OpenMail
Technical
Note

Queues and Parallel Processing (B.06.00)

Summary

This OTN explains the new gueue system and parallel processing functionality introduced in
OpenMail version 6.0.

The following topics are covered:

» How the new Queue Manager process manages the message queues in memory and
communicates with queue reader processes.

* The Message Pool, where details of all the in transit messages are held on disk.
« ThePO SON andl DEL queues and the new message deletion system.

« How to configure and monitor multiple readers for a queue.

« Newongdunp options to help you troubleshoot queue message problems.

The contents of the OTN will be included in the OpenMail Upgrade class, OM360. The class
will be run for a limited period from October, 1999, after which the contents of this document
will be merged with existing AE351 course material and this OTN will be withdrawn.

Reader ship

As this is an update OTN, | have assumed readers are familiar with OpenMail and, in
particular, the way the message queues worked in previous releases. | have also assumed
familiarity with ongdunp.

Comments Pleasel!
| would welcome any comments you may have on this document. Please email them to
joyce@pwd.hp.com.
Revision History
18th May 1999 This is the first issue of this OTN.
11th November 1999 Clarification about:
Turning off readers before manipulating messages with omgdump

Not deleting old queues directory

When auxiliary readers are given messages to process

November 11 1999 Copyright © 1999 Hewlett-Packard Company Page 1

Queues and Parallel Processing (B.06.00)

Contents

1A o [Tt A o o OSSP 3
An Overview Of the ChangEScccoiiieieiere e 3
MESSAOE LITE CYClO....eiieiie ettt sttt s bea et s nre s 5

Y SS Vo T oo To | T 6
How Message Details Are HEld 1N POOI FIIES.........ccccooieicieiececeee s 6
How Are The PoOl FileS Created?...... ..ot 8
Upgrading Pre B.06.00 QUEUES..........ccvieereeeerieiesiesestessestesseeseesaessessessessesseessssessssssensens 8
How Are Pool FIles Updated?............cceieieieiiirieeeese e ee e eneas 9
How Can | View The POOl FilES?.......cccoiiiiiieie e 10
The P00l CONtrOl FilE........coiiieeee et e 10

The QUEUE M ENAGESeeeeeeeeesiesie ettt ere et e s et e st te s re e e s ae e teseesestesbesbesneeseenenseeneeseenes 11
What happensif the Queue Manager di€S?........cocvveieieeceie e 13
Starting Up Queue Manager |If The Message Pool 1S Corruptcccovvvveveeciscvennnens 14
The POISON QUEUE.........coiuieieeie ettt et ettt et eete et este e sbeesbe e besaessaeasbessseetesssessteesseenens 14
The Idel Queue And The [tem Delete DaemON..........cceecuieieiiieceececee et 15

QUEUE REAUES PrOCESSES......ccticieitieitieteeete et e et e ete et e eteesteesbeesbeetessbessteesbeesessseesteesteeseesseesaeans 17
Multiple Readers FOr A QUEUEcc.eoveviece ettt 17
How To Configure Multiple Reader ProCESSES.........cocevvvvveiese e ree e 18
How To Monitor Multiple Reader PrOCESSEScccueveeuerieresese e seseeseesee e esee e 18
Choosing The Optimum Number Of Reader ProCESSES.........cccvveveieieninieieeseieesennens 20
L0gging REAJEr PrOCESSESccueiueeirieeiesese st tesa e ste st st e e nenne s 21

I ge 18] o] 1= g oo AT oo T oo K= 3SR 23
The Queue Manager’s TOMDSIONE Fileuuiiiiiiiiiiiii e
(01011 1T =T o PP PPUPRRPRR 23.....
Lo 70T o [0 03] o PP UUSPUUUUPPRRRRRR 23........

November 11 1999 Page 2

Queues and Parallel Processing (B.06.00)

I ntroduction

Before B.06.00 the main area, which needed improving if OpenMail wasto scal e effectively to
very large, fast systems, was that of bottlenecks occurring on the ROUTER and LOCAL queues
because the reader processes, Service Router and Local Delivery, were busy performingi/o.
Because all the queued messages were held on disk, the whole message processing system
was, to some extent, i/o bound.

To address this performance issue, the queues have been moved from disk to the memory of a
new central daemon, called the Queue Manager. The responsihilities of this daemon are:

« To organize the queues of messages.
« To act as a scheduler for the queue reader processes.

« To monitor queue reader processes and keep track of all the in transit messages in the
system.

Only the Queue Manager accesses the queues - not the service processes, as before - and it is
almost totally CPU bound, making it very fast indeed. The Queue Manager communicates with
the queue reader processes, such as Service Router, using Unix IPC message queues.

The introduction of the Queue Manager has brought several important, additional benefits:
« Communication between service processes has been simplified.
« Asingle process now keeps track of all the messages moving through the system.

« The Queue Manager is well placed to provide statistics on message throughput and the
performance of reader processes.

So we have speeded up the queue access, but surely the bottleneck will just move to the service
processes? This is where the B.0&a0allel Processing comes in. In previous releases, each
gueue could have only one reader. Now you can configure up to 21 reader processes for the
main queues. Tests so far have shown significant improvements to message throughput.

Deleting messages also impacted the performance of the OpenMail processes, so a new
message deletion system has been introduced, reducing the workload of the service processes.
A new queue, called tHeDEL queue, and an Item Delete daemon perform this function.

In this OTN we will look at how the new queue system works, how to configure and monitor
multiple reader processes and how you can use new optionsirat andongdunp to
monitor performance and track messages as they move through OpenMail.

An Overview Of the Changes

Thelntroduction gave the rationale for the changes introduced in B.06.00. We will now look,
in a little more detail, at the new system as a whole, before studying the individual parts.

Remember the files:openmai | / queues/ qcont r ol , <g- name>. qua and
<g- nane>. qub? Well, they are all obsolete! At B.06.00 the new queue system comprises:

¢ Queue structures held in memory. The queues are no longer held on disk. Instead, the new
Queue Manager daemon creates and maintains queue structures in its memory.

« A Message Pool directoryppenmai | / nsgpool . This directory contains up to 100 pool
files, 0QP - 99QP, and a pool control file;openmnai | / megpool /pool ctrl . Although
the queues are not held on disk, a record for each in transit message in the system is held
and updated in the pool files. The pool control file keeps a list of the configured queues and
the number of pool files created.

¢ A Queue Manager daemampt / opennai | / bi n/ queue. manager . ThiSNON- STOP
daemon accesses and manages the queues, schedules queue reader processes and keeps
track of all the in transit messages in the system. The Queue Manager also manages two

November 11 1999 Page 3

Queues and Parallel Processing (B.06.00)

new, special queues, the | DEL queue and the PO SON queue. The | DEL queueis part of the

new message deletion system and the PO SON queue is for messages which repeatedly kill
reader processes.

* An Item Delete daemonopt / openmai | / bi n/i del . server. A new mechanism for
deleting messages has been introduced. At start up, this daemon is started by the Queue
Manager. Its function is to delete messages om b queue. In previous releases, the
reader processes were responsible for deleting messages.

To make full use of the speed of the Queue Manager, queue reading has also been enhanced so
that you can run concurrently multiple instances of the following queue reader processes:

e Local Delivery

* Sevice Router

e Sendmail interface (xport.out)

« Internet Gateway (unix.out)

The diagram below shows the main parts of the new queue system and how they communicate.
Figure 1. Overview of the New Queue System

_______ Disk access

IPC

—_——————————

Y

~ Queue Manager

Message |__--—
Pool

OpenMail
Processes

Item
Delete
Process

Message
- -
Store &« -
pogl -
v

Notice the queues are only accessed by the Queue Manager, not by the OpenMail processes.
The processes, for example, Service Router and Local Delivery, send requests for messages
and receive responses from the Queue Manager via IPC message queues. The Queue Manager
also communicates with the Item Delete daemon using IPC messages.

November 11 1999 Page 4

Queues and Parallel Processing (B.06.00)

Accessing messages and message details on disk, in the Message Store and the M essage Pool,
is performed mainly by the OpenMail processes and the Item Delete daemon. The Queue
Manager only accesses the Message Pool at start up and if it ever puts a message on the

PO SON queue.

Probably the best way to summarise how all these parts work together to route messageswithin
the OpenMail system, isto describe the processin terms of the lifecycle of a message.

Message Life Cycle

For the purposes of this discussion, we will assume that in the life cycle of amessage there are
three main stages: birth, life and death.

1. Birthtakes place when a new message enters the system. Suppose we have created a
message using our mail client and pressed the "Send" button to submit it to the OpenMail
system. The UAL process then creates the cut down message container, Transaction File,
DL and message content parts in the Message Store, (~opennmi | / dat a), as described in
the Message Store OTN.

The process (UAL process in this case) opens an existing pool file, nnQP, or creates a new
pool filein the Message Pool. It then writes a poal file record, which includes among other
details, the | TEM_REF of the cut down message container and the name of the first
gueue(s) the message is to be put on. In our example, this would be the ROUTER queue.

The process sends an | PC request to the Queue Manager to put the message on the queue
and includes the message details in the request.

2. During the life of a message, the Queue Manager passes details of the messagein IPC
reguests/responses to the reader(s) of the queue(s) to which the message is attached. A
reader is a process, e.g. Service Router, which processes messages from a queue. In
B.06.00, there may be severa Service Routers processing messages from the ROUTER
gueue concurrently.

Asthe message moves between queues, the process currently handling the message updates
the queue names in the message’s pool file record and informs the Queue Manager of the
change.

3. Thedeath of a message is when the message leaves the OpenMail system completely or is
delivered to a user’s mailbox. The last process to handle the message removes the last
gueue name from the message’s pool file record and informs the Queue Manager. If our
message is destined for another user on this system, the process handling the message at
this stage would be Local Delivery and the last queue name to be removed from the pool
file record would be& OCAL.

The Queue Manager moves the message tbDfE queue.

The Item Delete daemon reads the message details frdrbEhequeue and deletes the
pool file record and the cut down message components in the Message Store.

Now that you have a general understanding of how the system works, we shall take a closer
look at the individual parts.

November 11 1999 Page 5

Queues and Parallel Processing (B.06.00)

M essage pool

Although all the queued messages are now held in memory, the details of all these messages
need to be secured to disk somewhere, in case of asystem crash. Thisisthe function of the new
directory ~openmai | / nsgpool .

An| s of thisdirectory on my system shows a number of files with the name nnQP, which we
will refer to as pool files, and apool ctrl file. There can be up to 100 pool files (0QP to
99QP). If you looked at this directory on a newly installed B.06.00 system, you would find
only the pool ctr1 file, asthe pool files are created as needed by the service processes.

root @uda[] #ls ~opennail/ nsgpool

orP 17QP 24QP 31QP 39QP 46QP 53QP 60QP
10QP 18QP 25QP 32QP 3QP 47QP 54QP 6QP
11QP 19QP 26QP 33QP 40QP 48QP 55QP 7QP
12QP 1P 27QP 34QP 41QP 49QP 56QP 8QP
13QP 20QP 28QP 35QP 42QP 4QP 57QP 9P
14QP 21QP 29QP 36QP 43QP 50QP 58QP pool ctrl
15QP 220QP 2QP 37QP 440P 51QP 59QP

16QP 23QP 30QP 38QP 45QP 52QP 5QP

How M essage Details Are Held I n Pool Files

Each message in the system has only one record in the Message Pool. Thisrecord isheld in
one of the pool files and contains details, such asthe | TEM_REF of the cut down message
container and alist of the queues, which that message is on. In previous rel eases, there were
several records in the queue files, one for each queue the message was on. Remember that
copies of messages, for example, BCCs, are separate messages. Each BCC of a message will
therefore have its own pool file record.

The diagram below shows the message details, created in a Message Pool file by the UAL
process. This record includes alist of the queues the message is on; in this example, just the
ROUTER queue. The record references the cut down message container, which has been created
in the Message Store. The UAL process then passes the message details to the Queue Manager
vialPC, requesting the message be added to the ROUTER queue in the Queue Manager'’s
memory.

Figure 2: Overview Of How Message Details Are Held And Used

Q Manager’s memory Message Pool file Message Store
—————— cut down msg ctner
/ N
|] and msg contents
ROUTER |
| Q v
| msg | —
+—on _ /
| Q ITEM_REF -~
| | ROUTER n
/ =%
~ _ 7 \‘%’ P
Q Manager Y, 2
&
¥

process

November 11 1999 Page 6

Queues and Parallel Processing (B.06.00)
The diagram below outlines the format of the pool files.

Figure 3: Pool File Format

Header

M essage details

o Record of Message a
Queue Names

M essage details

Record of Message b
o _ Queue Names

Each record has two parts, a message part and a queue part. The message part holds:
« | TEM REF of the message’s cut down message container.
e The time the record was created in the pool file.

* A sequential index ID number, which is unique within the Message Pool. This ID is called
the QPool | d of the message.

The queue part holds an entry for each queue the message is on. If the message is on several
queues, there will be several queue name parts for the message, but only one message part.
Each queue part contains:

e The queue name.
e The message priority setting.
e The time the message was put on the queue.

« A defer time. This type of deferral is specific to Queue Manager and not the same as user
deferred or administrator deferred messages. There are two instances when this might be
set:

a. When the Unix Gateway process cannot send the message to sendmail, for some reason,
the message will be deferred and sent later.

b. When a process dies while processing a message, the Queue Manager delays the
message before giving it to the reader again.

November 11 1999 Page 7

Queues and Parallel Processing (B.06.00)

How Are The Pool Files Created?

When a message is submitted to the system, the appropriate service process creates the cut
down message container and message component filesin the Message Store. After this, the
process will select a pool file and write the message detailsin afree record in thefile,
including the name of the first queue that the message isto be attached to. This pool fileisthen
sync’d to disk and the message is now secure should the system crash.

The process selects which pool file to open by calculating

<PI D of the process> nodul us 100

This gives a number in the range 0 - 99, which the process then uses as part of the pool file
name, e.gl2QP. If this file does not yet exist, the process creates the next highest unused pool
file and uses that. For example, If the filg@ to 15QP are present and the modulus gives a
higher numberl 6 QP will be created and used.

The first time a pool file is opened the process reads the file sequentially looking for a slot in
which to store a new message record. As messages are added, the process progresses though
the file. Once the end of file is reached, the process will either append more messages to the
file or restart looking from the beginning of the file, by which time some messages may have
been processed, and spaces created.

Why so many pool files? The number was chosen to reduce locking conflicts and spread disk
traffic for striped/raid disks. On a heavily used system, disk i/o on the Message Pool will be
high, so make sure that you have this part of your system optimized for i/o. The document,
Configuration Planning Guide (ID 200-0200), on the OpenMail website, gives useful
information on how to configure your system for OpenMail.

Upgrading Pre B.06.00 Queues

When you install B.06.00, a command calkedjconv is called automatically to upgrade any
messages in theopennai | / queues directory to the Message Pool. This routine reads each
queue file in theyueues directory. Whenever it finds a message, it extracts the information
needed for the new Message Pool and creates a pool file, if required, and record for that
message. After the upgrade has finished, thewédie files will remain. Some flag files,
<queue nane>. R6, are written to the directory to indicate that the queues have been
upgraded. On subsequent B.06.00 installationgconv sees these files and reports that the
gueues have already been upgraded.

Note: As the information written into the oljleues directory may be required should
you need to reinstall OpenMail B.06.00, we suggest you don't delete this
directory. It shouldn't be big anyway, because, unless you had real problems with
your system, there would not have been many messages on queues at the time the
system was upgraded.

The upgrading of each queue file and each message is clearly logged in the installation log file,
/tnp/ominstall.log.If orgconv comes across a problem during the upgrade, for
example, a message which cannot be upgraded for some reason, it writes lots of helpful
information to the log file, leaves the message imtieues directory and carries on. So you

need to checkt np/ omi nst al | . | og carefully after installation, to find out if any messages
have not been upgraded. In the unlikely event of a message failing the upgrade, it is most
probably a message on tBBROR queue.

You can usengdunp to investigate any failed messages. Indhgdunp section, we will
look at a new optiorQ, which allows you to open a cut down message container file in
omgdunp. You can then move the message to the appropriate queue to perform the upgrade.

Warning! Make sure you manually upgrade any problem messages before running
onmscan. If you have messages left in the gldeues directory after
upgrading, then you rusnscan before dealing with these messages, they
will be treated as orphans byscan.

November 11 1999 Page 8

Queues and Parallel Processing (B.06.00)

Here’s an example of some of the logging you will setimp/ omi nstal | . | og:

executing /opt/openmail/bin/omconv
Starting to upgrade nessages on queues to new format.
Starting to upgrade queue “SMINTFC”

Finished Queue.

Starting to upgrade queue “SMERR”

Upgrading message "~/data/00000k2/04gb6hh"
Message upgraded correctly

Finished Queue.

Starting to upgrade queue “ERROR”

Upgrading message "~/data/00000k1/04gb6g9"
Message upgraded correctly

Upgrading message "~/data/00000k1/04gb6gb"
Message upgraded correctly

Just to outline what ongconv isdoing, it:

* Reads the details of each message from-tipenmai | / queues files.

« Creates a new message pool flepenmai | / nsgpool / nnQP, as required.
» Adds arecord for each upgraded message to the appropriate pool file.

When the Queue Manager starts up, it reads the information from the pool files and constructs
the queues in its memory, as normal.

How Are Pool Files Updated?

Service processes are responsible for sync’ing message details to disk when something in the
pool file record is changed, for example, a message is put on a different queue. Only after the
details are written to disk, does the process contact the Queue Manager to ask for the message
to be put on the queue.

As a message is processed and the queue information changes, the queue part of the message
record is overwritten. If this part of the record is empty, the message is not attached to any
gueue and is therefore ready to be deleted, that is, it is ‘ohDile queue. Note, theDEL

gueue is never written to the pool file records.

Once a pool file is opened by a process this file will be kept open by the process until the
process exits. For this reason, when a UAL process opens a pool file, all messages processed in
a session will be put in the same pool file. You can see this if you turn off the Service Router,
then send about 50 messages to yourself using a simpénd script. If you then list

(I's -1)the files inr~opennai | / negpool , you will see one file is bigger than the rest. This

is because the UAL process used the same pool file throughout the session.

Normally the pool files will not grow very large, because messages are constantly being
processed and slots in the files freed for reuse.

Any service which creates new messages as part of processing a message from a queue, will
have two pool files open; the pool file of the queued message it is processing and the pool file
it opens to create new message records in. For example, the Service Router would have two
pool files open when processing a message with BCCs. The service would need to update the
original message’s pool record and select another pool file (using its PID modulus 100), in
which to create a new pool file record for each new BCC message it needs to create.
Remember, during the existence of this Service Router process, it will always select the same
pool file whenever it needs to create new pool file records.

This reduces the need for a large number of open files; the only files open by a process at any
point in time should be the ‘add’ pool file and the ‘last modified’ pool file.

Whenever you restart OpenMail, pool files with unused space at the end are truncated to the
last used record.

November 11 1999 Page 9

Queues and Parallel Processing (B.06.00)
How Can | View The Pool Files?

The pool files are not text files, so you cannot view them using cat . However, the new t
option in ongdunp gives you atext dump of the contents of all the Message Pool files. We
shall look at the output of thisin the omgdunp section.

The Pool Control File

The pool control file, ~openmnai | / megpool / pool ctrl , keepsalist of the queues
configured on the system and details of the number of pooal files present. Again, you cannot
view thisfile directly, but the new L option in ongdunp reads this file and lists the queues.

November 11 1999 Page 10

Queues and Parallel Processing (B.06.00)

The Queue M anager

Now let’s find out more about the Queue Manager.

The actual process name ispt / openmai | / bi n/ queue. manager . As with other
daemons, you can see its status by typimgt at - a :

root @uda[] #onstat -a

PC Moni t or Started NON- STOP 0
Notification Server Started 04.29. 99 0

Shared menory daenon Started NON- STOP

Noti fi cati on Monitor Started NON- STOP

Cont ai ner Access Mbnitor Started NON- STOP

Item Structure Server Started 04.29. 99

Dat abase Moni t or Started 04.29.99

Li cence Monitor Daenpn Started NON- STOP

LDAP Daenon Started 04.29. 99

Queue Manager Started NON- STOP

Item Del et e Daenpn Started NON- STOP

| MAP Server Daenpn Started 04. 29. 99

It is aNON- STOP daemon, which means that it will start when OpenMail is started using
onrc.

Note: If the Queue Manager dies for some reason, you cannotrogeto restart it. You

must always usenshut thenonr c, otherwise the queues would be in an
inconsistent state.

At start up the daemon reads in the details of all the queued messages from the pool files in the
Message Pool and builds the queues in its memory. The following information is held in the
Queue Manager’'s memory:

< An active message list, which lists all messages that are currently being processed.
« A message list, which holds details of each message present on the system.
* Queue tables, which hold details of all queues configured on the system .

« The queues. These are lists of all the messages on each queue sorted in the order that they
will be processed.

« Aregistered reader table, which holds a record of each queue reader that has registered
with the Queue Manager.

As we shall see later, you can use the heaption inongdunp to get a text dump of the

Queue Manager's memory. Obviously, this option is only available when the Queue Manager
is running. I've included an example of the output from this option imtm@iunp section of

this OTN.

After the initial disk access at start up, the Queue Marag®est never accesses disk again;

all further transactions are performed via IPC messages. | say almost never, because if it ever
adds a message to the spekfal SON queue, the Queue Manager itself will need to access the
message’s pool file record to update the queue informationP@MhBON queue is discussed

later in this section.

When the Queue Manager reads the message details into memory, it assigns a unique ID to
each message in the Message Pool. This sequence number is callesstinge Pool | Dor

QPool | d and it continues to increase as new messages are submitted to the Queue Manager to
be put on queues. The sequence is reset when OpenMail is restarted.

We can see théPool | d of each message if we use theption ofongdunp. The following
excerpt shows the part of a text dump of the Message Pool which relates to the message with
theQPool | d of 584 (decimal).

November 11 1999 Page 11

Queues and Parallel Processing (B.06.00)

Pool Fil e=57

Record Num=7

O f set =0x00001604

Fi | eName=~/ dat a/ 0000005/ 000084u

Fl ags=

Next Recor d=NONE

Create Ti me=926005835 05.06.99 16:50: 35
QPool | d=584

message fl ags=0x00000000

Queue=LOCAL

Priority=0

Queue Fl ags=0x00000000

Def er Ti ne=NONE

Subnmit Ti me=926005835 05.06.99 16: 50: 35

Hereis the corresponding excerpt from atext dump of the LOCAL queue in the Queue
Manager's memory:

~/ dat a/ 0000005/ 000084u

It em Ref
Priority =0
Item Type = 0
Submit Date/ Tinme
Mai | Date/ Tinme
Entry Nunber =227
Sequence NunF971
Message Pool |d=584

Message Pool Fil e=57

Message Pool Rec=7

Fai | ed processing attenpts=0

05. 06. 99/ 16: 50: 35
01. 01. 70/ 00: 00: 00

Don’t worry about what it all means at this stage. The important thing to note is that this ID is
called@Pool I d in the first andvessage Pool 1d inthe second!

The Queue Manager arranges the in memory messages in the correct queues and in priority
order. As in the previous release, urgent messages (priority = 2) on a queue will be processed
before normal priority messages (priority = 0) and normal priority before low priority
messages (priority = 1). Where several messages have the same priority setting, the order in
which the messages were submitted to the queue determines their place on the queue.

Note: The messages are only ever sorted into order in the Queue Manager's memory.
The message records in the Message Pool are never sorted.

The IPC mechanism which the Queue Manager uses to communicate with other processes is
very similar to that of the Container Access Monitor and the Item Structure Server. At start up,
the Queue Manager sets up two IPC message queues; one for handling requests (the input
gueue) and one for responses (the output queue). If you type:

onsetsvc -r gngr
you will see the ID of these IPC queues:

root @uda[] #onsetsvc -r qgngr
Details for subsystem Queue Manager:
Servi ce Nunmber = 100

Cont ext dependent information: 904 755 0 0 0 0 0 O
Auxiliary processes =0
PID s of auxiliary processes: 0 000 0000000000000O0O0O

The first number904, is the input queue artb5 identifies the output queue.

November 11 1999 Page 12

Queues and Parallel Processing (B.06.00)
If you then usethei pcs command:
i pcs -q
you will seethat these queues do in fact exist:

root @uda[] #ipcs -q
| PC status from/dev/kmem as of Mon May 17 16:27:50 1999

T I D KEY MODE OMNER CROUP
Message Queues:

q 0 0x3clc06f5 -Rrw -w-w r oot r oot
q 1 0x3elc06f5 --rwr--r-- r oot r oot
q 752 0x00000000 -Rrwrw--- opennmail hpoffice
q 753 0x00000000 --rwrw--- opennail hpoffice
q 904 0x00000000 -Rrwrw--- opennail hpoffice
q 755 0x00000000 -Rrwrw--- opennail hpoffice
o} 556 0x00000000 -Rrwrw--- opennail hpoffice

It should be obvious by now that the Queue Manager daemon is critical to the OpenMail
system. Just as ontt mon needs to be running before the message store can be accessed, the
Queue Manager needs to be running before the queues can be accessed, even using ongdunp.

A question you may be asking is "What is the maximum number of messages that can bein

memory ?" This depends on the size of the Queue Manager’s data area. The queues can grow
to fill the Queue Manager’s data area, which is determined ByXKESI ZE kernel parameter.

The default size is 64 Mbytes but, if you have a large system, you have probably already
increased this fosrrscan.

To give you some idea of how many messages could be held in queues on a system with the
default data area size: Each message entry occupies approximately 160 bytes and the default
data area of a process is 64 Mbytes, so you could have roughly 400,000 messages on queues
before the Queue Manager dies of exhaustion! Remember, ithigassit messages we are

talking about, not messages in the Message Store, so it is extremely unlikely that you will ever
hit this limit.

For each message on a queue, the Queue Manager will hold the following information:
* Thel TEM_ REF of the cut down message container.
e The message priority setting.

e« The message®kssage Pool | D (also known as théPool | d).

What happensif the Queue Manager dies?

In the unlikely event of the Queue Manager dying, the services trying to communicate with it
will gradually die too. Before exiting (provided you haven't dohe &l - 9 on it), the Queue
Manager puts an IPC shutdown message on its IPC queue, then logs the state of its memory
and other debugging information to a fil@pennai | / | ogs/ gngr . t onb. This is a text

file, which you carcat ornor e and is very similar in format to the outputasfgdunmp when

you use the option to dump the Queue Manager’'s memory (we will be looking at this output
in theongdunp section). The additional debugging information given in this file is really only
of use to the lab engineers. So if you raise a support call, which requires in-depth
troubleshooting, be aware that this is one of the files you may be asked for.

If the Queue Manager dies, you must shutdown OpenMail osiplyut and restart it using
ont c. Do not try toonon Queue Manager; it needs to rebuild the queues in its memory and
this only happens when you user c.

What happens to the messages on the queues if the Queue Manager dies? Before a process
sends a request to the Queue Manager to put a message on a queue, it writes the updated
information to that message’s record in the Message Pool. The information includes which
gueues the message is on. When the Queue Manager restarts, it will read this information and

November 11 1999 Page 13

Queues and Parallel Processing (B.06.00)

put the message on the appropriate queues, ready to start from the point at which it died. This
is, of course, assuming you have fixed the problem which caused the Queue Manager to diein
the first place!

Sarting Up Queue Manager If The Message Pool |s Corrupt

Thetweak QM DONT_READ_MESSAGE_AT_START=TRUE prevents the Queue Manager from
reading the Message Pool at start up.This may prove useful if the Message Pool is corrupt, but
you need to keep the messaging service running. Then you can schedule time later on to
investigate the problem.

Warning! Thereis currently afatal problem that could arise when you use this tweak. |
have documented the scenario at the end of this section. Please read this
carefully before using this tweak on your production system.

When this tweak is used, the existing messages remain in the Message Pool at start-up but are
not read into memory by the Queue Manager and are therefore not processed. You will not be
able to see them when viewing the queues using ongdunp, but you can usethet optionin
ongdunp to produce atext dump of the Message Pool. Thiswill provide information about all
the the contents of the Message Poal, including queued messages from the session before the
tweak was set. From this output you can find out the cut down message container filename for
each message. Output from onshowl og should help you what the problem is. Then if you
need to access afile, you can use ongdunp with the new Ooption, which lets you open a

message file.

If you have set thistweak, it isagood ideato restart OpenMail using onr ¢ - n, then dump the
Message Pool contents to afile immediately, before starting the OpenMail services. Thiswill
ensure you have arecord of which entries relate to the previous OpenMail session. Otherwise,
when the services start up and new entries are added to the Message Pooal, it will be more time
consuming to determine which messages relate to which session.

Warning! At the time of writing, there is a problem you should be aware of before you
decide to use thistweak. Aswe have already discussed, each new message is
givenaQPool | D number, which must be unique in the Message Pool. When
OpenMail is started the QPool | D sequenceis reset...for al new messages.
When you use the QI DONT_READ MESSAGE_AT_START tweak, you
could end up with QPool | D numbers which are not unique. If you unset the
tweak and restart OpenMail, the Queue Manager finds two identical
QPool | Dnumbers and dies! The error message logged in the event log
makes it quite clear what the problem is and the offending message recordsin
thenmsgpool filescan belocated by looking at the
~opennai | /1 ogs/ qngr . t onb file. Currently, the only way round this
problem is either to make sure there are no duplicate QPool | D's before you
shut down OpenMail and unset the tweak, or toamseed to change the
QPool | D of one of the messages in the Message Pool.

The POISON Queue

This special queue is for messages which have a nasty habit of killing off queue reader
processes. Only the Queue Manager ever puts a message on this queue.

If the Queue Manager gives a reader a message and the reader dies. The Queue Manager
notices that the reader has not sent a message back to say that it has processed the message.
The Queue Manager then defers the message for 30 seconds, then gives it to a reader again. If
the reader dies again, the Queue Manager defers the message for 30 seconds, then gives it to a
reader a third time. If the reader dies again, the Queue Manager assumes the message is
‘poisonous’ to that reader process and puts it ofP@heSON queue.

The Queue Manager then updates the pool file record for this message to show it is on the
PO SON queue. Apart from at start up, this is the only time the Queue Manager accesses disk.

November 11 1999 Page 14

Queues and Parallel Processing (B.06.00)

Theldel

Aswith the ERROR queue, you will have to monitor the PO SON queue and investigate any
messages on it manually. You can use ongdunp to access messages on this queue.

The PO SON queue facility can limit the disruption to a messaging system, if aservice diesand
isrestarted without the cause of the problem being discovered. If you are running auxiliary

readers, let's say four Service Router processes, a ‘poisonous’ message may kill three before
being assigned to tHRO SON queue, but you will still have one Service Router running.

Currently, there is no way of changing the number of readers that can die before a message is
put on thePO SON queue.

Queue And Theltem Delete Daemon

In previous releases, when OpenMail had finished processing a message, the last process to
handle the message was responsible for deleting it. Deleting a message involves removing a
number of files, which involves a significant amount of synchronous disk i/0. Obviously, if
reader processes are busy deleting messages, their capacity to process new messages is
severely impacted.

The newl DEL queue and its associated reader, the Item Delete daeadwin. ser ver),

provide a new message deletion system. The Item Delete daemig@Ns SIroP daemon. It

uses IPC to request from the Queue Manager the item references of message®En the

gueue, in the same way as other services get messages from a queue. Currently, there can only
be one Item Delete daemon.

With this new system, removing items happens in the background of other system activity. The
responsibility for message deletion is removed from the service processes, so performance is
not impacted. When a system is particularly busy, the Item Delete daemon will not be able to
delete messages as quickly as during quieter periods, so you may see a high number of
messages on théEL queue for a time. This is fine and will not affect message delivery times.

Thel DEL queue is a ‘pseudo’ queue in that, when the queue part of a message’s pool file
record is empty (that is, the message is not on any queue), the Queue Manager notes that it is
not attached to any queue and puts it onl DL queue. Thé DEL queue is never written into

a message’s pool file record. The message is then picked from this queue by the Item Delete
daemon, which deletes the message record from the pool file and the cut down message
container and contents files from the Message Store.

Before deleting the pool record, the process checks that there are no entries in the queue part.
Before deleting the message files from the Message Store, the process reduces the access count
in the cut down message container by one. If the count is zero, the process deletes the file.

The way the access count in the cut down message container works has been changed slightly.
In previous releases, this count reflected the number of queues the message was on. Now the
count can b@® (zero),1 or2. 0 (zero) means the message has no references in the Message
Pool and can therefore be deletedneans that it has one reference in the Message Pool. On
rare occasions, it may 2 This may happen with a message that has been deferred by a user
and the message is then put on the deferred message list by the Service Router. (Note this is
different from the Deferred Mail Manager facility). The access count is reduced by one when
the message is eventually sent, that is, added to the Message Pool, and will subsequently be
reduced t® (zero) when processing is complete.

You can test the access count by usingptieption inomgdunp to put a message on three
different queues. Nowg’et the message and’ead it. The access count in the first (message
container) part of the output should beeven though the message is on three queues. When
you put the message on the queues, the message’s pool file record was updated to show the
gueues. There is still only one reference to the message in the Message Pool.

Here’s a summary of the actions performed by the Item Delete daemon:

« Atstart up, it is started by the Queue Manager and registers with the Queue Manager as a
reader of thé DEL queue.

November 11 1999 Page 15

Queues and Parallel Processing (B.06.00)

It requests a message from tHeEL queue.

When a message is supplied by the Queue Manager, the Item Delete daemon removes the
message from the pool file, provided the queue names list is empty.

It decreases the access count in the cut down message container.
If the access count is zero, the message and all its content parts are deleted.
The Queue Manager is informed that the message is no longeridbBheueue.

[The Queue Manager then removes all references to the message from its memory].

What happens if the Item Delete daemon dies while deleting messages? First of all, you can
restart the Item Delete daemon by typing:

i del . server

The last thing that happens is that the Queue Manager removes all references to the message
from its memory. So, up until this point, the Queue Manager can still give the reference of this
message to the Item Delete daemon. This daemon is pretty laid back about things that don’t
exist...if the pool file record does't exist, it will just continue to delete the other things it has on
its list, that is, the message files. It does not mind if some of these do not exist either.

November 11 1999 Page 16

Queues and Parallel Processing (B.06.00)

Queue Reader Processes

When aserviceis started, it sends an | PC message to the Queue Manager to register as areader
of its associated queue. The service then waits for the Queue Manager to send it a message to
process. If thereisamessage on that queue, the Queue Manager sends details of the message to
the service.

The service processes the message and updates the pool file record with the next queue(s) the

message needs to be put on. Processing may also include creating new messages, if there are

BCCs, for example. Once the changes are sync'd to disk, the service informs the Queue
Manager of the changes. The Queue Manager updates its queues and sends the service the next
message in its queue.

Some services, such as DirSync, can have a timeout set. This means that, if there are no
messages for them in the timeout period, they will go off and do some of the other processing
they are responsible for.

Note: The following tweaks concerned with queue readers are now obsolete or not
advisedQ WAKE_READER, Q TI ME_OUT.

Q WAKE_READER is now obsolete. In the previous release, processes used signals to wake up
the next queue reader process. It was possible @ WA&KE READER so that the main

services were not signalled when a message was placed on a queue. In combination with
Q_TI ME_QUT, this allowed a process to be idle and only process messages at fixed intervals.
This feature was mainly for low end systems, which where short of memory. As this is not
really a problem anymore, the functionality is not implemented in the Queue Manager.

With the new system and, in particular, the way the the Queue Manager manages the
scheduling of the reader processes, it is not necessary, or advisabl€ ol 34t OUT.

Multiple Readers For A Queue

In the previous release, a queue could have many processes writing to it but only one process
reading from it. As a result, tHROUTER andLOCAL queues tended to be a bottleneck in large,
heavily used systems. In B.06.00, to take full advantage of the additional efficiency and speed
introduced by the Queue Manager, the main queues can have multiple reader processes.

Queues that can have multiple readers configured are:
e Local Delivery

* Service Router

e xport.out (sendmail interface)

e uni x. out (Internet Gateway)

Even if multiple copies of the above services are configured, only one copy of the following
sub-services will be configured:

e error.nmanager This is a sub-service of Local Delivery.
e defer. manager This is a sub-service of the Service Router.
* licence.server Thisis a sub-service of the Service Router.

When you start OpenMail usirggr ¢, only one reader will start for the above queues. This is
called themain reader for the queue. If you then configure additional readers for a particular
queue, these are calladxiliary readers. It is important to understand this distinction, because
some of the monitoring output refers only to auxiliary readers and does not include the main
reader.

November 11 1999 Page 17

Queues and Parallel Processing (B.06.00)

How To Configure Multiple Reader Processes

Before configuring auxiliary reader processes for a queue, you must turn the service off using
onof f . You then use the ons et svc command to configure auxiliary readers:

ohset svc -x <service> <no. of auxiliary readers>
The total number of readersfor this queue will then be :

main reader + number of auxiliary readers
For example,

onsetsvc -x Sr 2

will configure two auxiliary Service Router processes, giving atotal of three Service Router
processes all together.

Theoretically, you can configure up to a maximum of 20 auxiliary readers for a queue.

However, before rushing off and starting lots of extrareaders, thinking thisis the answer to all

your throughput problems, | strongly suggest you read the section below (see “Choosing The
Optimum Number Of Reader Processes” on page 20)!

When youonon oronof f the reader service, the associated auxiliary readers are also started
or stopped. There is currently no way of closing down some of the readers. To run fewer
readers, you need torof f the service, configure the required number of auxiliary readers you
want usingonset svc - x andonon the service again.

When the service is started, the reader processes sit waiting for the Queue Manager to hand
them messages to process. If there is no backlog on the queue, the Queue Manager will hand
the message to the main process. As soon as there is a backlog, of whatever size, the Queue
Manager will start handing messages to the auxiliary processes.

How To Monitor Multiple Reader Processes

There are various ways you can monitor the reader processes but the main twoés ate
andonset svc.onstat -s -p shows you the number of auxiliary processes running and
their status.

Start the Service Router, after configuring two auxiliary Service Router processes, as described
above. Then typenstat -s -p. Here’s an excerpt of the output you should see:

root @uda[tnp] #onstat -s -p

Service Router Started 15: 21: 47 2
Local Delivery Di sabl ed 05. 06. 99 0
Internet Mail Gateway Di sabl ed 04. 29. 99 0
X400 Interface Di sabl ed 04. 29. 99 0

St art ed means auxiliary Service Router processes have been configured and are all running.
The2 in the right hand column tells us the number of auxiliary processes running. Remember,
this does not include the main Service Router process, so in total there are three Service Router
processes running.

Di sabl ed in the second column means that no auxiliary readers have been configured. For
example, if we were to re-configure the Service Router so that there are no auxiliary processes,
thenonon the service. The output froomstat -s -pis:

root @uda[tnp] #onstat -s -p

Service Router Di sabl ed 16: 03: 17 0
Local Delivery Di sabl ed 05. 06. 99 0
Internet Mail Gateway Di sabl ed 04. 29. 99 0
X400 Interface Di sabl ed 04. 29.99 0

November 11 1999 Page 18

Queues and Parallel Processing (B.06.00)

This may seem alittle disconcerting at first, because the main Service Router processis
running. You just have to remember that the - p option gives you the status of auxiliary
processes only. onst at - s will show you that the main process s started.

St opped in the second column means that auxiliary readers have been configured but they are
all stopped (onof f). If some have died, it would say parti al | y abort ed and the number
on the right would show how many are still running. If al the auxiliary readers have died, this
column would say abort ed.

You can useonset svc -r <servi ce> toview the reader configuration details. In the
example below, | turned the Sevice Router off first, then typed onset sve -r sr:

root @uda[] #onsetsvc -r sr
Details for subsystem Service Router:

Servi ce Nunber =2
Nunber of conponents =2
Loggi ng Level =9
Audi t | ogging Level =0

Has an input queue? - YES
Queue nane = RQUTER

Show details from onstat? - YES

Subsyst em can be enabl ed? - YES

Required state - Disabl ed
Last state change (on/off) 13: 25: 56
Last del ayed off tinme 13: 25: 56

~/ bi n/ service.router
~/ bi n/ shut . queue -q ROUTER -d %l -s 2

Startup prog nanme
Shut down program nane
St at us program nane
PID s of subsystemprocesses: -1 -1 0000000000000000O00O

Ni ce Level 1
Addi ti onal Resol ve Fl ag 0
Subsystemis controlled by "all’ - YES
M ni mum t enporary processes =0
Maxi mum t enporary processes =0

Cont ext dependent information: 0 0 0 00000
Auxi |l i ary processes =2
PID's of auxiliary processes: -1 -1 00000000000000000O00O0

The last two lines show the number of auxiliary readers configured and their PIDs (- 1 means
the processiis currently off).

If we start the Service Router and take another ook at the omset sve -r sr output:

root @uda[] #onsetsvc -r sr
Details for subsystem Service Router:

Servi ce Nunmber =2

Nunber of conponents =2

Loggi ng Level =9

Audi t | ogging Level =0

Has an input queue? - YES
Queue nane = ROUTER
Show details from onstat? - YES
Subsyst em can be enabl ed? - YES
Required state - Enabl ed
Last state change (on/off) = 13:48: 46
Last del ayed off tinme = 13:25:56

~/ bi n/ service. router
~/ bi n/ shut . queue -q ROUTER -d %l

Startup prog nanme
Shut down program nane
-s 2

St at us program nane =

PID s of subsystem processes: 14511 14512 0 0 00000 0000000O00O

0o0
Ni ce Level =1
Addi ti onal Resol ve Fl ag =0

November 11 1999 Page 19

Queues and Parallel Processing (B.06.00)

Subsystemis controlled by "all’ - YES
M ni mum t enporary processes =0
Maxi mum t enporary processes =0

Cont ext dependent information: 0 0 0 0 0 00O

Auxi | i ary processes =2
PID s of auxiliary processes: 14513 14514 00 00000 0000000O0O
00

Intheline"PID s of subsystem processes: ", thefirst number, 14511, isthe PID of the
main Service Router process. (The second PID on thisline, 14512, isthe PID of the sub-
service, def er . manager). Ontheline"PID' s of auxiliary processes:", wecan see
the PIDs of the two auxiliary Service Router processes, 14513 and 14514.

To double check these readers are indeed running, we can use the ps command and gr ep for

router:

root @uda[] #ps -ef | grep router

openmai | 14511 1 0 14:42:51 7 0: 00 service.router
opennai | 14513 14511 0 14:42:51 ? 0: 00 service.router
opennai | 14514 14511 0 14:42:51 ? 0: 00 service.router

Choosing The Optimum Number Of Reader Processes

Important! Your system must have enough spare capacity for the extra processes you
want to configure, as each new process requires a certain amount of cpu and
will incur disk i/o. Configuring auxiliary reader processes on a system, which
is aready running near capacity, will reduce performance.

A good general ruleisto configure the minimum number needed to stop backlog building up
on the queue. Increase the readers one at a time, then monitor performance for an extended
period to ensure the system is not overloaded. It is particularly important to monitor the disk
activity on the ~opennmi | / nsgpool directory. Check disk i/o, cpu and disk i/o!

For some valuable information on how to optimize your configuration for OpenMail, see the
document: Configuration Planning Guide (ID 200-0200) on the OpenMail website.

Thes and T optionsin ongdunp alow you to measure the load and throughput of the queues.
We will cover these optionsin the ongdunp section.

Configuring alarge number of auxiliary processes all at once could also lead to reduced
performance. Thisis because thereis a small overhead for idle processes, so excessive
numbers will increase the cpu load significantly.

If you increase the number of reader processes for the Internet gateway (uni x. out) or
sendmail interface (xport . out), sendmail may start lots of child processes to handle the
increased message throughput and overload the system. You can configure uni x. out or
xport. out towait until each message is processed by sendmail before sending the next one,
thus limiting the number of sendmail processes running. However, this may reduce throughput,
S0 you may need to increase the number of auxiliary readers to achieve the required
performance.

This configuration option is documented in the files~opennmi | / sys/ uni x. mapper and
~opennai | / sys/ xport . mapper s/ XPORT.

Kernel Parameters

The release notes for B.06.00 give recommendations for kernel parameter settings. As
configuring multiple reader processes may hit kernel parameter limits, | suggest you read the
recommendations carefully before configuring lots of auxiliary readers. The parameter most
likely to be affected is MAXUPROC.

November 11 1999 Page 20

Queues and Parallel Processing (B.06.00)

L ogging Reader Processes

When there was only one reader process per queue, it was unnecessary to log the PID of the
reader processin onshowl og. However, with multiple readersit isimportant to know which
reader is actually writing a particular log entry. To enable us to distinguish which entries
belong to which reader, there is anew - P option for onmshow og. This reports the PID of the
process which logged each entry.

To get the following example, | turned the Service Router on and Loca Delivery off and
configured two auxiliary readers for Local Delivery:

onsetsvc -x local 2
| then sent 100 messages to Mr Admin.

When all the messages were on the LOCAL queue, | turned Local Delivery on. Remember, this
turns on all the auxiliary processes too.

The reason for sending as many as 100 is to cause a backlog on the queue (the classroom
machines are not busy, so afew messages will go through very quickly). If there is no backlog
on the queue, the Queue Manager will just hand the message to the main process, so you would
not see the auxiliary processes being handed messages.

To find out the PIDs of the processes, | typed:

onsetsvc -r | ocal

Then | ran onshow og with the - P option to show the PIDs of the reporting processes:
omshowog -1 9 -P -p 10

Thefollowing isjust an excerpt of the output to show you the different processes logging:

REPORT Local Delivery(Local Delivery) 05.15.99
14: 26: 31

[OM 7604] Fini shed delivery of message

Pid of |ogging process: 15400

REPORT Local Delivery(Local Delivery) 05.15.99
14: 26: 31
[OM 7608] Finished delivery to recipient
M Admi n/ canberra, cl ass
Pi d of |ogging process: 15401

REPORT Local Delivery(Local Delivery) 05.15.99
14: 26: 31

[OM 7604] Finished delivery of message

Pi d of |ogging process: 15401

REPORT Local Delivery(Local Delivery) 05.15.99
14: 26: 31
[OM 7608] Finished delivery to recipient
M Admi n/ canberra, cl ass
Pid of |ogging process: 15399

REPORT Local Delivery(Local Delivery) 05.15.99
14: 26: 31

[OM 7604] Finished delivery of nessage

Pid of |ogging process: 15399

November 11 1999 Page 21

Queues and Parallel Processing (B.06.00)

REPORT Local Delivery(Local Delivery) 05.15.99
14: 26: 31

[OM 7603] Started delivery of message

Pid of |ogging process: 15400

If you use another new option, -i <Pl D>, together with - P, onshow og will show you only
the entrieslogged by the reader process with the specified PID. The output below was returned
when | typed:

omshowog -1 9 -P -i 15400 -p 10

REPORT Local Delivery(Local Delivery) 05.15.99
14: 26: 28

[OM 7601] Local Delivery Started Up

Pid of |ogging process: 15400

REPORT Local Delivery(Local Delivery) 05.15.99
14: 26: 28

[OM 7603] Started delivery of message

Pid of |ogging process: 15400

REPORT Local Delivery(Local Delivery) 05.15.99
14: 26: 28
[OM 7618] Creator of nessage
M Admi n/ canberra, cl ass
Pid of |ogging process: 15400

REPORT Local Delivery(Local Delivery) 05.15.99
14: 26: 28
[OM 7605] Current nessage Id
HO00000650000234d. 0926687601. kuda. pwd. hp. com
Pid of |ogging process: 15400

To help debug more difficult problems, the current value of the Unix variable, er r no, is

reported at level ‘error’ or abovEr r no reports error messages from system calls. The value
reported may refer to the error reported in the OpenMail logs, but it may not! This is really just
an extra bit of information for the lab engineers.

ERROR Local Delivery(Error Manager) 02.16.99
17:09: 29

[OM 8807] No Error Manager Configured. Please Configure One

Pid of |ogging process: 8454

ERROR Admi ni stration(omadni dp) 02.18.99
18: 48: 07

[SYS 9] Bad file nunber

Pi d of |ogging process: 5791

Current errno value: 9

November 11 1999 Page 22

Queues and Parallel Processing (B.06.00)

Troubleshooting Tools

Throughout this OTN, | have referred to ways in which you can see what is happening in
various parts of the queue system:

e« onstat -s -p to see the status of the auxiliary processes.

- onmshowl og -1 <l evel > -Pto see the PIDs of the processes logging the entries and
onshowl og -1 <level > -i <PI D> - P to list only the entries logged by the process
with the specified PID.

e onmsetsvc -r <service> to see the configuration details of a service, including the
PIDs of the auxiliary processesnet svc -r qgngr allows you to identify the Queue
Manager’s IPC queues).

Two further troubleshooting tools are the Queue Manager’s tombstone fitarfindeq,
which are covered in the sections below.

However, as before, the main tool for troubleshooting queuwssjidunp. In addition to the

gueue manipulation features, it now provides load and throughput figures to help you monitor
performanceongdunp also has a text dump option which enables you to see the contents of
the~openmai | / megpool files and the Queue Manager’ memory. The oewdunp

options and changes to the way existing options work are coveredanghbeanp section.

The Queue Manager’s Tombstone File

Should the Queue Manager ever die, it creates atombstone file in the logs directory,

~/ | ogs/ gngr . t onb. This, together with messagesin the logs, should help you diagnose the
problem. As the contents of this file is very similar to the text dump of the Queue Manager’s
memory, | suggest you look at that in tregdunp section covering thie option to get a

general understanding of what is in this file. The additional information given in this file is
really only of use to the lab engineers.

omfreeq

onf r eeq queue has ap option to remove a reader PID from a queue.

A situation can arise where a reader dies and the PID is reused by another process, without the
Queue Manager being aware that the reader has died. The Queue Manager still thinks the PID
belongs to the queue reader. You canardea eeq to tell the Queue Manager to release the

reader from the queue. For example:

onfreeq -q local -p 12345
removes reader 12345 from the LOCAL queue.

omgdump

To access the queuesydunp communicates with the Queue Manager using IPC messages,
so the Queue Manager needs to be running if you want to use the queue manipulation functions
of ongdunp. However, Queue Manager does not need to be running to view the contents of
the Message Pool files.

You can usengdunp to access the specRO SON andl DEL queues in the same way as you
would access any of the other queues.

Note: It is still advisable to turn off the reader service before manipulating messages on
its queue. Theoretically, you could access messages on a queue while readers are
processing messages from it, but it would be extremely difficult to find or
manipulate the right message. Walking the queue accurately, for example, would
be almost impossible.

I've underlined the new options in the menu below:

November 11 1999 Page 23

Queues and Parallel Processing (B.06.00)

Pl ease sel ect an option:

s: Show sunmary of queues o: Qutput opened nsg to files
I: List (browse) nsgs on queue i: Input a msg fromfiles
m Mve opened nsg between queues g: Get (serial open) next nsg
M Move nsgs between queues G Get (serial open) nth+l msg
d: Del ete opened nsg from queue r: Read (browse) opened nsg
D: Del ete nsgs from queue c: Cl ose opened nsg
v: View status of queue f: Find (priority open) next msg
a: Access opened nsgs info p: Put opened nsg on a queue
O Open nessage file t: Text dunp
L: list configured queues C. Copy nsgs
T: List queue throughput averages Z: Zap (forcefully delete) nsg
g: Qit

S

Although there was a summary option before, the output has changed considerably. In addition
to the number of messages on a queue, you are now given:

« How many of those messages are being processed at this méutent €).
« How many messages have been put on this queue since OpenMail was lastEstarted (
e The average number of messages on this queue over the last 1, 5 and 15 boadies (

To show some figures, turn off the Service Router and Local Delivery and send about 100
messages to Mr Admin, or a local user. Configure two auxiliary readers for the Service Router:

omsetsvc -X sr 2

Startorgdunp in one terminal window. In another, turn on the Service Router, then
immediately types in theomgdunp window. You should see something like the following:

Opti on?s

QUEUE Messages Active Ever Load [1m n, 5m n, 15ni n]
BB 0 0 0 0.00 0.00 0.00
DESK 0 0 0 0.00 0.00 0.00
DI RSYNC 0 0 0 0.00 0.00 0. 00
DvM 0 0 0 0.00 0.00 0. 00
DUMP 0 0 0 0.00 0.00 0.00
ERRMGR 0 0 0 0. 00 0.00 0.00
ERROR 3 0 0 3.00 3.00 3.00
LI CENSE 0 0 0 0.00 0.00 0.00
LOCAL 55 0 728 21.61 19.70 12. 74
NOTES 0 0 0 0.00 0. 00 0. 00
OvX400 0 0 0 0. 00 0. 00 0. 00
PRI NT 0 0 0 0.00 0.00 0.00
REQ 0 0 0 0.00 0.00 0.00
RESOLVE 0 0 0 0.00 0.00 0.00
ROUTER 66 3 769 95. 08 47. 29 23.15
SMERR 0 0 0 0. 00 0. 00 0. 00
SM NTFC 0 0 0 0.00 0. 00 0. 00
SMs 0 0 0 0.00 0.00 0.00
TEST 0 0 0 0.00 0.00 0.00
UNI X 0 0 0 0.00 0.00 0.00
X400 0 0 0 0.00 0.00 0.00

Speci al queues.

| DEL 0 0 727 0. 00 0.00 0.00
PO SON 0 0 0 0. 00 0.00 0.00
Done

Notice that there are three active messages oRAUEER queue. That is because there are
three Service Router processes running; the main reader and two auxiliary readers.

November 11 1999 Page 24

Queues and Parallel Processing (B.06.00)

Over time, the load figures across the load columns will become closer, then reduce, asthe
surge of messages finishes. If the load figures for a queue are constantly high and your system
has spare capacity, you could consider configuring an auxiliary reader for that queue.

So what number might be considered as high? It depends on the message delivery times
expected. However, if you divide the average load figure by the number of readers and get a
figure which is more than 20 times the number of readers, then the load is probably high.

To collect load figures over aperiod of time, you could set up ascript to run ongdunp asa
batch job at regular intervals and use the s option.

T

The T option gives similar output to the s option, but provides throughput figures instead of
load figures, that is, the number of messages processed on this queueinthelast 1, 5 and 15
minutes. For the example below, | turned on the Local Delivery in one terminal window and
quickly typed T in the ongdunp window:

Opti on?T
QUEUE Messages Active Ever Thr oughput

[1min, 5m n, 15mi n]
BB 0 0 0 0. 00 0. 00 0.00
DESK 0 0 0 0. 00 0. 00 0.00
DI RSYNC 0 0 0 0. 00 0. 00 0. 00
DVM 0 0 0 0.00 0.00 0. 00
DuUMP 0 0 0 0. 00 0. 00 0. 00
ERRMGR 0 0 0 0. 00 0.00 0.00
ERROR 3 0 0 0.00 0.00 0.00
LI CENSE 0 0 0 0. 00 0.00 0.00
LOCAL 86 1 763 28. 22 31.18 31.72
NOTES 0 0 0 0. 00 0. 00 0. 00
OVX400 0 0 0 0. 00 0. 00 0. 00
PRI NT 0 0 0 0.00 0.00 0. 00
REQ 0 0 0 0.00 0. 00 0.00
RESOLVE 0 0 0 0. 00 0.00 0.00
ROUTER 0 0 835 0.00 2.30 30. 65
SMERR 0 0 0 0. 00 0. 00 0. 00
SM NTFC 0 0 0 0. 00 0. 00 0. 00
SVS 0 0 0 0.00 0.00 0. 00
TEST 0 0 0 0. 00 0. 00 0. 00
UNI X 0 0 0 0. 00 0. 00 0. 00
X400 0 0 0 0. 00 0. 00 0.00
Speci al queues.
| DEL 0 0 762 27. 47 30. 24 30.74
PO SON 0 0 0 0. 00 0.00 0.00
Done

Thistime thereis only one active message, because no auxiliary readers have been configured
for Local Delivery.

O

The Ooption allows you to open the | TEM REF of a cut down message container directly in
ongdunp. You can then put the message on the appropriate queue.

You could use this to take amessage file off abackup, or upgrade amessage that ongconv has
failed to upgrade for some reason. If you look in/ t mp/ oni nst al | . | og, the details of the
failed message will be logged, including the | TEM_REF of its cut down message container. In
omgdunp, type Oand you will be asked for the filename:

Opti on?0
Msg File Nanme (/tnp/ongdnsg):

November 11 1999 Page 25

Queues and Parallel Processing (B.06.00)

Typethel TEM REF of the message, and it will be opened by ongdunp, ready for you tog’ut
on the required queue. The message is now upgraded.

L

Thel option lists the configured queues:

Option?L
BB

DESK

DI RSYNC
DWW
DUMP
ERRMGR
ERROR
LI CENSE
LOCAL
NOTES
OuX400
PRI NT
REQ
RESOLVE
ROUTER
SMERR
SM NTFC
SMS
TEST

UNI X
X400
Done

As ongdunp obtains this list from the fileopenmai | / nsgpool / pool ctr |, and not from

the Queue Manager, Queue Manager does not need to be running to use this option. Note this
list does not include theOl SON or | DEL queues. These new queues are, however, included in
the output frons option ofongdunp.

C

TheC option allows you to copy multiple messages from one queue to another. It works in the
same way as the other options which allow you do ‘multiple’ operations.

This option creates new copies of the message(s). If you want to put a message on several
queues, that is, the queue part of that message’s pool file record will have several entries, use
thep option notC.

Z
Z(ap) removes a message from a queue without opening the message.

With the delete optiongngdunp tries to open the cut down message file. If this file is corrupt
or missing, you cannot use teption. The message would then continue to have a reference
in the Message Pool.

With theZ option,omgdunp removes the message record from the pool file without
attempting to open any of the associated files, then tells the Queue Manager that this message
is no longer present.

Changes To The Browse Options (|l and r)

You will see some differences in the output fromlthst’ andr 'ead’ options. Here’s an
example of reading a message onltBEAL queue:

Opti on?r
Msg Handl e (2000):

Msg File = ~/data/ 0000004/ 000083k

November 11 1999 Page 26

Queues and Parallel Processing (B.06.00)

Access Count =1
TF File = ~/data/ 0000010/ 00007vq
TF Info Flags = 7
Filter Route =
Attach File #1
Attach File #2

~/ dat a/ 0000004/ 000083l : 1
~/ dat a/ 0000004/ 000083l : 2

HEADER (DN) 1 0 O O 0x2000400 0x3 1 O0xO

** Warning - Insufficient fields present (Record No. 1)
CREATOR (DN) O 101 O O O O "S=Admi n/G=M/QUl=canberra/
QU2=cl ass" "
SUBJECT (DN) "TestMsg (1) Thu-16:50:24" "" "|A5"
CREATE_DATE (DN) 99/5/6 15:50.26+60
MSG_INT_I D (DN) 0 "HO00006500002073. 0926005826. kuda. pwd. hp. conf
" H000006500002073. 0926005826. kuda. pwd. hp. conf
ORIG NAL_EITS (bNhy O 0O 0 0 1 "2.6.1.4.0"
| TEM CREATE_DATE (DN) 99/5/6 15:50. 25+60
CONTENT_FI LE (DN) 1166 1166 Ox2 136 O "™ "m mvoommoomEM M| ARY
| TEM CREATE_DATE (DN) 99/5/6 15:50.25+60
CONTENT_FI LE (DN) 1167 1167 Ox0 633 0 "passwd" "passwd"
RECI PI ENT (DN) 0x20 0 1 *"LOCAL" "" "S=Adm n/GM/
QUl=canberra/ OU2=cl a
OPERATI ON_TRACE (DN) 99/5/6 15:50.26+60 5
ROUTE_TRACE (DN) 99/5/6 15:50.30+60 O "kudal/canberra,class”
Done

| have underlined the new information.

The filename of the cut down message container is now included. This means you can
reconstruct a message whose transaction file has become corrupt. Just create and send a
message with the same number of attachments as the corrupted message, then copy the new
transaction file into the location of the corrupted one.

The message ID has been extended to ensure it is globally unique. The first part,
H000006500002073, isthe original message ID. The next part, 0926005826, is seconds since
the beginning of the epoch (1st Jan 1970) and the last part, kuda. pwd. hp. com isthe fully
qualified domain name. You can turn off the extending of the message ID by setting the tweak,
| M_MAKE_MSG | D_GLOBAL_UNI QUE to FALSE but there is no guarantee that the shorter
message |D will be globally unique.

Changes To g Option

You no longer need to exit ongdunp to get back to the beginning of a queue! You don't go
backwards, you just keep going forward till you reach the first message again. If you
repeatedly usey’et and c’lose to walk a queue, you will know you have reached the end
when you see @l ME_QOUT message. Us@'et again and you should have the first message on
the queue again.

Note: Don't usev in between theg’ets. The reason is explained below!
Thev Option Does Some Unusual Things Now

If you are walking a queue usiggandc, then you use to see where you have got to, it will
initialize the count and put you back to the beginning of the queue. With circular queues, this
can make finding out where you are a little difficult, especially if you want to get to a point
then Move several messages to another queue. This is a bug and will be addressed.
Meanwhile, experiment with walking the queue to familiarize yourself with how it works
before Deleting multiple messages from the middle of a queue!

November 11 1999 Page 27

Queues and Parallel Processing (B.06.00)
t

This option gives you two sub options, mor g. m creates a text description of what isin the
Message Pool and g creates a text description of what is in the Queue Manager’'s memory.
These provide particularly useful troubleshooting analysis of the system for the lab engineers.

In the following examples, | have annotated the output to help you understand what the figures
relate to. We'll look at a text dump of the Message Pool first.

In ongdunp, type:

Opti on?t
Message pool (n) or queues (q) ? m
Msg File Nanme (/tnp/ongdnsg):

To accept the default file offered, just preS&ETURN>. If you thennor e the file, the output
will be similar to the following example:

— HHHHHHHHHHHHHH
Ver si on=1
Total Fil es=65 ...total number of pool files
= HHHHHHHHHHHHHH
§ -------------------- ...a textual representation of the nessage
ke records in each pool file follows
5 Pool File=21 ...the number of the pool file, ie as in nn@P
% Record NuneO ...the record nunmber within the pool file
g O f set =0x00000040 ...the offset of the record in the file
g Fi | eName=~/ dat a/ 000000a/ 0000b94. . . | TEM REF of the cut down nsg contai ner
Fl ags= ...Flags and Next Record only set if nsg is on
Next Recor d=NONE more than 16 queues. Then FLAGS=MORE RECORDS
and Next Recor d=<record num of next record>.
— Continuation records woul d be in the sane pool
file
Create Ti ne=927030603 05.18.99 13:30:03 ... Tine record created. First
nunber s seconds since the start of the epoch.
QPool | d=956 ...unique I D of nsg in nsgpool
'g nmessage fl ags=0x00000000 ... not used
§ Queue=DESK ...queue nsg is currently on
5 Priority=0 ...prioriy setting of nmsg, O=normal, 2=urgent,
‘é 1=l ow
n Queue FI ags=0x00000000 ...hot used
3 Def er Ti me=NONE ...used by unix.out if can’t send to sendmail
= Submit Ti ne=927030900 05.18.99 13: 35: 00 ...when msg put on queue
Queue=LOCAL ...this msg is also on LOCAL and UNIX queues,
Priority=0 so above info given for each queue entry
Queue FI ags=0x00000000
Def er Ti me=NONE
L Submit Tinme=927030693 05.18.99 13:31:33

Queue=UNI X

Priority=0

Queue FI ags=0x00000000

Def er Ti me=NONE

Submit Ti me=927030941 05.18.99 13:35:41
Pool File=21

Record Num=9

O f set =0x00001C3C

Fi | eName=~/ dat a/ 000000b/ 0000baq

Fl ags=

Next Recor d=NONE

Create Ti ne=927030608 05.18.99 13: 30: 08
QPool | d=965

nmessage fl ags=0x00000000

Queue=LCOCAL

November 11 1999 Page 28

Queues and Parallel Processing (B.06.00)

Priority=0

Queue FI ags=0x00000000

Def er Ti me=NONE

Submit Ti me=927030695 05.18.99 13:31:35

Now let’s look at a textual description of the Queue Manager’s memory. To create the file, you
type:

Opti on?t
Message pool (nm) or queues (q) ? ¢
Msg File Nanme (~/tenp/00008b0):

If you do not accept the default location, the filename you give must bEEM REF in the
data or temp domain, that+epenmai | / dat a or~opennai | / t enp. We strongly
recommend you put it iropenmnai | / t enp.

In the output, he sections are in the following order and each section starts=witfx’
====Active Messages (Active message list)
====Known messages (The message list)

====Queues - for each queue, status info followed by the msgs on the queue, sorted in
order.

====Queue Readers (Registered readers)

Not all the information will be useful to you. I've added the comments in italics to help you
understand the potentially useful parts.

nore ~openmail /tenp/ 00008b0
==ACT| VE MESSAGES==

Tabl e Size=4 ... max. nunber of nsgs active at any point
------------------ there are 2 nsgs being processed at this point...
Recor d=0 ...record number in table

Reader 1d=3 ...same as ‘record’ entry in Q Readers

section at end of output
Queue Nane=LOCAL
Active Time=05.18.99 13:35:11
FI ags=0x00000001
I tem Ref
Priority =0
Item Type = 0
Subnit Date/Tine
Mai | Date/ Tine

~/ dat a/ 000000a/ 0000b94 ...ITEM_REF of cut down ctner

05. 18. 99/ 13: 31: 33 ...when submitted to queue
01. 01. 70/ 00: 00: 00 ...only used by unix.out for

deferred msgs
Entry Number =29
Sequence Numr1442 ...seq num given to msg when it was put on
this queue
Message Pool | d=956 ...QPoolld
Message Pool Fil e=21 ...Ie pool file is 21QP
Message Pool Rec=0 ...record in pool file
Fai | ed processing attenpts=0 ...if 3 them would be on POISON queue
Recor d=2
Reader |d=4

Queue Nane=LOCAL

Active Time=05.18.99 13:37:25

Fl ags=0x00000001

It em Ref = ~/ dat a/ 000000e/ 0000be0
Priority =0

Item Type = 0

November 11 1999 Page 29

Queues and Parallel Processing (B.06.00)

Submit Date/ Tinme
Mai | Date/ Time
Entry Number =170
Sequence Nunm=1368
Message Pool | d=982

Message Pool Fil e=21

Message Pool Rec=26

Fai | ed processing attenpts=0

5.18.99/13: 31: 37

=0
= 01.01. 70/ 00: 00: 00

====FEnd Acti ve=====
====Known nessages=== ... All the nessages in the system
(not sorted)
Tabl e si ze=300 ... Avail able slots in the table
Tabl e Used Size=272 ...Slots used
Free list Size=192 ...Alist referencing free table slots
----------------------- ...Details of each nsg follows...
Recor d=0 ...record nunmber in nessage table
Message Pool [d=101 ... Sanme as QPool I d
Message Pool Fil e=25 ...I.e ~openmai |l /nmsgpool / 25QP
Message Pool Rec=0 ...record within ~opennail/nsgpool /25QP
Access Count =1 ...ho. of queues nsg is on
FI ags=0x00000001 .. Fl ag of 0x00000002 prevents nsg bei ng

de/ eted as creator stillhas it open
Msg Fi | e=~/ dat a/ 000000p/ 00004l 4 ../ TEM REF of cut down nsg contai ner
Record=12
Message Pool 1d=113
Message Pool Fil e=51
Message Pool Rec=0
Access Count =1
Fl ags=0x00000001
Msg Fi | e=~/ dat a/ 000000qg/ 00004p4
Recor d=29
Message Pool | d=956
Message Pool Fil e=21
Message Pool Rec=0
Access Count =3 ...NB this nessage is on 3 queues. Search
on the Message Pool Id to find it on queues

Fl ags=0x00000001

Msg Fi | e=~/ dat a/ 000000a/ 0000b94
Recor d=31

Message Pool |d=954

Message Pool Fil e=33

Message Pool Rec=0

Access Count =1

FI ags=0x00000001

Msg Fi | e=~/ dat a/ 0000009/ 0000b81

Recor d=271

Message Pool [|d=1032

Message Pool Fil e=21

Message Pool Rec=76

Access Count =1

Fl ags=0x00000001

Msg Fi | e=~/ dat a/ 000000n/ 0000bnc
=====END I\/EssageS::::

==== Queues ======= ...Info about each queue and nsgs on them
(sorted)
Number of queues=23

November 11 1999 Page 30

Queues and Parallel Processing (B.06.00)

Current Pool |D=1055 ... hi ghest number in QPoolld sequence
Queue Name=SM NTFC
Fl ags=0x00000001 ...Jjust indicates nsg in use.
Fl ags are cunul ati ve.
0x00000002 queue suspended
0x00000004 queue shut down
0x00000008 queue | ocked by reader
Messages this hour=0
Messages | ast hour=0
Current Hour= 00:00: 00
Messages processed=0
Active Messages=0

+++Load Aver age: ...Ssone |oad stats taken at intervals
s & T options of ongdunp are nore useful

Load=0. 000000

Decay factor=0.920044

Aver ge interval =60

Sanpl e peri od=5

Remai ni ng Sanpl e peri od=2

Next | oad val ue=0

Last average taken at= 13:37:25

Average running for= 23:37:28

+++Load Aver age:

------ >>>> The Messages ...ho nessages on the SM NTFC queue

Queue Name=LOCAL

Fl ags=0x00000001

Messages this hour=25

Messages | ast hour=121

Current Hour= 13:37:13

Messages processed=874

Active Messages=2 ...we saw these in Active Msgs section
+++Load Aver age:

Load=96. 679782

Decay factor=0.920044

Averge interval =60

Sanpl e peri od=5

Remai ni ng Sanpl e peri od=2

Next | oad val ue=0

Last average taken at= 13:37:25
Average running for= 23:37:28
+++Load Aver age:

------ >>>> The Messages

++++++tt bt

It em Ref = ~/ dat a/ 000000e/ 0000be6
Priority =0

Item Type = 0

Submit Date/ Tinme 05.18.99/13: 31: 38

Mai | Date/ Tinme = 01. 01. 70/ 00: 00: 00
Entry Number =172

Sequence Num=1369

Message Pool |d=983

Message Pool Fil e=21

Message Pool Rec=27

Fai | ed processing attenpts=0

++++++tt bt

It em Ref = ~/ dat a/ 000000e/ 0000bec

November 11 1999

Page 31

Queues and Parallel Processing (B.06.00)

Priority =0
Item Type = 0
Submit Date/ Tinme
Mai | Date/ Tinme
Entry Nunber=173
Sequence Num=1370
Message Pool |d=984

Message Pool File=21

Message Pool Rec=28

Fai | ed processing attenpts=0
+++++++
I tem Ref

Priority =0

Item Type = 0O
Submit Date/ Tinme
Mai | Date/ Tinme
Entry Nunber=174
Sequence Num=1371
Message Pool |d=985

Message Pool File=21

Message Pool Rec=29

Fai | ed processing attenpts=0
+++++++

05.18.99/13: 31: 38
01. 01. 70/ 00: 00: 00

~/ dat a/ 000000€e/ 0000bei

05.18.99/13: 31: 38
01. 01. 70/ 00: 00: 00

Queue Name=DESK

Fl ags=0x00000001
Messages this hour=0
Messages | ast hour=0
Current Hour= 00:00: 00
Messages processed=0
Active Messages=0
+++Load Aver age:

------ >>>> The Messages

++++++++ -+

It em Ref = ~/ dat a/ 000000a/ 0000b94
Priority =0
Item Type = 0
Submit Date/ Tinme
Mai | Date/ Tinme
Entry Nunber =29
Sequence Num=2

05. 18.99/13: 35: 00
01. 01. 70/ 00: 00: 00

Message Pool |d=956Here’s the msg on 3 queues

Message Pool File=21
Message Pool Rec=0
Fai | ed processing attenpts=0

Queue Name=UNI X

Fl ags=0x00000001
Messages this hour=0
Messages | ast hour=0
Current Hour= 00:00: 00
Messages processed=0
Active Messages=0
+++Load Aver age:

------ >>>> The Messages

++++++++ -+

I tem Ref = ~/ dat a/ 000000a/ 0000b94
Priority =0

Item Type = 0O

November 11 1999

Page 32

Queues and Parallel Processing (B.06.00)

Submit Date/ Tinme
Mai | Date/ Time
Entry Number =29
Sequence Num=2
Message Pool | d=956Here’s the msg on 3 queues
Message Pool Fil e=21

Message Pool Rec=0

Fai | ed processing attenpts=0

5.18.99/13:35: 41

=0
= 01.01. 70/ 00: 00: 00

Queue Nane=| DEL

Fl ags=0x00000001
Messages this hour=25
Messages | ast hour=121
Current Hour= 13:37:14
Messages processed=873
Active Messages=0
+++Load Aver age:

Queue Nane=PO SON

FI ags=0x00000001
Messages this hour=0
Messages | ast hour=0
Current Hour= 00: 00: 00
Messages processed=0
Active Messages=0

====Queue Readers==== . . . Info about registered queue readers...

Readers Array Size=8

Recor d=0 . .. =Reader Id in Active Messages

Pi d=11620 ... PID of reader process

Regi st ered at=05.05.99 14:00: 03 ... Time process registered with Qmgr

Last Request at=05.18.99 13:37:25 ... Info about latest communication

Last Response at=05.18.99 13:37:25 with gmgr

Current Active nmessage=NONE

Queue Nane=I| DEL

FI ags=0x00000003 . .. cumulative flags: 1=structure in use,

=reader awaiting reply, 10=shutdown

req (i.e. omoff), 40=reader has q
locked (i.e.omscan probably running)

Ti meCut =300 ...queue reader timeout in seconds

Record=1

Pi d=16650

Regi st ered at =05.18.99 13: 31: 33

Last Request at=05.18.99 13: 36: 58

Last Response at=05.18.99 13: 36: 58

Current Active message=NONE

Queue Nane=ROUTER

FI ags=0x00000003

Ti meQut =30

Recor d=2

Pi d=16651

Regi st ered at=05.18.99 13:31: 33

Last Request at=05.18.99 13:31:33

Last Response at=01.01. 70 00:00: 00

Current Active nmessage=NONE

November 11 1999 Page 33

Queues and Parallel Processing (B.06.00)

Queue Nanme=DW

Fl ags=0x00000003

Ti meCQut =3600

Recor d=3

Pi d=16661

Regi st ered at =05.18.99 13: 34: 43
Last Request at=01.01.70 00: 00: 00
Last Response at=05.18.99 13:35:11
Current Active message=0 ...Notice there are 2 |ocal del readers
Queue Nane=LOCAL

FI ags=0x00000001

Ti meQut =0

Recor d=4

Pi d=16687

Regi stered at=05.18.99 13:37:12
Last Request at=05.18.99 13:37:25
Last Response at=05.18.99 13:37:25
Current Active nmessage=2

Queue Name=LOCAL

FI ags=0x00000001

Ti meCut =0

Recor d=5

Pi d=16686

Regi st ered at =05.18.99 13:37:12
Last Request at=05.18.99 13:37:12
Last Response at=01.01. 70 00: 00: 00
Current Active message=NONE

Queue Nanme=ERRMGR

Fl ags=0x00000003

Ti meQut =90

November 11 1999 Page 34

	Summary
	Readership
	Comments Please!
	Revision History
	Contents
	Introduction
	An Overview Of the Changes
	Message Life Cycle

	Message pool
	How Message Details Are Held In Pool Files
	How Are The Pool Files Created?
	Upgrading Pre B.06.00 Queues
	How Are Pool Files Updated?
	How Can I View The Pool Files?
	The Pool Control File

	The Queue Manager
	What happens if the Queue Manager dies?
	Starting Up Queue Manager If The Message Pool Is Corrupt
	The POISON Queue
	The Idel Queue And The Item Delete Daemon

	Queue Reader Processes
	Multiple Readers For A Queue
	How To Configure Multiple Reader Processes
	How To Monitor Multiple Reader Processes
	Choosing The Optimum Number Of Reader Processes
	Kernel Parameters

	Logging Reader Processes

	Troubleshooting Tools
	The Queue Manager’s Tombstone File
	omfreeq
	omqdump
	s
	T
	O
	L
	C
	Z
	Changes To The Browse Options (l and r)
	Changes To g Option
	The v Option Does Some Unusual Things Now
	t

