for a queue.

• New omqdump options to help you troubleshoot queue message problems.

The contents of the OTN will be included in the OpenMail Upgrade class, OM360. The c
will be run for a limited period from October, 1999, after which the contents of this docum
will be merged with existing AE351 course material and this OTN will be withdrawn.

Readership
As this is an update OTN, I have assumed readers are familiar with OpenMail and, in
particular, the way the message queues worked in previous releases. I have also assum
familiarity with omqdump.

Comments Please!
I would welcome any comments you may have on this document. Please email them to
joyce@pwd.hp.com.

Revision History
18th May 1999 This is the first issue of this OTN.

11th November 1999 Clarification about:

Turning off readers before manipulating messages with omqdum

Not deleting old queues directory

When auxiliary readers are given messages to process

OTN OpenMail
Technical
Note
November 11 1999 Copyright © 1999 Hewlett-Packard Company Page 1

Queues and Parallel Processing (B.06.00)

..... 23
..
.....
Contents
Introduction.. 3

An Overview Of the Changes .. 3
Message Life Cycle.. 5

Message pool... 6
How Message Details Are Held In Pool Files.. 6
How Are The Pool Files Created?.. 8
Upgrading Pre B.06.00 Queues.. 8
How Are Pool Files Updated?.. 9
How Can I View The Pool Files?... 10
The Pool Control File ... 10

The Queue Manager ...11
What happens if the Queue Manager dies?.. 13
Starting Up Queue Manager If The Message Pool Is Corrupt 14
The POISON Queue... 14
The Idel Queue And The Item Delete Daemon.. 15

Queue Reader Processes.. 17
Multiple Readers For A Queue .. 17
How To Configure Multiple Reader Processes .. 18
How To Monitor Multiple Reader Processes ... 18
Choosing The Optimum Number Of Reader Processes... 20
Logging Reader Processes ... 21

Troubleshooting Tools.. 23
The Queue Manager’s Tombstone File ...
omfreeq... 23
omqdump...23
November 11 1999 Page 2

Queues and Parallel Processing (B.06.00)

e

and it is
s with

ts:

he

 service
h
r the
.

cesses.

itor

ok,

s:

e new

l

 held
s and

 keeps
 two
Introduction

Before B.06.00 the main area, which needed improving if OpenMail was to scale effectively to
very large, fast systems, was that of bottlenecks occurring on the ROUTER and LOCAL queues
because the reader processes, Service Router and Local Delivery, were busy performing i/o.
Because all the queued messages were held on disk, the whole message processing system
was, to some extent, i/o bound.

To address this performance issue, the queues have been moved from disk to the memory of a
new central daemon, called the Queue Manager. The responsibilities of this daemon are:

• To organize the queues of messages.

• To act as a scheduler for the queue reader processes.

• To monitor queue reader processes and keep track of all the in transit messages in th
system.

Only the Queue Manager accesses the queues - not the service processes, as before -
almost totally CPU bound, making it very fast indeed. The Queue Manager communicate
the queue reader processes, such as Service Router, using Unix IPC message queues.

The introduction of the Queue Manager has brought several important, additional benefi

• Communication between service processes has been simplified.

• A single process now keeps track of all the messages moving through the system.

• The Queue Manager is well placed to provide statistics on message throughput and t
performance of reader processes.

So we have speeded up the queue access, but surely the bottleneck will just move to the
processes? This is where the B.06.00 Parallel Processing comes in. In previous releases, eac
queue could have only one reader. Now you can configure up to 21 reader processes fo
main queues. Tests so far have shown significant improvements to message throughput

Deleting messages also impacted the performance of the OpenMail processes, so a new
message deletion system has been introduced, reducing the workload of the service pro
A new queue, called the IDEL queue, and an Item Delete daemon perform this function.

In this OTN we will look at how the new queue system works, how to configure and mon
multiple reader processes and how you can use new options in omstat and omqdump to
monitor performance and track messages as they move through OpenMail.

An Overview Of the Changes
The Introduction gave the rationale for the changes introduced in B.06.00. We will now lo
in a little more detail, at the new system as a whole, before studying the individual parts.

Remember the files: ~openmail/queues/qcontrol, <q-name>.qua and
<q-name>.qub? Well, they are all obsolete! At B.06.00 the new queue system comprise

• Queue structures held in memory. The queues are no longer held on disk. Instead, th
Queue Manager daemon creates and maintains queue structures in its memory.

• A Message Pool directory, ~openmail/msgpool. This directory contains up to 100 poo
files, 0QP - 99QP, and a pool control file, ~openmail/msgpool/poolctrl. Although
the queues are not held on disk, a record for each in transit message in the system is
and updated in the pool files. The pool control file keeps a list of the configured queue
the number of pool files created.

• A Queue Manager daemon, /opt/openmail/bin/queue.manager. This NON-STOP
daemon accesses and manages the queues, schedules queue reader processes and
track of all the in transit messages in the system. The Queue Manager also manages
November 11 1999 Page 3

Queues and Parallel Processing (B.06.00)

eue

nced so
:

nicate.

sses.
ages

anager
new, special queues, the IDEL queue and the POISON queue. The IDEL queue is part of the
new message deletion system and the POISON queue is for messages which repeatedly kill
reader processes.

• An Item Delete daemon, /opt/openmail/bin/idel.server. A new mechanism for
deleting messages has been introduced. At start up, this daemon is started by the Qu
Manager. Its function is to delete messages on the IDEL queue. In previous releases, the
reader processes were responsible for deleting messages.

To make full use of the speed of the Queue Manager, queue reading has also been enha
that you can run concurrently multiple instances of the following queue reader processes

• Local Delivery

• Sevice Router

• Sendmail interface (xport.out)

• Internet Gateway (unix.out)

The diagram below shows the main parts of the new queue system and how they commu

Figure 1: Overview of the New Queue System

Notice the queues are only accessed by the Queue Manager, not by the OpenMail proce
The processes, for example, Service Router and Local Delivery, send requests for mess
and receive responses from the Queue Manager via IPC message queues. The Queue M
also communicates with the Item Delete daemon using IPC messages.

Message
Pool

Message
Store

Queue Manager

Item
Delete

Process

In Memory Queues

OpenMail
Processes

Disk access

IPC
November 11 1999 Page 4

Queues and Parallel Processing (B.06.00)

f the

y or is
st

our
ge at

pool

oser
Accessing messages and message details on disk, in the Message Store and the Message Pool,
is performed mainly by the OpenMail processes and the Item Delete daemon. The Queue
Manager only accesses the Message Pool at start up and if it ever puts a message on the
POISON queue.

Probably the best way to summarise how all these parts work together to route messages within
the OpenMail system, is to describe the process in terms of the lifecycle of a message.

Message Life Cycle
For the purposes of this discussion, we will assume that in the life cycle of a message there are
three main stages: birth, life and death.

1. Birth takes place when a new message enters the system. Suppose we have created a
message using our mail client and pressed the "Send" button to submit it to the OpenMail
system. The UAL process then creates the cut down message container, Transaction File,
DL and message content parts in the Message Store, (~openmail/data), as described in
the Message Store OTN.

The process (UAL process in this case) opens an existing pool file, nnQP, or creates a new
pool file in the Message Pool. It then writes a pool file record, which includes among other
details, the ITEM_REF of the cut down message container and the name of the first
queue(s) the message is to be put on. In our example, this would be the ROUTER queue.

The process sends an IPC request to the Queue Manager to put the message on the queue
and includes the message details in the request.

2. During the life of a message, the Queue Manager passes details of the message in IPC
requests/responses to the reader(s) of the queue(s) to which the message is attached. A
reader is a process, e.g. Service Router, which processes messages from a queue. In
B.06.00, there may be several Service Routers processing messages from the ROUTER
queue concurrently.

As the message moves between queues, the process currently handling the message updates
the queue names in the message’s pool file record and informs the Queue Manager o
change.

3. The death of a message is when the message leaves the OpenMail system completel
delivered to a user’s mailbox. The last process to handle the message removes the la
queue name from the message’s pool file record and informs the Queue Manager. If
message is destined for another user on this system, the process handling the messa
this stage would be Local Delivery and the last queue name to be removed from the
file record would be LOCAL.

The Queue Manager moves the message to the IDEL queue.

The Item Delete daemon reads the message details from the IDEL queue and deletes the
pool file record and the cut down message components in the Message Store.

Now that you have a general understanding of how the system works, we shall take a cl
look at the individual parts.
November 11 1999 Page 5

Queues and Parallel Processing (B.06.00)
Message pool

Although all the queued messages are now held in memory, the details of all these messages
need to be secured to disk somewhere, in case of a system crash. This is the function of the new
directory ~openmail/msgpool.

An ls of this directory on my system shows a number of files with the name nnQP, which we
will refer to as pool files, and a poolctrl file. There can be up to 100 pool files (0QP to
99QP). If you looked at this directory on a newly installed B.06.00 system, you would find
only the poolctrl file, as the pool files are created as needed by the service processes.

root@kuda[] #ls ~openmail/msgpool
0QP 17QP 24QP 31QP 39QP 46QP 53QP 60QP
10QP 18QP 25QP 32QP 3QP 47QP 54QP 6QP
11QP 19QP 26QP 33QP 40QP 48QP 55QP 7QP
12QP 1QP 27QP 34QP 41QP 49QP 56QP 8QP
13QP 20QP 28QP 35QP 42QP 4QP 57QP 9QP
14QP 21QP 29QP 36QP 43QP 50QP 58QP poolctrl
15QP 22QP 2QP 37QP 44QP 51QP 59QP
16QP 23QP 30QP 38QP 45QP 52QP 5QP

How Message Details Are Held In Pool Files
Each message in the system has only one record in the Message Pool. This record is held in
one of the pool files and contains details, such as the ITEM_REF of the cut down message
container and a list of the queues, which that message is on. In previous releases, there were
several records in the queue files, one for each queue the message was on. Remember that
copies of messages, for example, BCCs, are separate messages. Each BCC of a message will
therefore have its own pool file record.

The diagram below shows the message details, created in a Message Pool file by the UAL
process. This record includes a list of the queues the message is on; in this example, just the
ROUTER queue. The record references the cut down message container, which has been created
in the Message Store. The UAL process then passes the message details to the Queue Manager
via IPC, requesting the message be added to the ROUTER queue in the Queue Manager’s
memory.

Figure 2: Overview Of How Message Details Are Held And Used

Message Pool file Message Store

ROUTER

ITEM_REF

cut down msg ctner

Q Manager’s memory

ROUTER
Q

and msg contents

msg
on
Q

Q Manager

UAL
process

IPC

disk access

di
sk

 ac
ce

ss
November 11 1999 Page 6

Queues and Parallel Processing (B.06.00)

lled

everal
 part.

 user
ht be

reason,

e
The diagram below outlines the format of the pool files.

Figure 3: Pool File Format

Each record has two parts, a message part and a queue part. The message part holds:

• ITEM_REF of the message’s cut down message container.

• The time the record was created in the pool file.

• A sequential index ID number, which is unique within the Message Pool. This ID is ca
the QPoolId of the message.

The queue part holds an entry for each queue the message is on. If the message is on s
queues, there will be several queue name parts for the message, but only one message
Each queue part contains:

• The queue name.

• The message priority setting.

• The time the message was put on the queue.

• A defer time. This type of deferral is specific to Queue Manager and not the same as
deferred or administrator deferred messages. There are two instances when this mig
set:

a. When the Unix Gateway process cannot send the message to sendmail, for some
the message will be deferred and sent later.

b. When a process dies while processing a message, the Queue Manager delays th
message before giving it to the reader again.

Header

Message details

Queue Names

Message details

Queue Names

Record of Message a

Record of Message b
November 11 1999 Page 7

Queues and Parallel Processing (B.06.00)

 file
 pool

ot in
 though
o the
ave

 disk
 be
nt,

ch
n

e

 with
me the

g file,

s

st

ade.

How Are The Pool Files Created?
When a message is submitted to the system, the appropriate service process creates the cut
down message container and message component files in the Message Store. After this, the
process will select a pool file and write the message details in a free record in the file,
including the name of the first queue that the message is to be attached to. This pool file is then
sync’d to disk and the message is now secure should the system crash.

The process selects which pool file to open by calculating

<PID of the process> modulus 100

This gives a number in the range 0 - 99, which the process then uses as part of the pool
name, e.g. 12QP. If this file does not yet exist, the process creates the next highest unused
file and uses that. For example, If the files 0QP to 15QP are present and the modulus gives a
higher number, 16QP will be created and used.

The first time a pool file is opened the process reads the file sequentially looking for a sl
which to store a new message record. As messages are added, the process progresses
the file. Once the end of file is reached, the process will either append more messages t
file or restart looking from the beginning of the file, by which time some messages may h
been processed, and spaces created.

Why so many pool files? The number was chosen to reduce locking conflicts and spread
traffic for striped/raid disks. On a heavily used system, disk i/o on the Message Pool will
high, so make sure that you have this part of your system optimized for i/o. The docume
Configuration Planning Guide (ID 200-0200), on the OpenMail website, gives useful
information on how to configure your system for OpenMail.

Upgrading Pre B.06.00 Queues
When you install B.06.00, a command called omqconv is called automatically to upgrade any
messages in the ~openmail/queues directory to the Message Pool. This routine reads ea
queue file in the queues directory. Whenever it finds a message, it extracts the informatio
needed for the new Message Pool and creates a pool file, if required, and record for that
message. After the upgrade has finished, the old queue files will remain. Some flag files,
<queue name>.R6, are written to the directory to indicate that the queues have been
upgraded. On subsequent B.06.00 installations, omqconv sees these files and reports that th
queues have already been upgraded.

Note: As the information written into the old queues directory may be required should
you need to reinstall OpenMail B.06.00, we suggest you don't delete this
directory. It shouldn't be big anyway, because, unless you had real problems
your system, there would not have been many messages on queues at the ti
system was upgraded.

The upgrading of each queue file and each message is clearly logged in the installation lo
/tmp/ominstall.log. If omqconv comes across a problem during the upgrade, for
example, a message which cannot be upgraded for some reason, it writes lots of helpful
information to the log file, leaves the message in the queues directory and carries on. So you
need to check /tmp/ominstall.log carefully after installation, to find out if any message
have not been upgraded. In the unlikely event of a message failing the upgrade, it is mo
probably a message on the ERROR queue.

You can use omqdump to investigate any failed messages. In the omqdump section, we will
look at a new option, O, which allows you to open a cut down message container file in
omqdump. You can then move the message to the appropriate queue to perform the upgr

Warning! Make sure you manually upgrade any problem messages before running
omscan. If you have messages left in the old queues directory after
upgrading, then you run omscan before dealing with these messages, they
will be treated as orphans by omscan.
November 11 1999 Page 8

Queues and Parallel Processing (B.06.00)

tructs

 in the
er the
essage

essage
ny

ssed in
uter,

is

e, will
ol file
 two
te the
in

same

at any

 the
Here’s an example of some of the logging you will see in /tmp/ominstall.log:

executing /opt/openmail/bin/omqconv
Starting to upgrade messages on queues to new format.
Starting to upgrade queue “SMINTFC”
Finished Queue.
Starting to upgrade queue “SMERR”
Upgrading message "~/data/00000k2/04qb6hh"
Message upgraded correctly
Finished Queue.
Starting to upgrade queue “ERROR”
Upgrading message "~/data/00000k1/04qb6g9"
Message upgraded correctly
Upgrading message "~/data/00000k1/04qb6gb"
Message upgraded correctly
....

Just to outline what omqconv is doing, it:

• Reads the details of each message from the ~openmail/queues files.

• Creates a new message pool file, ~openmail/msgpool/nnQP, as required.

• Adds a record for each upgraded message to the appropriate pool file.

When the Queue Manager starts up, it reads the information from the pool files and cons
the queues in its memory, as normal.

How Are Pool Files Updated?
Service processes are responsible for sync’ing message details to disk when something
pool file record is changed, for example, a message is put on a different queue. Only aft
details are written to disk, does the process contact the Queue Manager to ask for the m
to be put on the queue.

As a message is processed and the queue information changes, the queue part of the m
record is overwritten. If this part of the record is empty, the message is not attached to a
queue and is therefore ready to be deleted, that is, it is ‘on’ the IDEL queue. Note, the IDEL
queue is never written to the pool file records.

Once a pool file is opened by a process this file will be kept open by the process until the
process exits. For this reason, when a UAL process opens a pool file, all messages proce
a session will be put in the same pool file. You can see this if you turn off the Service Ro
then send about 50 messages to yourself using a simple omsend script. If you then list
(ls -l) the files in ~openmail/msgpool, you will see one file is bigger than the rest. Th
is because the UAL process used the same pool file throughout the session.

Normally the pool files will not grow very large, because messages are constantly being
processed and slots in the files freed for reuse.

Any service which creates new messages as part of processing a message from a queu
have two pool files open; the pool file of the queued message it is processing and the po
it opens to create new message records in. For example, the Service Router would have
pool files open when processing a message with BCCs. The service would need to upda
original message’s pool record and select another pool file (using its PID modulus 100),
which to create a new pool file record for each new BCC message it needs to create.
Remember, during the existence of this Service Router process, it will always select the
pool file whenever it needs to create new pool file records.

This reduces the need for a large number of open files; the only files open by a process
point in time should be the ‘add’ pool file and the ‘last modified’ pool file.

Whenever you restart OpenMail, pool files with unused space at the end are truncated to
last used record.
November 11 1999 Page 9

Queues and Parallel Processing (B.06.00)
How Can I View The Pool Files?
The pool files are not text files, so you cannot view them using cat. However, the new t
option in omqdump gives you a text dump of the contents of all the Message Pool files. We
shall look at the output of this in the omqdump section.

The Pool Control File
The pool control file, ~openmail/msgpool/poolctrl, keeps a list of the queues
configured on the system and details of the number of pool files present. Again, you cannot
view this file directly, but the new L option in omqdump reads this file and lists the queues.
November 11 1999 Page 10

Queues and Parallel Processing (B.06.00)

 in the
the

at they

red

ager

it ever
the

D to

ager to

e with
The Queue Manager

Now let’s find out more about the Queue Manager.

The actual process name is /opt/openmail/bin/queue.manager. As with other
daemons, you can see its status by typing omstat -a :

root@kuda[] #omstat -a
PC Monitor Started NON-STOP 0
Notification Server Started 04.29.99 0
Shared memory daemon Started NON-STOP
Notification Monitor Started NON-STOP
Container Access Monitor Started NON-STOP
Item Structure Server Started 04.29.99
Database Monitor Started 04.29.99
Licence Monitor Daemon Started NON-STOP
LDAP Daemon Started 04.29.99
Queue Manager Started NON-STOP
Item Delete Daemon Started NON-STOP
IMAP Server Daemon Started 04.29.99

It is a NON-STOP daemon, which means that it will start when OpenMail is started using
omrc.

Note: If the Queue Manager dies for some reason, you cannot use omon to restart it. You
must always use omshut then omrc, otherwise the queues would be in an
inconsistent state.

At start up the daemon reads in the details of all the queued messages from the pool files
Message Pool and builds the queues in its memory. The following information is held in
Queue Manager’s memory:

• An active message list, which lists all messages that are currently being processed.

• A message list, which holds details of each message present on the system.

• Queue tables, which hold details of all queues configured on the system .

• The queues. These are lists of all the messages on each queue sorted in the order th
will be processed.

• A registered reader table, which holds a record of each queue reader that has registe
with the Queue Manager.

As we shall see later, you can use the new t option in omqdump to get a text dump of the
Queue Manager’s memory. Obviously, this option is only available when the Queue Man
is running. I’ve included an example of the output from this option in the omqdump section of
this OTN.

After the initial disk access at start up, the Queue Manager almost never accesses disk again;
all further transactions are performed via IPC messages. I say almost never, because if
adds a message to the special POISON queue, the Queue Manager itself will need to access
message’s pool file record to update the queue information. The POISON queue is discussed
later in this section.

When the Queue Manager reads the message details into memory, it assigns a unique I
each message in the Message Pool. This sequence number is called the Message Pool ID or
QPoolId and it continues to increase as new messages are submitted to the Queue Man
be put on queues. The sequence is reset when OpenMail is restarted.

We can see the QPoolId of each message if we use the t option of omqdump. The following
excerpt shows the part of a text dump of the Message Pool which relates to the messag
the QPoolId of 584 (decimal).
November 11 1999 Page 11

Queues and Parallel Processing (B.06.00)

ID is

iority
essed

er in

ory.

es is
rt up,
put
Pool File=57
Record Num=7
Offset=0x00001604
FileName=~/data/0000005/000084u
Flags=
NextRecord=NONE
Create Time=926005835 05.06.99 16:50:35
QPoolId=584
message flags=0x00000000
Queue=LOCAL
Priority=0
Queue Flags=0x00000000
Defer Time=NONE
Submit Time=926005835 05.06.99 16:50:35

Here is the corresponding excerpt from a text dump of the LOCAL queue in the Queue
Manager’s memory:

Item Ref = ~/data/0000005/000084u
Priority = 0
Item Type = 0
Submit Date/Time = 05.06.99/16:50:35
Mail Date/Time = 01.01.70/00:00:00
Entry Number=227
Sequence Num=971
Message Pool Id=584
Message Pool File=57
Message Pool Rec=7
Failed processing attempts=0

Don’t worry about what it all means at this stage. The important thing to note is that this
called QPoolId in the first and Message Pool Id in the second!

The Queue Manager arranges the in memory messages in the correct queues and in pr
order. As in the previous release, urgent messages (priority = 2) on a queue will be proc
before normal priority messages (priority = 0) and normal priority before low priority
messages (priority = 1). Where several messages have the same priority setting, the ord
which the messages were submitted to the queue determines their place on the queue.

Note: The messages are only ever sorted into order in the Queue Manager’s mem
The message records in the Message Pool are never sorted.

The IPC mechanism which the Queue Manager uses to communicate with other process
very similar to that of the Container Access Monitor and the Item Structure Server. At sta
the Queue Manager sets up two IPC message queues; one for handling requests (the in
queue) and one for responses (the output queue). If you type:

omsetsvc -r qmgr

you will see the ID of these IPC queues:

root@kuda[] #omsetsvc -r qmgr
Details for subsystem Queue Manager:
Service Number = 100
...
Context dependent information: 904 755 0 0 0 0 0 0
Auxiliary processes = 0
PID’s of auxiliary processes: 0

The first number, 904, is the input queue and 755 identifies the output queue.
November 11 1999 Page 12

Queues and Parallel Processing (B.06.00)

n grow

h the
efault
ueues

l ever

ith it

mory

put
ly

nd

cess
ted
ch
n and
If you then use the ipcs command:

ipcs -q

you will see that these queues do in fact exist:

root@kuda[] #ipcs -q
IPC status from /dev/kmem as of Mon May 17 16:27:50 1999
T ID KEY MODE OWNER GROUP
Message Queues:
q 0 0x3c1c06f5 -Rrw--w--w- root root
q 1 0x3e1c06f5 --rw-r--r-- root root
q 752 0x00000000 -Rrw-rw---- openmail hpoffice
q 753 0x00000000 --rw-rw---- openmail hpoffice
q 904 0x00000000 -Rrw-rw---- openmail hpoffice
q 755 0x00000000 -Rrw-rw---- openmail hpoffice
q 556 0x00000000 -Rrw-rw---- openmail hpoffice

It should be obvious by now that the Queue Manager daemon is critical to the OpenMail
system. Just as omctmon needs to be running before the message store can be accessed, the
Queue Manager needs to be running before the queues can be accessed, even using omqdump.

A question you may be asking is "What is the maximum number of messages that can be in
memory ?" This depends on the size of the Queue Manager’s data area. The queues ca
to fill the Queue Manager’s data area, which is determined by the MAXDSIZE kernel parameter.
The default size is 64 Mbytes but, if you have a large system, you have probably already
increased this for omscan.

To give you some idea of how many messages could be held in queues on a system wit
default data area size: Each message entry occupies approximately 160 bytes and the d
data area of a process is 64 Mbytes, so you could have roughly 400,000 messages on q
before the Queue Manager dies of exhaustion! Remember, this is in transit messages we are
talking about, not messages in the Message Store, so it is extremely unlikely that you wil
hit this limit.

For each message on a queue, the Queue Manager will hold the following information:

• The ITEM_ REF of the cut down message container.

• The message priority setting.

• The message’s Message Pool ID (also known as the QPoolId).

What happens if the Queue Manager dies?
In the unlikely event of the Queue Manager dying, the services trying to communicate w
will gradually die too. Before exiting (provided you haven’t done a kill -9 on it), the Queue
Manager puts an IPC shutdown message on its IPC queue, then logs the state of its me
and other debugging information to a file, ~openmail/logs/qmgr.tomb. This is a text
file, which you can cat or more and is very similar in format to the output of omqdump when
you use the t option to dump the Queue Manager’s memory (we will be looking at this out
in the omqdump section). The additional debugging information given in this file is really on
of use to the lab engineers. So if you raise a support call, which requires in-depth
troubleshooting, be aware that this is one of the files you may be asked for.

If the Queue Manager dies, you must shutdown OpenMail using omshut and restart it using
omrc. Do not try to omon Queue Manager; it needs to rebuild the queues in its memory a
this only happens when you use omrc.

What happens to the messages on the queues if the Queue Manager dies? Before a pro
sends a request to the Queue Manager to put a message on a queue, it writes the upda
information to that message’s record in the Message Pool. The information includes whi
queues the message is on. When the Queue Manager restarts, it will read this informatio
November 11 1999 Page 13

Queues and Parallel Processing (B.06.00)

ger
ssage.
gain. If

es it to a
is

he
 disk.
put the message on the appropriate queues, ready to start from the point at which it died. This
is, of course, assuming you have fixed the problem which caused the Queue Manager to die in
the first place!

Starting Up Queue Manager If The Message Pool Is Corrupt
The tweak QM_DONT_READ_MESSAGE_AT_START=TRUE prevents the Queue Manager from
reading the Message Pool at start up.This may prove useful if the Message Pool is corrupt, but
you need to keep the messaging service running. Then you can schedule time later on to
investigate the problem.

Warning! There is currently a fatal problem that could arise when you use this tweak. I
have documented the scenario at the end of this section. Please read this
carefully before using this tweak on your production system.

When this tweak is used, the existing messages remain in the Message Pool at start-up but are
not read into memory by the Queue Manager and are therefore not processed. You will not be
able to see them when viewing the queues using omqdump, but you can use the t option in
omqdump to produce a text dump of the Message Pool. This will provide information about all
the the contents of the Message Pool, including queued messages from the session before the
tweak was set. From this output you can find out the cut down message container filename for
each message. Output from omshowlog should help you what the problem is. Then if you
need to access a file, you can use omqdump with the new O option, which lets you open a
message file.

If you have set this tweak, it is a good idea to restart OpenMail using omrc -n, then dump the
Message Pool contents to a file immediately, before starting the OpenMail services. This will
ensure you have a record of which entries relate to the previous OpenMail session. Otherwise,
when the services start up and new entries are added to the Message Pool, it will be more time
consuming to determine which messages relate to which session.

Warning! At the time of writing, there is a problem you should be aware of before you
decide to use this tweak. As we have already discussed, each new message is
given a QPoolID number, which must be unique in the Message Pool. When
OpenMail is started the QPoolID sequence is reset...for all new messages.
When you use the QM_DONT_READ_MESSAGE_AT_START tweak, you
could end up with QPoolID numbers which are not unique. If you unset the
tweak and restart OpenMail, the Queue Manager finds two identical
QPoolID numbers and dies! The error message logged in the event log
makes it quite clear what the problem is and the offending message records in
the msgpool files can be located by looking at the
~openmail/logs/qmgr.tomb file. Currently, the only way round this
problem is either to make sure there are no duplicate QPoolID’s before you
shut down OpenMail and unset the tweak, or to use omxed to change the
QPoolID of one of the messages in the Message Pool.

The POISON Queue
This special queue is for messages which have a nasty habit of killing off queue reader
processes. Only the Queue Manager ever puts a message on this queue.

If the Queue Manager gives a reader a message and the reader dies. The Queue Mana
notices that the reader has not sent a message back to say that it has processed the me
The Queue Manager then defers the message for 30 seconds, then gives it to a reader a
the reader dies again, the Queue Manager defers the message for 30 seconds, then giv
reader a third time. If the reader dies again, the Queue Manager assumes the message
‘poisonous’ to that reader process and puts it on the POISON queue.

The Queue Manager then updates the pool file record for this message to show it is on t
POISON queue. Apart from at start up, this is the only time the Queue Manager accesses
November 11 1999 Page 14

Queues and Parallel Processing (B.06.00)

efore

age is

ss to
ing a
f
 is

an only

. The
ce is
le to

es.

e
at it is

elete
e

e part.
ss count
ile.

slightly.
w the
ge
n

 user
his is
hen

tly be

e
en

 the

r as a
As with the ERROR queue, you will have to monitor the POISON queue and investigate any
messages on it manually. You can use omqdump to access messages on this queue.

The POISON queue facility can limit the disruption to a messaging system, if a service dies and
is restarted without the cause of the problem being discovered. If you are running auxiliary
readers, let’s say four Service Router processes, a ‘poisonous’ message may kill three b
being assigned to the POISON queue, but you will still have one Service Router running.

Currently, there is no way of changing the number of readers that can die before a mess
put on the POISON queue.

The Idel Queue And The Item Delete Daemon
In previous releases, when OpenMail had finished processing a message, the last proce
handle the message was responsible for deleting it. Deleting a message involves remov
number of files, which involves a significant amount of synchronous disk i/o. Obviously, i
reader processes are busy deleting messages, their capacity to process new messages
severely impacted.

The new IDEL queue and its associated reader, the Item Delete daemon (idel.server),
provide a new message deletion system. The Item Delete daemon is a NON-STOP daemon. It
uses IPC to request from the Queue Manager the item references of messages on the IDEL
queue, in the same way as other services get messages from a queue. Currently, there c
be one Item Delete daemon.

With this new system, removing items happens in the background of other system activity
responsibility for message deletion is removed from the service processes, so performan
not impacted. When a system is particularly busy, the Item Delete daemon will not be ab
delete messages as quickly as during quieter periods, so you may see a high number of
messages on the IDEL queue for a time. This is fine and will not affect message delivery tim

The IDEL queue is a ‘pseudo’ queue in that, when the queue part of a message’s pool fil
record is empty (that is, the message is not on any queue), the Queue Manager notes th
not attached to any queue and puts it on the IDEL queue. The IDEL queue is never written into
a message’s pool file record. The message is then picked from this queue by the Item D
daemon, which deletes the message record from the pool file and the cut down messag
container and contents files from the Message Store.

Before deleting the pool record, the process checks that there are no entries in the queu
Before deleting the message files from the Message Store, the process reduces the acce
in the cut down message container by one. If the count is zero, the process deletes the f

The way the access count in the cut down message container works has been changed
In previous releases, this count reflected the number of queues the message was on. No
count can be 0 (zero), 1 or 2. 0 (zero) means the message has no references in the Messa
Pool and can therefore be deleted. 1 means that it has one reference in the Message Pool. O
rare occasions, it may be 2. This may happen with a message that has been deferred by a
and the message is then put on the deferred message list by the Service Router. (Note t
different from the Deferred Mail Manager facility). The access count is reduced by one w
the message is eventually sent, that is, added to the Message Pool, and will subsequen
reduced to 0 (zero) when processing is complete.

You can test the access count by using the p option in omqdump to put a message on three
different queues. Now ‘g’et the message and ‘r’ead it. The access count in the first (messag
container) part of the output should be 1, even though the message is on three queues. Wh
you put the message on the queues, the message’s pool file record was updated to show
queues. There is still only one reference to the message in the Message Pool.

Here’s a summary of the actions performed by the Item Delete daemon:

• At start up, it is started by the Queue Manager and registers with the Queue Manage
reader of the IDEL queue.
November 11 1999 Page 15

Queues and Parallel Processing (B.06.00)

es the

 can

ssage
f this
on’t
s on
• It requests a message from the IDEL queue.

• When a message is supplied by the Queue Manager, the Item Delete daemon remov
message from the pool file, provided the queue names list is empty.

• It decreases the access count in the cut down message container.

• If the access count is zero, the message and all its content parts are deleted.

• The Queue Manager is informed that the message is no longer on the IDEL queue.

• [The Queue Manager then removes all references to the message from its memory].

What happens if the Item Delete daemon dies while deleting messages? First of all, you
restart the Item Delete daemon by typing:

idel.server

The last thing that happens is that the Queue Manager removes all references to the me
from its memory. So, up until this point, the Queue Manager can still give the reference o
message to the Item Delete daemon. This daemon is pretty laid back about things that d
exist...if the pool file record does’t exist, it will just continue to delete the other things it ha
its list, that is, the message files. It does not mind if some of these do not exist either.
November 11 1999 Page 16

Queues and Parallel Processing (B.06.00)

 the next

o
ssing

ke up

h
vals.
t

ocess
e,
speed
s.

ng

 is
lar
use
ain
Queue Reader Processes

When a service is started, it sends an IPC message to the Queue Manager to register as a reader
of its associated queue. The service then waits for the Queue Manager to send it a message to
process. If there is a message on that queue, the Queue Manager sends details of the message to
the service.

The service processes the message and updates the pool file record with the next queue(s) the
message needs to be put on. Processing may also include creating new messages, if there are
BCCs, for example. Once the changes are sync’d to disk, the service informs the Queue
Manager of the changes. The Queue Manager updates its queues and sends the service
message in its queue.

Some services, such as DirSync, can have a timeout set. This means that, if there are n
messages for them in the timeout period, they will go off and do some of the other proce
they are responsible for.

Note: The following tweaks concerned with queue readers are now obsolete or not
advised: Q_WAKE_READER, Q_TIME_OUT.

Q_WAKE_READER is now obsolete. In the previous release, processes used signals to wa
the next queue reader process. It was possible to set Q_WAKE_READER so that the main
services were not signalled when a message was placed on a queue. In combination wit
Q_TIME_OUT, this allowed a process to be idle and only process messages at fixed inter
This feature was mainly for low end systems, which where short of memory. As this is no
really a problem anymore, the functionality is not implemented in the Queue Manager.

With the new system and, in particular, the way the the Queue Manager manages the
scheduling of the reader processes, it is not necessary, or advisable, to set Q_TIME_OUT.

Multiple Readers For A Queue
In the previous release, a queue could have many processes writing to it but only one pr
reading from it. As a result, the ROUTER and LOCAL queues tended to be a bottleneck in larg
heavily used systems. In B.06.00, to take full advantage of the additional efficiency and
introduced by the Queue Manager, the main queues can have multiple reader processe

Queues that can have multiple readers configured are:

• Local Delivery

• Service Router

• xport.out (sendmail interface)

• unix.out (Internet Gateway)

Even if multiple copies of the above services are configured, only one copy of the followi
sub-services will be configured:

• error.manager This is a sub-service of Local Delivery.

• defer.manager This is a sub-service of the Service Router.

• licence.server This is a sub-service of the Service Router.

When you start OpenMail using omrc, only one reader will start for the above queues. This
called the main reader for the queue. If you then configure additional readers for a particu
queue, these are called auxiliary readers. It is important to understand this distinction, beca
some of the monitoring output refers only to auxiliary readers and does not include the m
reader.
November 11 1999 Page 17

Queues and Parallel Processing (B.06.00)

 The

rted

you

and
l hand
ueue

d

cribed

ning.
ber,

 Router

or
esses,
How To Configure Multiple Reader Processes
Before configuring auxiliary reader processes for a queue, you must turn the service off using
omoff. You then use the omsetsvc command to configure auxiliary readers:

omsetsvc -x <service> <no. of auxiliary readers>

The total number of readers for this queue will then be :

main reader + number of auxiliary readers

For example,

omsetsvc -x sr 2

will configure two auxiliary Service Router processes, giving a total of three Service Router
processes all together.

Theoretically, you can configure up to a maximum of 20 auxiliary readers for a queue.
However, before rushing off and starting lots of extra readers, thinking this is the answer to all
your throughput problems, I strongly suggest you read the section below (see “Choosing
Optimum Number Of Reader Processes” on page 20)!

When you omon or omoff the reader service, the associated auxiliary readers are also sta
or stopped. There is currently no way of closing down some of the readers. To run fewer
readers, you need to omoff the service, configure the required number of auxiliary readers
want using omsetsvc -x and omon the service again.

When the service is started, the reader processes sit waiting for the Queue Manager to h
them messages to process. If there is no backlog on the queue, the Queue Manager wil
the message to the main process. As soon as there is a backlog, of whatever size, the Q
Manager will start handing messages to the auxiliary processes.

How To Monitor Multiple Reader Processes
There are various ways you can monitor the reader processes but the main tools are omstat
and omsetsvc. omstat -s -p shows you the number of auxiliary processes running an
their status.

Start the Service Router, after configuring two auxiliary Service Router processes, as des
above. Then type omstat -s -p. Here’s an excerpt of the output you should see:

root@kuda[tmp] #omstat -s -p
Service Router Started 15:21:47 2
Local Delivery Disabled 05.06.99 0
Internet Mail Gateway Disabled 04.29.99 0
X400 Interface Disabled 04.29.99 0

...

Started means auxiliary Service Router processes have been configured and are all run
The 2 in the right hand column tells us the number of auxiliary processes running. Remem
this does not include the main Service Router process, so in total there are three Service
processes running.

Disabled in the second column means that no auxiliary readers have been configured. F
example, if we were to re-configure the Service Router so that there are no auxiliary proc
then omon the service. The output from omstat -s -p is:

root@kuda[tmp] #omstat -s -p
Service Router Disabled 16:03:17 0
Local Delivery Disabled 05.06.99 0
Internet Mail Gateway Disabled 04.29.99 0
X400 Interface Disabled 04.29.99 0
November 11 1999 Page 18

Queues and Parallel Processing (B.06.00)
This may seem a little disconcerting at first, because the main Service Router process is
running. You just have to remember that the -p option gives you the status of auxiliary
processes only. omstat -s will show you that the main process is started.

Stopped in the second column means that auxiliary readers have been configured but they are
all stopped (omoff). If some have died, it would say partially aborted and the number
on the right would show how many are still running. If all the auxiliary readers have died, this
column would say aborted.

You can use omsetsvc -r <service> to view the reader configuration details. In the
example below, I turned the Sevice Router off first, then typed omsetsvc -r sr:

root@kuda[] #omsetsvc -r sr
Details for subsystem Service Router:
Service Number = 2
Number of components = 2
Logging Level = 9
Audit logging Level = 0
Has an input queue? - YES
Queue name = ROUTER
Show details from omstat? - YES
Subsystem can be enabled? - YES
Required state - Disabled
Last state change (on/off) = 13:25:56
Last delayed off time = 13:25:56
Startup prog name = ~/bin/service.router
Shutdown program name = ~/bin/shut.queue -q ROUTER -d %d -s 2
Status program name =
PID’s of subsystem processes: -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Nice Level = 1
Additional Resolve Flag = 0
Subsystem is controlled by ’all’ - YES
Minimum temporary processes = 0
Maximum temporary processes = 0
Context dependent information: 0 0 0 0 0 0 0 0
Auxiliary processes = 2
PID’s of auxiliary processes: -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The last two lines show the number of auxiliary readers configured and their PIDs (-1 means
the process is currently off).

If we start the Service Router and take another look at the omsetsvc -r sr output:

root@kuda[] #omsetsvc -r sr
Details for subsystem Service Router:
Service Number = 2
Number of components = 2
Logging Level = 9
Audit logging Level = 0
Has an input queue? - YES
Queue name = ROUTER
Show details from omstat? - YES
Subsystem can be enabled? - YES
Required state - Enabled
Last state change (on/off) = 13:48:46
Last delayed off time = 13:25:56
Startup prog name = ~/bin/service.router
Shutdown program name = ~/bin/shut.queue -q ROUTER -d %d
-s 2
Status program name =
PID’s of subsystem processes: 14511 14512 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0
Nice Level = 1
Additional Resolve Flag = 0
November 11 1999 Page 19

Queues and Parallel Processing (B.06.00)
Subsystem is controlled by ’all’ - YES
Minimum temporary processes = 0
Maximum temporary processes = 0
Context dependent information: 0 0 0 0 0 0 0 0
Auxiliary processes = 2
PID’s of auxiliary processes: 14513 14514 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0

In the line "PID’s of subsystem processes:", the first number, 14511, is the PID of the
main Service Router process. (The second PID on this line, 14512, is the PID of the sub-
service, defer.manager). On the line "PID’s of auxiliary processes:", we can see
the PIDs of the two auxiliary Service Router processes, 14513 and 14514.

To double check these readers are indeed running, we can use the ps command and grep for
router:

root@kuda[] #ps -ef | grep router
openmail 14511 1 0 14:42:51 ? 0:00 service.router
openmail 14513 14511 0 14:42:51 ? 0:00 service.router
openmail 14514 14511 0 14:42:51 ? 0:00 service.router

Choosing The Optimum Number Of Reader Processes
Important! Your system must have enough spare capacity for the extra processes you

want to configure, as each new process requires a certain amount of cpu and
will incur disk i/o. Configuring auxiliary reader processes on a system, which
is already running near capacity, will reduce performance.

A good general rule is to configure the minimum number needed to stop backlog building up
on the queue. Increase the readers one at a time, then monitor performance for an extended
period to ensure the system is not overloaded. It is particularly important to monitor the disk
activity on the ~openmail/msgpool directory. Check disk i/o, cpu and disk i/o!

For some valuable information on how to optimize your configuration for OpenMail, see the
document: Configuration Planning Guide (ID 200-0200) on the OpenMail website.

The s and T options in omqdump allow you to measure the load and throughput of the queues.
We will cover these options in the omqdump section.

Configuring a large number of auxiliary processes all at once could also lead to reduced
performance. This is because there is a small overhead for idle processes, so excessive
numbers will increase the cpu load significantly.

If you increase the number of reader processes for the Internet gateway (unix.out) or
sendmail interface (xport.out), sendmail may start lots of child processes to handle the
increased message throughput and overload the system. You can configure unix.out or
xport.out to wait until each message is processed by sendmail before sending the next one,
thus limiting the number of sendmail processes running. However, this may reduce throughput,
so you may need to increase the number of auxiliary readers to achieve the required
performance.

This configuration option is documented in the files ~openmail/sys/unix.mapper and
~openmail/sys/xport.mappers/XPORT.

Kernel Parameters

The release notes for B.06.00 give recommendations for kernel parameter settings. As
configuring multiple reader processes may hit kernel parameter limits, I suggest you read the
recommendations carefully before configuring lots of auxiliary readers. The parameter most
likely to be affected is MAXUPROC.
November 11 1999 Page 20

Queues and Parallel Processing (B.06.00)
Logging Reader Processes
When there was only one reader process per queue, it was unnecessary to log the PID of the
reader process in omshowlog. However, with multiple readers it is important to know which
reader is actually writing a particular log entry. To enable us to distinguish which entries
belong to which reader, there is a new -P option for omshowlog. This reports the PID of the
process which logged each entry.

To get the following example, I turned the Service Router on and Local Delivery off and
configured two auxiliary readers for Local Delivery:

omsetsvc -x local 2

I then sent 100 messages to Mr Admin.

When all the messages were on the LOCAL queue, I turned Local Delivery on. Remember, this
turns on all the auxiliary processes too.

The reason for sending as many as 100 is to cause a backlog on the queue (the classroom
machines are not busy, so a few messages will go through very quickly). If there is no backlog
on the queue, the Queue Manager will just hand the message to the main process, so you would
not see the auxiliary processes being handed messages.

To find out the PIDs of the processes, I typed:

omsetsvc -r local

Then I ran omshowlog with the -P option to show the PIDs of the reporting processes:

omshowlog -l 9 -P -p 10

The following is just an excerpt of the output to show you the different processes logging:

REPORT Local Delivery(Local Delivery) 05.15.99
14:26:31
[OM 7604] Finished delivery of message
Pid of logging process: 15400

REPORT Local Delivery(Local Delivery) 05.15.99
14:26:31
[OM 7608] Finished delivery to recipient
 Mr Admin/canberra,class
Pid of logging process: 15401

REPORT Local Delivery(Local Delivery) 05.15.99
14:26:31
[OM 7604] Finished delivery of message
Pid of logging process: 15401

REPORT Local Delivery(Local Delivery) 05.15.99
14:26:31
[OM 7608] Finished delivery to recipient
 Mr Admin/canberra,class
Pid of logging process: 15399

REPORT Local Delivery(Local Delivery) 05.15.99
14:26:31
[OM 7604] Finished delivery of message
Pid of logging process: 15399
November 11 1999 Page 21

Queues and Parallel Processing (B.06.00)

ue
 just
REPORT Local Delivery(Local Delivery) 05.15.99
14:26:31
[OM 7603] Started delivery of message
Pid of logging process: 15400

If you use another new option, -i <PID>, together with -P, omshowlog will show you only
the entries logged by the reader process with the specified PID. The output below was returned
when I typed:

omshowlog -l 9 -P -i 15400 -p 10

REPORT Local Delivery(Local Delivery) 05.15.99
14:26:28
[OM 7601] Local Delivery Started Up
Pid of logging process: 15400

REPORT Local Delivery(Local Delivery) 05.15.99
14:26:28
[OM 7603] Started delivery of message
Pid of logging process: 15400

REPORT Local Delivery(Local Delivery) 05.15.99
14:26:28
[OM 7618] Creator of message
 Mr Admin/canberra,class
Pid of logging process: 15400

REPORT Local Delivery(Local Delivery) 05.15.99
14:26:28
[OM 7605] Current message Id
 H00000650000234d.0926687601.kuda.pwd.hp.com
Pid of logging process: 15400

To help debug more difficult problems, the current value of the Unix variable, errno, is
reported at level ‘error’ or above. Errno reports error messages from system calls. The val
reported may refer to the error reported in the OpenMail logs, but it may not! This is really
an extra bit of information for the lab engineers.

ERROR Local Delivery(Error Manager) 02.16.99
17:09:29
[OM 8807] No Error Manager Configured. Please Configure One
Pid of logging process: 8454

ERROR Administration(omadmidp) 02.18.99
18:48:07
[SYS 9] Bad file number
Pid of logging process: 5791
Current errno value: 9
November 11 1999 Page 22

Queues and Parallel Processing (B.06.00)

d
s

nitor
s of

er’s

out the
he PID

es,
ctions
 of

u

s on
rs are

ould
Troubleshooting Tools

Throughout this OTN, I have referred to ways in which you can see what is happening in
various parts of the queue system:

• omstat -s -p to see the status of the auxiliary processes.

• omshowlog -l <level> -P to see the PIDs of the processes logging the entries an
omshowlog -l <level> -i <PID> -P to list only the entries logged by the proces
with the specified PID.

• omsetsvc -r <service> to see the configuration details of a service, including the
PIDs of the auxiliary processes. (omsetsvc -r qmgr allows you to identify the Queue
Manager’s IPC queues).

Two further troubleshooting tools are the Queue Manager’s tombstone file and omfreeq,
which are covered in the sections below.

However, as before, the main tool for troubleshooting queues is omqdump. In addition to the
queue manipulation features, it now provides load and throughput figures to help you mo
performance. omqdump also has a text dump option which enables you to see the content
the ~openmail/msgpool files and the Queue Manager’ memory. The new omqdump
options and changes to the way existing options work are covered in the omqdump section.

The Queue Manager’s Tombstone File
Should the Queue Manager ever die, it creates a tombstone file in the logs directory,
~/logs/qmgr.tomb. This, together with messages in the logs, should help you diagnose the
problem. As the contents of this file is very similar to the text dump of the Queue Manag
memory, I suggest you look at that in the omqdump section covering the t option to get a
general understanding of what is in this file. The additional information given in this file is
really only of use to the lab engineers.

omfreeq
omfreeq queue has a -p option to remove a reader PID from a queue.

A situation can arise where a reader dies and the PID is reused by another process, with
Queue Manager being aware that the reader has died. The Queue Manager still thinks t
belongs to the queue reader. You can use omfreeq to tell the Queue Manager to release the
reader from the queue. For example:

omfreeq -q local -p 12345

removes reader 12345 from the LOCAL queue.

omqdump
To access the queues, omqdump communicates with the Queue Manager using IPC messag
so the Queue Manager needs to be running if you want to use the queue manipulation fun
of omqdump. However, Queue Manager does not need to be running to view the contents
the Message Pool files.

You can use omqdump to access the special POISON and IDEL queues in the same way as yo
would access any of the other queues.

Note: It is still advisable to turn off the reader service before manipulating message
its queue. Theoretically, you could access messages on a queue while reade
processing messages from it, but it would be extremely difficult to find or
manipulate the right message. Walking the queue accurately, for example, w
be almost impossible.

I’ve underlined the new options in the menu below:
November 11 1999 Page 23

Queues and Parallel Processing (B.06.00)

0
outer:
Please select an option:
 s: Show summary of queues o: Output opened msg to files
 l: List (browse) msgs on queue i: Input a msg from files
 m: Move opened msg between queues g: Get (serial open) next msg
 M: Move msgs between queues G: Get (serial open) nth+1 msg
 d: Delete opened msg from queue r: Read (browse) opened msg
 D: Delete msgs from queue c: Close opened msg
 v: View status of queue f: Find (priority open) next msg
 a: Access opened msgs info p: Put opened msg on a queue
 O: Open message file t: Text dump
 L: list configured queues C: Copy msgs
 T: List queue throughput averages Z: Zap (forcefully delete) msg
 q: Quit

s

Although there was a summary option before, the output has changed considerably. In addition
to the number of messages on a queue, you are now given:

• How many of those messages are being processed at this moment (Active).

• How many messages have been put on this queue since OpenMail was last started (Ever).

• The average number of messages on this queue over the last 1, 5 and 15 minutes (Load).

To show some figures, turn off the Service Router and Local Delivery and send about 10
messages to Mr Admin, or a local user. Configure two auxiliary readers for the Service R

omsetsvc -x sr 2

Start omqdump in one terminal window. In another, turn on the Service Router, then
immediately type s in the omqdump window. You should see something like the following:

Option?s
QUEUE Messages Active Ever Load [1min,5min,15min]
BB 0 0 0 0.00 0.00 0.00
DESK 0 0 0 0.00 0.00 0.00
DIRSYNC 0 0 0 0.00 0.00 0.00
DMM 0 0 0 0.00 0.00 0.00
DUMP 0 0 0 0.00 0.00 0.00
ERRMGR 0 0 0 0.00 0.00 0.00
ERROR 3 0 0 3.00 3.00 3.00
LICENSE 0 0 0 0.00 0.00 0.00
LOCAL 55 0 728 21.61 19.70 12.74
NOTES 0 0 0 0.00 0.00 0.00
OMX400 0 0 0 0.00 0.00 0.00
PRINT 0 0 0 0.00 0.00 0.00
REQ 0 0 0 0.00 0.00 0.00
RESOLVE 0 0 0 0.00 0.00 0.00
ROUTER 66 3 769 95.08 47.29 23.15
SMERR 0 0 0 0.00 0.00 0.00
SMINTFC 0 0 0 0.00 0.00 0.00
SMS 0 0 0 0.00 0.00 0.00
TEST 0 0 0 0.00 0.00 0.00
UNIX 0 0 0 0.00 0.00 0.00
X400 0 0 0 0.00 0.00 0.00

Special queues.
IDEL 0 0 727 0.00 0.00 0.00
POISON 0 0 0 0.00 0.00 0.00
Done

Notice that there are three active messages on the ROUTER queue. That is because there are
three Service Router processes running; the main reader and two auxiliary readers.
November 11 1999 Page 24

Queues and Parallel Processing (B.06.00)
Over time, the load figures across the load columns will become closer, then reduce, as the
surge of messages finishes. If the load figures for a queue are constantly high and your system
has spare capacity, you could consider configuring an auxiliary reader for that queue.

So what number might be considered as high? It depends on the message delivery times
expected. However, if you divide the average load figure by the number of readers and get a
figure which is more than 20 times the number of readers, then the load is probably high.

To collect load figures over a period of time, you could set up a script to run omqdump as a
batch job at regular intervals and use the s option.

T

The T option gives similar output to the s option, but provides throughput figures instead of
load figures, that is, the number of messages processed on this queue in the last 1, 5 and 15
minutes. For the example below, I turned on the Local Delivery in one terminal window and
quickly typed T in the omqdump window:

Option?T
QUEUE Messages Active Ever Throughput

[1min,5min,15min]
BB 0 0 0 0.00 0.00 0.00
DESK 0 0 0 0.00 0.00 0.00
DIRSYNC 0 0 0 0.00 0.00 0.00
DMM 0 0 0 0.00 0.00 0.00
DUMP 0 0 0 0.00 0.00 0.00
ERRMGR 0 0 0 0.00 0.00 0.00
ERROR 3 0 0 0.00 0.00 0.00
LICENSE 0 0 0 0.00 0.00 0.00
LOCAL 86 1 763 28.22 31.18 31.72
NOTES 0 0 0 0.00 0.00 0.00
OMX400 0 0 0 0.00 0.00 0.00
PRINT 0 0 0 0.00 0.00 0.00
REQ 0 0 0 0.00 0.00 0.00
RESOLVE 0 0 0 0.00 0.00 0.00
ROUTER 0 0 835 0.00 2.30 30.65
SMERR 0 0 0 0.00 0.00 0.00
SMINTFC 0 0 0 0.00 0.00 0.00
SMS 0 0 0 0.00 0.00 0.00
TEST 0 0 0 0.00 0.00 0.00
UNIX 0 0 0 0.00 0.00 0.00
X400 0 0 0 0.00 0.00 0.00

Special queues.
IDEL 0 0 762 27.47 30.24 30.74
POISON 0 0 0 0.00 0.00 0.00
Done

This time there is only one active message, because no auxiliary readers have been configured
for Local Delivery.

O

The O option allows you to open the ITEM_REF of a cut down message container directly in
omqdump. You can then put the message on the appropriate queue.

You could use this to take a message file off a backup, or upgrade a message that omqconv has
failed to upgrade for some reason. If you look in /tmp/ominstall.log, the details of the
failed message will be logged, including the ITEM_REF of its cut down message container. In
omqdump, type O and you will be asked for the filename:

Option?O
Msg File Name (/tmp/omqdmsg):
November 11 1999 Page 25

Queues and Parallel Processing (B.06.00)

te this
d in

n the

ral
s, use

pt
nce

ssage
Type the ITEM_REF of the message, and it will be opened by omqdump, ready for you to ’p’ut
on the required queue. The message is now upgraded.

L

The L option lists the configured queues:

Option?L
BB
DESK
DIRSYNC
DMM
DUMP
ERRMGR
ERROR
LICENSE
LOCAL
NOTES
OMX400
PRINT
REQ
RESOLVE
ROUTER
SMERR
SMINTFC
SMS
TEST
UNIX
X400
Done

As omqdump obtains this list from the file ~openmail/msgpool/poolctrl, and not from
the Queue Manager, Queue Manager does not need to be running to use this option. No
list does not include the POISON or IDEL queues. These new queues are, however, include
the output from s option of omqdump.

C

The C option allows you to copy multiple messages from one queue to another. It works i
same way as the other options which allow you do ‘multiple’ operations.

This option creates new copies of the message(s). If you want to put a message on seve
queues, that is, the queue part of that message’s pool file record will have several entrie
the p option not C.

Z

Z(ap) removes a message from a queue without opening the message.

With the delete options, omqdump tries to open the cut down message file. If this file is corru
or missing, you cannot use the d option. The message would then continue to have a refere
in the Message Pool.

With the Z option, omqdump removes the message record from the pool file without
attempting to open any of the associated files, then tells the Queue Manager that this me
is no longer present.

Changes To The Browse Options (l and r)

You will see some differences in the output from the l’ist’ and r’ead’ options. Here’s an
example of reading a message on the LOCAL queue:

Option?r
Msg Handle (2000):

Msg File = ~/data/0000004/000083k
November 11 1999 Page 26

Queues and Parallel Processing (B.06.00)

on

 this
t
Access Count = 1
TF File = ~/data/0000010/00007vq
TF Info Flags = 7
Filter Route =
Attach File #1 = ~/data/0000004/000083l:1
Attach File #2 = ~/data/0000004/000083l:2

HEADER (DN) 1 0 0 0 0x2000400 0x3 1 0x0
 ** Warning - Insufficient fields present (Record No. 1)
CREATOR (DN) 0 101 0 0 0 0 "S=Admin/G=Mr/OU1=canberra/
OU2=class" "" ""
SUBJECT (DN) "TestMsg (1) Thu-16:50:24" "" "IA5" "" ""
CREATE_DATE (DN) 99/5/6 15:50.26+60
MSG_INT_ID (DN) 0 "H000006500002073.0926005826.kuda.pwd.hp.com"
"H000006500002073.0926005826.kuda.pwd.hp.com"
ORIGINAL_EITS (DN) 0 0 0 0 1 "2.6.1.4.0"
ITEM_CREATE_DATE (DN) 99/5/6 15:50.25+60
CONTENT_FILE (DN) 1166 1166 0x2 136 0 "" "" "" "" "" "IA5"
"" "" "" "" "" "" "" "" ""
ITEM_CREATE_DATE (DN) 99/5/6 15:50.25+60
CONTENT_FILE (DN) 1167 1167 0x0 633 0 "passwd" "passwd" ""
"IA5" "" "IA5" "" "" "" "" "" "" "" "" ""
RECIPIENT (DN) 0x20 0 1 "LOCAL" "" "S=Admin/G=Mr/
OU1=canberra/OU2=class"
OPERATION_TRACE (DN) 99/5/6 15:50.26+60 5 ""
ROUTE_TRACE (DN) 99/5/6 15:50.30+60 0 "kuda/canberra,class"
Done

I have underlined the new information.

The filename of the cut down message container is now included. This means you can
reconstruct a message whose transaction file has become corrupt. Just create and send a
message with the same number of attachments as the corrupted message, then copy the new
transaction file into the location of the corrupted one.

The message ID has been extended to ensure it is globally unique. The first part,
H000006500002073, is the original message ID. The next part, 0926005826, is seconds since
the beginning of the epoch (1st Jan 1970) and the last part, kuda.pwd.hp.com, is the fully
qualified domain name. You can turn off the extending of the message ID by setting the tweak,
IM_MAKE_MSG_ID_GLOBAL_UNIQUE to FALSE but there is no guarantee that the shorter
message ID will be globally unique.

Changes To g Option

You no longer need to exit omqdump to get back to the beginning of a queue! You don’t go
backwards, you just keep going forward till you reach the first message again. If you
repeatedly use ‘g’et and ‘c’lose to walk a queue, you will know you have reached the end
when you see a TIME_OUT message. Use ‘g’et again and you should have the first message
the queue again.

Note: Don’t use v in between the ‘g’ets. The reason is explained below!

The v Option Does Some Unusual Things Now

If you are walking a queue using g and c, then you use v to see where you have got to, it will
initialize the count and put you back to the beginning of the queue. With circular queues,
can make finding out where you are a little difficult, especially if you want to get to a poin
then ‘M’ove several messages to another queue. This is a bug and will be addressed.
Meanwhile, experiment with walking the queue to familiarize yourself with how it works
before ‘D’eleting multiple messages from the middle of a queue!
November 11 1999 Page 27

Queues and Parallel Processing (B.06.00)

ry.
eers.

igures
t

This option gives you two sub options, m or q. m creates a text description of what is in the
Message Pool and q creates a text description of what is in the Queue Manager’s memo
These provide particularly useful troubleshooting analysis of the system for the lab engin

In the following examples, I have annotated the output to help you understand what the f
relate to. We’ll look at a text dump of the Message Pool first.

In omqdump, type:

Option?t
Message pool (m) or queues (q) ? m
Msg File Name (/tmp/omqdmsg):

To accept the default file offered, just press <RETURN>. If you then more the file, the output
will be similar to the following example:

HHHHHHHHHHHHHH
Version=1
Total Files=65 ...total number of pool files
HHHHHHHHHHHHHH
-------------------- ...a textual representation of the message

records in each pool file follows
Pool File=21 ...the number of the pool file, ie as in nnQP
Record Num=0 ...the record number within the pool file
Offset=0x00000040 ...the offset of the record in the file
FileName=~/data/000000a/0000b94...ITEM_REF of the cut down msg container
Flags= ...Flags and NextRecord only set if msg is on
NextRecord=NONE more than 16 queues. Then FLAGS=MORE RECORDS

and NextRecord=<record num of next record>.
Continuation records would be in the same pool
file

Create Time=927030603 05.18.99 13:30:03 ...Time record created. First
number is seconds since the start of the epoch.

QPoolId=956 ...unique ID of msg in msgpool
message flags=0x00000000 ...not used
Queue=DESK ...queue msg is currently on
Priority=0 ...prioriy setting of msg, 0=normal, 2=urgent,

1=low
Queue Flags=0x00000000 ...not used
Defer Time=NONE ...used by unix.out if can’t send to sendmail
Submit Time=927030900 05.18.99 13:35:00 ...when msg put on queue
Queue=LOCAL ...this msg is also on LOCAL and UNIX queues,
Priority=0 so above info given for each queue entry
Queue Flags=0x00000000
Defer Time=NONE
Submit Time=927030693 05.18.99 13:31:33
Queue=UNIX
Priority=0
Queue Flags=0x00000000
Defer Time=NONE
Submit Time=927030941 05.18.99 13:35:41

Pool File=21
Record Num=9
Offset=0x00001C3C
FileName=~/data/000000b/0000baq
Flags=
NextRecord=NONE
Create Time=927030608 05.18.99 13:30:08
QPoolId=965
message flags=0x00000000
Queue=LOCAL

m
es

sa
ge

 p
ar

t o
f

re
co

rd
qu

eu
es

 p
ar

t o
f

re
co

rd
November 11 1999 Page 28

Queues and Parallel Processing (B.06.00)

, you

 in

u
Priority=0
Queue Flags=0x00000000
Defer Time=NONE
Submit Time=927030695 05.18.99 13:31:35

...etc

Now let’s look at a textual description of the Queue Manager’s memory. To create the file
type:

Option?t
Message pool (m) or queues (q) ? q
Msg File Name (~/temp/00008b0):

If you do not accept the default location, the filename you give must be an ITEM_REF in the
data or temp domain, that is ~openmail/data or ~openmail/temp. We strongly
recommend you put it in ~openmail/temp.

In the output, he sections are in the following order and each section starts with ’====’:

====Active Messages (Active message list)

====Known messages (The message list)

====Queues - for each queue, status info followed by the msgs on the queue, sorted
order.

====Queue Readers (Registered readers)

Not all the information will be useful to you. I’ve added the comments in italics to help yo
understand the potentially useful parts.

more ~openmail/temp/00008b0
==ACTIVE MESSAGES==
Table Size=4 ...max. number of msgs active at any point
------------------ there are 2 msgs being processed at this point...
Record=0 ...record number in table
Reader Id=3 ...same as ‘record’ entry in Q Readers

section at end of output
Queue Name=LOCAL
Active Time=05.18.99 13:35:11
Flags=0x00000001
Item Ref = ~/data/000000a/0000b94 ...ITEM_REF of cut down ctner
Priority = 0
Item Type = 0
Submit Date/Time = 05.18.99/13:31:33 ...when submitted to queue
Mail Date/Time = 01.01.70/00:00:00 ...only used by unix.out for

deferred msgs
Entry Number=29
Sequence Num=1442 ...seq num given to msg when it was put on

this queue
Message Pool Id=956 ...QPoolId
Message Pool File=21 ...ie pool file is 21QP
Message Pool Rec=0 ...record in pool file
Failed processing attempts=0 ...if 3 them would be on POISON queue

Record=2
Reader Id=4
Queue Name=LOCAL
Active Time=05.18.99 13:37:25
Flags=0x00000001
Item Ref = ~/data/000000e/0000be0
Priority = 0
Item Type = 0
November 11 1999 Page 29

Queues and Parallel Processing (B.06.00)
Submit Date/Time = 05.18.99/13:31:37
Mail Date/Time = 01.01.70/00:00:00
Entry Number=170
Sequence Num=1368
Message Pool Id=982
Message Pool File=21
Message Pool Rec=26
Failed processing attempts=0
====End Active=====

====Known messages=== ...All the messages in the system
(not sorted)

Table size=300 ...Available slots in the table
Table Used Size=272 ...Slots used
Free list Size=192 ...A list referencing free table slots
----------------------- ...Details of each msg follows...
Record=0 ...record number in message table
Message Pool Id=101 ...Same as QPoolId
Message Pool File=25 ...i.e ~openmail/msgpool/25QP
Message Pool Rec=0 ...record within ~openmail/msgpool/25QP
Access Count=1 ...no. of queues msg is on
Flags=0x00000001 ...Flag of 0x00000002 prevents msg being

deleted as creator stillhas it open
Msg File=~/data/000000p/00004l4 ..ITEM_REF of cut down msg container

Record=12
Message Pool Id=113
Message Pool File=51
Message Pool Rec=0
Access Count=1
Flags=0x00000001
Msg File=~/data/000000q/00004p4

Record=29
Message Pool Id=956
Message Pool File=21
Message Pool Rec=0
Access Count=3 ...NB this message is on 3 queues. Search

on the Message Pool Id to find it on queues
Flags=0x00000001
Msg File=~/data/000000a/0000b94

Record=31
Message Pool Id=954
Message Pool File=33
Message Pool Rec=0
Access Count=1
Flags=0x00000001
Msg File=~/data/0000009/0000b81
...

Record=271
Message Pool Id=1032
Message Pool File=21
Message Pool Rec=76
Access Count=1
Flags=0x00000001
Msg File=~/data/000000n/0000bnc
=====END Messages====

==== Queues ======= ...Info about each queue and msgs on them
(sorted)

Number of queues=23
November 11 1999 Page 30

Queues and Parallel Processing (B.06.00)
Current Pool ID=1055 ...highest number in QPoolId sequence

Queue Name=SMINTFC
Flags=0x00000001 ...just indicates msg in use.

Flags are cumulative.
0x00000002 queue suspended
0x00000004 queue shutdown
0x00000008 queue locked by reader

Messages this hour=0
Messages last hour=0
Current Hour= 00:00:00
Messages processed=0
Active Messages=0

+++Load Average: ...some load stats taken at intervals,
s & T options of omqdump are more useful

Load=0.000000
Decay factor=0.920044
Averge interval=60
Sample period=5
Remaining Sample period=2
Next load value=0
Last average taken at= 13:37:25
Average running for= 23:37:28
+++Load Average:
...
------>>>> The Messages ...no messages on the SMINTFC queue

...

Queue Name=LOCAL
Flags=0x00000001
Messages this hour=25
Messages last hour=121
Current Hour= 13:37:13
Messages processed=874
Active Messages=2 ...we saw these in Active Msgs section
+++Load Average:
Load=96.679782
Decay factor=0.920044
Averge interval=60
Sample period=5
Remaining Sample period=2
Next load value=0
Last average taken at= 13:37:25
Average running for= 23:37:28
+++Load Average:
...
------>>>> The Messages
++++++++++++++++++
Item Ref = ~/data/000000e/0000be6
Priority = 0
Item Type = 0
Submit Date/Time = 05.18.99/13:31:38
Mail Date/Time = 01.01.70/00:00:00
Entry Number=172
Sequence Num=1369
Message Pool Id=983
Message Pool File=21
Message Pool Rec=27
Failed processing attempts=0
++++++++++++++++++
Item Ref = ~/data/000000e/0000bec
November 11 1999 Page 31

Queues and Parallel Processing (B.06.00)
Priority = 0
Item Type = 0
Submit Date/Time = 05.18.99/13:31:38
Mail Date/Time = 01.01.70/00:00:00
Entry Number=173
Sequence Num=1370
Message Pool Id=984
Message Pool File=21
Message Pool Rec=28
Failed processing attempts=0
++++++++++++++++++
Item Ref = ~/data/000000e/0000bei
Priority = 0
Item Type = 0
Submit Date/Time = 05.18.99/13:31:38
Mail Date/Time = 01.01.70/00:00:00
Entry Number=174
Sequence Num=1371
Message Pool Id=985
Message Pool File=21
Message Pool Rec=29
Failed processing attempts=0
++++++++++++++++++
...

Queue Name=DESK
Flags=0x00000001
Messages this hour=0
Messages last hour=0
Current Hour= 00:00:00
Messages processed=0
Active Messages=0
+++Load Average:
...
------>>>> The Messages
++++++++++++++++++
Item Ref = ~/data/000000a/0000b94
Priority = 0
Item Type = 0
Submit Date/Time = 05.18.99/13:35:00
Mail Date/Time = 01.01.70/00:00:00
Entry Number=29
Sequence Num=2
Message Pool Id=956Here’s the msg on 3 queues
Message Pool File=21
Message Pool Rec=0
Failed processing attempts=0

...
Queue Name=UNIX
Flags=0x00000001
Messages this hour=0
Messages last hour=0
Current Hour= 00:00:00
Messages processed=0
Active Messages=0
+++Load Average:
...
------>>>> The Messages
++++++++++++++++++
Item Ref = ~/data/000000a/0000b94
Priority = 0
Item Type = 0
November 11 1999 Page 32

Queues and Parallel Processing (B.06.00)
Submit Date/Time = 05.18.99/13:35:41
Mail Date/Time = 01.01.70/00:00:00
Entry Number=29
Sequence Num=2
Message Pool Id=956Here’s the msg on 3 queues
Message Pool File=21
Message Pool Rec=0
Failed processing attempts=0

...

Queue Name=IDEL
Flags=0x00000001
Messages this hour=25
Messages last hour=121
Current Hour= 13:37:14
Messages processed=873
Active Messages=0
+++Load Average:
...
------>>>> The Messages

Queue Name=POISON
Flags=0x00000001
Messages this hour=0
Messages last hour=0
Current Hour= 00:00:00
Messages processed=0
Active Messages=0
...

====Queue Readers==== ...Info about registered queue readers...
Readers Array Size=8

Record=0 ...=Reader Id in Active Messages
Pid=11620 ...PID of reader process
Registered at=05.05.99 14:00:03 ...Time process registered with Qmgr
Last Request at=05.18.99 13:37:25 ...Info about latest communication
Last Response at=05.18.99 13:37:25 with qmgr
Current Active message=NONE
Queue Name=IDEL
Flags=0x00000003 ...cumulative flags: 1=structure in use,

3=reader awaiting reply, 10=shutdown
req (i.e. omoff), 40=reader has q
locked (i.e.omscan probably running)

TimeOut=300 ...queue reader timeout in seconds

Record=1
Pid=16650
Registered at=05.18.99 13:31:33
Last Request at=05.18.99 13:36:58
Last Response at=05.18.99 13:36:58
Current Active message=NONE
Queue Name=ROUTER
Flags=0x00000003
TimeOut=30

Record=2
Pid=16651
Registered at=05.18.99 13:31:33
Last Request at=05.18.99 13:31:33
Last Response at=01.01.70 00:00:00
Current Active message=NONE
November 11 1999 Page 33

Queues and Parallel Processing (B.06.00)
Queue Name=DMM
Flags=0x00000003
TimeOut=3600

Record=3
Pid=16661
Registered at=05.18.99 13:34:43
Last Request at=01.01.70 00:00:00
Last Response at=05.18.99 13:35:11
Current Active message=0 ...Notice there are 2 local del readers
Queue Name=LOCAL
Flags=0x00000001
TimeOut=0

Record=4
Pid=16687
Registered at=05.18.99 13:37:12
Last Request at=05.18.99 13:37:25
Last Response at=05.18.99 13:37:25
Current Active message=2
Queue Name=LOCAL
Flags=0x00000001
TimeOut=0

Record=5
Pid=16686
Registered at=05.18.99 13:37:12
Last Request at=05.18.99 13:37:12
Last Response at=01.01.70 00:00:00
Current Active message=NONE
Queue Name=ERRMGR
Flags=0x00000003
TimeOut=90
=====End Readers=====
November 11 1999 Page 34

	Summary
	Readership
	Comments Please!
	Revision History
	Contents
	Introduction
	An Overview Of the Changes
	Message Life Cycle

	Message pool
	How Message Details Are Held In Pool Files
	How Are The Pool Files Created?
	Upgrading Pre B.06.00 Queues
	How Are Pool Files Updated?
	How Can I View The Pool Files?
	The Pool Control File

	The Queue Manager
	What happens if the Queue Manager dies?
	Starting Up Queue Manager If The Message Pool Is Corrupt
	The POISON Queue
	The Idel Queue And The Item Delete Daemon

	Queue Reader Processes
	Multiple Readers For A Queue
	How To Configure Multiple Reader Processes
	How To Monitor Multiple Reader Processes
	Choosing The Optimum Number Of Reader Processes
	Kernel Parameters

	Logging Reader Processes

	Troubleshooting Tools
	The Queue Manager’s Tombstone File
	omfreeq
	omqdump
	s
	T
	O
	L
	C
	Z
	Changes To The Browse Options (l and r)
	Changes To g Option
	The v Option Does Some Unusual Things Now
	t

