
B.06.00 Changes to the IMAP Server

Summary
The OpenMail IMAP server has been completely overhauled at B.06.00. In this OTN, we look
at how existing functionality has been improved, for example, logging and searching, and
investigate new features introduced, such as IMAP4rev1 commands and supported optional
capabilities, troubleshooting tools and tweaks.

We will also look at the changes made to improve the performance and reliability of the server.

I have tended to focus on the two most popular IMAP clients, Netscape Messenger 4.5/6 and
Outlook Express 5, but where appropriate, I have included information about other clients.

This OTN will form part of the OM360 (B.06.00 upgrade) course.

Readership
Readers are assumed to be OpenMail support engineers, who have attended an advanced
OpenMail course (AE351 or H1805s) or are familiar with the material covered in these
courses.

I have also assumed that readers are familiar with the existing OTN: IMAP4 Support.

Revision History
November 1999: First issue

December 1999: Comments incorporated

Comments Please!
I would welcome any comments you may have on this document. Please email them to
joyce@pwd.hp.com.

OTN OpenMail
Technical
Note
December 21 1999 Copyright © 1999 Hewlett-Packard Company Page 1

B.06.00 Changes to the IMAP Server

.... 38
39
..... 40
.. 40
.... 41
..... 41
..... 42
. 42

..

.... 4
Contents
Introduction.. 4

Logging ... 5
IMAP_LOGLEVEL... 5

Where To Set IMAP_LOGLEVEL .. 7
Effect on UAL Tracing ... 7
Compatibility With B.05.10.. 7

IMAP_LOGFILE ... 7
IMAP_UAL_TRACE_LEVEL.. 8
Lab.. 9
Watcher Connection Monitoring Tool.. 10

Configuring Watcher... 10
Watcher Transcript Windows.. 12
Saving Connection Dialogues... 12
More Connection Configuration Details .. 12

Improvements To The OpenMail IMAP Implementation ... 14
What The IMAP Server Caches In Its Memory... 15

Caching Rendered Messages .. 16
The imapBodyStrc Object File... 16

What is the imapBodyStrc object file used for? ... 16
What is in the imapBodyStrc object file? ... 16
What is meant by "automatically maintained"?.. 19

How The Size Of A Message Is Calculated... 19
How The OpenMail IMAP Server Talks To The Message Store................................... 20
Old imapHdr And imapMsg Object Files .. 21
Permanent IMAP Object Files ... 22
Deleting Temporary And Permanent Object Files ... 23

omcontain ... 23
Multiple Access Support .. 24
Lab.. 25
Searching.. 26

IMAP_SEARCH_TIMEOUT Tweak... 30
Support For Internet Acks .. 31

IMAP_AUTOMATIC_MDN ... 31
IMAP_MDNSENT_FLAG... 31

Security Issues.. 31
Buffer Overflow.. 31
Denial Of Service Attacks .. 31
Catching The Culprit .. 32

What To Set When The UAL Server Is On A Different Machine 32

Support For Imap4rev1 Functionality... 34
STATUS Command.. 34
Fetch Part Of a Message... 35

An Example .. 36
What’s Happening On The Server? ..
The IMAP_USE_ITEM_BROWSER_SELECTION Tweak

Unicode Support..
UTF-7 and Modified UTF-7...
UTF-8 ...
What Can We See On The Server?..
Some References ...

Summary Of Differences Between IMAP4 And IMAP4rev1.......................................

Optional IMAP4rev1 Functionality Supported .. 44
IMAP4.. 45
IMAP4rev1...5
December 21 1999 Page 2

B.06.00 Changes to the IMAP Server
AUTH=LOGIN .. 45
CHILDREN.. 45
IDLE... 46

The IMAP_IDLE_TIMEOUT Tweak .. 47
What Is Happening On The Server?... 47

LITERAL+ ... 48
NAMESPACE .. 48

IMAP_FOLDER_PREFIX and IMAP_BB_FOLDER_PREFIX......................... 49
Configuring Netscape Messenger To See Bulletin Boards................................... 49
IMAP_FOLDER_SEPARATOR and IMAP_BB_FOLDER_SEPARATOR 50

X-NETSCAPE ... 50
X-OPENMAIL ... 51

Folder Syntax Extension... 51
Lab .. 52
Direct Reference Access... 52
Viewing Configuration (Tweak) Settings ... 52

X-OMTEST.. 53
Dynamically Modify Configuration Settings ... 53
Object File Access .. 53
Search Specification ... 54
Count Strings .. 54
Delete Object Files ... 55
Flush Internal Cache ... 55

Common Problems... 57
Missing Folders And Bulletin Board Access ... 57

Configuring Netscape To See Folders And Bulletin Boards 57
Configuring Outlook Express To See Bulletin Boards... 57

Error Message: "NO some messages no longer exist" ... 57
Deleting Folders Containing Subfolders .. 58
Lack Of Understanding Of Standards .. 58
Unreliable And Fragile Clients .. 58
Limiting The Number Of New Processes Netscape Can Start In A Session 58

Watcher TCL Script .. 60
December 21 1999 Page 3

B.06.00 Changes to the IMAP Server

hen
ng in
ives

e,
and

ards

MAP
Introduction

The changes to the OpenMail IMAP server at B.06.00 cover several areas:

• Improvements to existing functionality, in particular, logging, searching, message
rendering and caching, security and multiple access of mailboxes.

• Support for new IMAP4rev1 functionality, such as the STATUS command, FETCH command
extensions and Unicode support.

• Support for optional IMAP4rev1 functionality, such as IDLE, NAMESPACE and proprietary
CAPABILITIES. Two useful OpenMail proprietary extensions are included for test
situations.

In the first section, we shall look at how to setup tracing for IMAP connections. You can t
use this as you work through the rest of the OTN, to get a better idea of what is happeni
the background. I have also included information on a TCL tool, called Watcher, which g
you a useful window on the raw protocol being sent between client and IMAP server.

In the subsequent sections, we shall work through the changes in the order shown abov
looking at how the IMAP server interacts with other parts of OpenMail, such as the UAL
item browser. Where we found a client behaves in an unusual or unreliable way, I have
included the details. For instance, configuring some clients to be able to view Bulletin Bo
is not intuitive, because of client limitations.

For specific client examples, I have tended to use Netscape Messenger 4.6 and Outlook
Express 5, because they are the most widely used IMAP clients. For illustrating general I
sessions, I have used telnet’d IMAP sessions, i.e. telnet <host> 143.
December 21 1999 Page 4

B.06.00 Changes to the IMAP Server

ow

s.

seful
r

efore
 when

hey
agged

in an
that

 lines

 with

 level
p or
Logging

Significant improvements have been made to the logging options available for IMAP in
B.06.00. As we shall be using some of these options throughout this OTN to view new
functionality, it is probably a good idea to start by looking at the various ways you can trace
client, IMAP server and UAL activity.

The following new tweaks control logging:

• IMAP_LOGLEVEL - This controls the level of logging for the IMAP server process(es).
Setting a logging level automatically starts logging of the IMAP server and IMAP UAL
traffic.

• IMAP_LOGFILE - The name of the file(s) to hold IMAP server log messages.

• IMAP_UAL_TRACE_LEVEL - This controls the level of IMAP UAL logging.

We’ll look at each tweak in more detail and consider some combinations of settings to sh
how we can use them all to tailor logging.

Note: As we will be looking at tailoring logging at system, client and user level,
remember that ~/sys/general.cfg is read once, when the IMAP daemon start
~/sys/client.cfg/* and ~/sys/user.cfg/* configuration files are read each
time a new connection is made to the daemon.

In the section, “Watcher Connection Monitoring Tool” on page 10, I have documented a u
TCL program, which allows you to monitor IMAP conversations between client and serve
machines.

IMAP_LOGLEVEL
This option controls the logging of the IMAP server processes, in.imap41d. By default,
logging of the IMAP server is turned off:

IMAP_LOGLEVEL=0

The following values (bit settings) define the logging level:

1 Log any unexpected UAL errors.

2 Log the IMAP commands after they have been parsed by the IMAP server (but b
any action is taken to process the command) and the final response to the client
the command is complete.

8 Log the original IMAP commands, without the value of any literal strings, before t
have been parsed by the IMAP server and all the IMAP server responses, both t
and untagged. At this logging level, no interpretation is placed on the lines being
logged, so the IMAP server cannot suppress information, such as the password
IMAP LOGIN command. However, log files are normally created with permissions
prevent ordinary users from reading them.

These can be combined to give the required output. We will look at the different types of
created with different log levels set.

All logged messages take the format:

<IMAP server process ID> <current time HH:MM:SS> <log message>

When very long log messages are split over more than one line, continuation lines begin
white space.

With the exception of the two lines below, the format of the <log message> part differs,
depending on the log level set. The following two messages are logged whenever the log
is greater than zero and show when a particular instance of the IMAP server is starting u
shutting down:
December 21 1999 Page 5

B.06.00 Changes to the IMAP Server

 and

d in

s
take
IMAP4 Server <version> on <host> at <date>
IMAP4 Server exiting

On my server, the lines look like this:

9327 15:13:28 IMAP4 Server B.06.00.R0 on kuda at Fri Oct 1 15:13:28 1999
9327 15:13:32 IMAP4 server exiting.

When IMAP_LOGLEVEL=1, the log message records the text of any UAL error which the IMAP
server was not expecting. This doesn’t include UAL errors resulting from things like bad
IMAP commands. The message format is:

UAL: <UAL error message>

For example:

9472 16:44:15 UAL: error 655 (0,0):
 The password supplied is incorrect

When IMAP_LOGLEVEL=2, the log messages include the parsed commands from the client
the final response to the client. The format is:

CMD: <tag> <parsed command>
RSP: <tag> <final response for the command>

For example:

9370 15:26:59 CMD: a1 LOGIN "admin" <password>
9370 15:27:03 RSP: a1 OK LOGIN completed, now connected to kuda.pwd.hp.com
9370 15:27:03 CMD: a2 SELECT inbox
9370 15:27:03 RSP: a2 OK [READ-WRITE] SELECT completed
9370 15:27:03 CMD: a3 FETCH 13 (RFC822)
9370 15:27:07 RSP: a3 OK FETCH completed
9370 15:27:07 CMD: a4 LOGOUT
9370 15:27:08 RSP: a4 OK LOGOUT completed

Note that the password in the client LOGIN line is suppressed by the IMAP server.

If a command could not be parsed, then the CMD: line will usually be absent. This line reflects
what the IMAP server interpreted the command to mean, not what was actually sent, an
some circumstances the command may not be syntactically correct.

When IMAP_LOGLEVEL=8, the log messages record the original, unparsed IMAP command
(apart from the value of any literal strings) and all the IMAP server responses. The lines
the format:

C: <literal client request>
R: <literal server response>

For example:

9407 15:29:19 C: a1 login admin admin
9407 15:29:23 S: a1 OK LOGIN completed, now connected to kuda.pwd.hp.com
9407 15:29:23 C: a2 select inbox
9407 15:29:23 S: * 16 EXISTS
* 0 RECENT
* OK [UNSEEN 16] is the first unread message
* OK [UIDVALIDITY 1] UIDVALIDITY value
* FLAGS (\Answered \Flagged \Deleted \Seen \Draft $MdnSent)
* OK [PERMANENTFLAGS (\Answered \Flagged \Deleted \Seen \Draft $MdnSent)]
flags will stay set
9407 15:29:23 S: a2 OK [READ-WRITE] SELECT completed
9407 15:29:23 C: a3 fetch 13 (rfc822)
9407 15:29:26 S: * 13 FETCH (RFC822 {1663}
9407 15:29:26 S:)
9407 15:29:26 S: a3 OK FETCH completed
9407 15:29:26 C: a4 logout
9407 15:29:27 S: * BYE OpenMail IMAP Server logging out
9407 15:29:27 S: a4 OK LOGOUT completed
December 21 1999 Page 6

B.06.00 Changes to the IMAP Server

ent
Note that this time the password in the client LOGIN line is not suppressed. Also, the whole
message returned as a literal string in response to the command fetch 13 (rfc822) is not
logged.

Where To Set IMAP_LOGLEVEL

This tweak can be set for the whole system (in ~/sys/general.cfg) or for a particular client
machine (in ~/sys/client.cfg/<client hostname>) or for a particular OpenMail user
(in ~/sys/user.cfg/<OM numeric user ID>).

The IMAP log file is created when logging is first turned on. However, the level of logging for
the system or client can vary from the level for an individual user. So, for example, if you set
the log level to 3 on a system-wide or per-client basis, then you could set it to 8 (to record the
literal protocol) in the per-user configuration file. Changing log levels like this allows a
complete protocol trace to be recorded without actually recording authentication details.

Remember, if you set the tweak in general.cfg, you will need to restart the IMAP server for
it to take effect. If it is set for a client or user, it is not necessary to restart the IMAP server.

Effect on UAL Tracing

If the tweak, IMAP_UAL_TRACE_LEVEL, is not defined, then setting IMAP_LOGLEVEL to a
non-zero level will automatically set the IMAP_UAL_TRACE_LEVEL to 8.

Compatibility With B.05.10

If IMAP_LOGLEVEL is not defined and the old B.05.10 option, UAL_IMAP4_TRACE=TRUE, then
the log level is set to 3 for compatibility. (This will probably be removed in a future release).

IMAP_LOGFILE
If logging has been enabled for the IMAP server, using the IMAP_LOGLEVEL option, this tweak
defines the name of the log file(s) and the scope of the logging contained in the log file, that is,
whether the log file pertains to a particular client, user and/or IMAP process. Substitutions can
be used in the log filename and the option can be set on a per session, per client machine or per
user basis. If the specified log file does not exist, it will be created. If it does exist, new log
messages will be appended to it.

The default setting is

IMAP_LOGFILE=~/tmp/imap.%h

where

~ represents the OpenMail directory, usually /var/opt/openmail

%h is replaced by the fully qualified client hostname, for example, kuda.pwd.hp.com.

So, if IMAP_LOGLEVEL is set in general.cfg to enable IMAP logging across the system and
the default setting of IMAP_LOGFILE is used, all IMAP communications with the client host
machine, kuda.pwd.hp.com, will be logged in the file,
/var/opt/openmail/tmp/imap.kuda.pwd.hp.com.

Note that several IMAP server processes can all log to the same log file without corrupting it.
The example above is quite likely to include the logging from several different IMAP server
processes.

Other substitutions that can be made are %p and %u, where

%p is replaced with the PID of the IMAP server process, in.imap41d

%u is replaced with the OpenMail numeric user ID. If logging starts before the IMAP
connection is authenticated, %u will be replaced with zero instead of the OpenMail user ID.

For example, let’s say you want to capture detailed logging for individual users on the cli
machine, kuda.pwd.hp.com, so in ~openmail/sys/client.cfg/kuda.pwd.hp.com, you
set
December 21 1999 Page 7

B.06.00 Changes to the IMAP Server

e

ing

e set
l ID is

t
IMAP_LOGLEVEL=8
IMAP_LOGFILE=~/tmp/imap.%u

Instead of seeing individual log files, ~/tmp/imap.<OpenMail ID>, you will find one file,
~/tmp/imap.0, containing the detailed logging for all the users on the client machine. This is
because logging has already been enabled (at client level) before the users login (i.e. before the
users are authenticated).

To log the individual users, you can either

• Set IMAP_LOGFILE and IMAP_LOGLEVEL=0 in general.cfg and

• Set IMAP_LOGLEVEL=8 in the users’ configuration files in ~/sys/user.cfg.

or

• Set the log level and the log file options in the users’ configuration files in ~/sys/

user.cfg.

If our users have the OpenMail IDs, 102 and 103, we could set

IMAP_LOGLEVEL=8
IMAP_LOGFILE=~/tmp/imap.%u

in ~openmail/sys/user.cfg/102 and ~openmail/sys/user.cfg/103. We would then
find the files ~/tmp/imap.102 and ~/tmp/imap.103 automatically created, because logging
is turned on at the correct level for these options to take effect.

More than one substitution can be specified. For example, setting

IMAP_LOGFILE=~/temp/imap4-%u.%h

will create log files, like imap4-102.kuda.pwd.hp.com, in the OpenMail temp directory.
Each log file will contain logs for all the sessions of a particular user connecting from a
particular client machine.

Note: Where you set the IMAP_LOGFILE option is not as important as where you set th
IMAP_LOGLEVEL option.

As with IMAP_LOGLEVEL, it is recommended that you restart the IMAP daemon after chang
IMAP_LOGFILE.

In B.05.10, the option UAL_IMAP4_LOGFILE defined the log file but it did not support
subsitutions. The log file name always had the process ID of the current IMAP server
appended to it.

IMAP_UAL_TRACE_LEVEL
This option allows you to turn up the UAL logging level for IMAP connections without
affecting the level set for other UAL connections. When you enable IMAP server logging
(using IMAP_LOGLEVEL), IMAP_UAL_TRACE_LEVEL is automatically set to 8.

The levels you can set are the same as for UAL_TRACE_LEVEL and the default setting is

IMAP_UAL_TRACE_LEVEL=0

that is, it is not enabled.

This option can be set for the whole system or for a particular client machine. It cannot b
for a particular user, because UAL logging has to be enabled before the user’s OpenMai
known.

To ensure all connections use the new setting, it is advisable to restart the Remote Clien
Interface (rci).
December 21 1999 Page 8

B.06.00 Changes to the IMAP Server

r’s

e

er is
Lab
In this lab, you need two OpenMail users. They will both be running IMAP sessions from the
same client machine. For this it is probably easiest just to use telnet IMAP sessions.

Set IMAP logging so that:

1. Detailed logging is enabled for both users and separate log files are created for each user.

Answer:

Make sure IMAP logging is not enabled in general.cfg or for the client host machine, in
the client.cfg directory.

Set up a user configuration file for each user in ~/sys/user.cfg and in each, put the lines:
IMAP_LOGLEVEL=8
IMAP_LOGFILE=~/tmp/imap.%u

Restart the IMAP daemon. If you changed the general.cfg file, you will also need to
restart the remote connection interface.

Start a telnet session for each user.

You should find user specific files in ~/tmp, for example, imap.102 and imap.103.

2. Enable summary logging for all the IMAP connections on the system but turn up IMAP
logging for one user. (Start IMAP sessions for the two users). What is the log file called?

Answer:

In general.cfg, set:
IMAP_LOGLEVEL=3

In one user configuration file leave IMAP logging turned up. Rename the other user
configuration file to disable it.

Restart the IMAP daemon and the remote connection interface.

Start a telnet session for each of the two users.

You should find a client specific log file in ~openmail/tmp, for example,
imap.kuda.pwd.hp.com. This should contain CMD and RSP entries for user sessions other
than the one with logging turned up. For this user, you should see C: and S: entries after
login.

3. We want to see, separated out, the logging for individual IMAP processes for one use
session. What needs to be configured?

Answer:

Make sure IMAP logging is not enabled in general.cfg or for the client host machine, in
the client.cfg directory.

Set up one user configuration file in ~/sys/user.cfg and put in the lines:
IMAP_LOGLEVEL=8
IMAP_LOGFILE=~/tmp/imap.%u.%p

Restart the IMAP daemon. If you changed the general.cfg file, you will also need to
restart the remote connection interface.

Start a telnet session for the user. This may be more interesting if you start a Netscap
session for this user, as you will see more log files created.

You should find log files in ~openmail/tmp with filenames like, imap.102.2345 and
imap.102.5678, where the first number is the OpenMail user ID and the second numb
the PID of an in.imap41d (IMAP server) process.
December 21 1999 Page 9

B.06.00 Changes to the IMAP Server

ver,

 two
cher
with
hese
Watcher Connection Monitoring Tool
Watcher is a TCL script, which sits between the client and server and provides you with a
graphical window on all the raw protocol/data exchanged between the two. Although it is used
here with IMAP connections, it can actually be used to monitor other communication
connections; SMTP, for example. You can run Watcher on a Unix machine or a PC - wherever
you can install TCL.

The diagram below shows how Watcher just acts as a relay between client and server. I have
Watcher and the IMAP server running on kuda and the IMAP client running on hppwdj98.

I have included the Watcher script in “Watcher TCL Script” on page 60 of this OTN. Howe
it will be made available from the Contributed Tools section of the OpenMail website.

TCL scripts are interpreted using the TCL library, available from www.scriptics.com. If TCL is
installed on your machine, you just need to make sure that the TCL library, /opt/tcl/bin, is
added to PATH. If the library exists on another machine, you need to create a symbolic link
first, then add the TTCLcl interpreter library to your PATH. For example, the TCL library I
want to use is on another machine, called fred, so first I create a symbolic link to the TCL
directories, /opt/tcl, on fred:

ln -s /net/fred/opt/tcl /opt
ls /opt/tcl

Then I add the TCL library, /opt/tcl/bin, to my PATH:

PATH=$PATH:/opt/tcl/bin

Configuring Watcher

To start Watcher, you simply type:

watcher &

and the following box will appear:

On the left is a button you click on to start monitoring. You can tab between the following
fields. In the left hand field, you enter details of the client side connection with which Wat
will communicate. In the right hand field, you enter details of the server side connection
which Watcher will communicate. Watcher then just displays and relays traffic between t
two addresses.

For example:

IMAP
serverWatcher

kuda

IMAP
client

hppwdj98
December 21 1999 Page 10

B.06.00 Changes to the IMAP Server

rt

ail

n we

od:

ft of
Let’s look at what this sets up in the diagram below:

Watcher will take traffic arriving on port 144 on kuda, display it and relay it to port 143 on
kuda. Going the other way, Watcher will take traffic arriving on port 143 and relay it to po
144.

In the above set up, I am running Outlook Express 5 on the host machine, hppwdj98. In
Outlook Express (Account Properties window, Servers tab), I set kuda as the Incoming M
(IMAP) server. Under the Advanced tab, I configured 144 as the IMAP server port.

We could have configured the connections to be "watched" from the command line, whe
started Watcher:

watcher kuda:144 kuda:143 &

The following example shows how you can configure Watcher from the command line to
monitor an IMAP connection on kuda and an SMTP connection between kuda and zaph

watcher kuda:143 localhost:143 kuda:smtp zaphod:smtp

The resulting window would look like this:

You initiate monitoring for each connection independently by clicking the button to the le
the connection you want to monitor.

Watcher

IMAP
client

kuda
port 144

kuda
port 143

on
hppwdj98

IMAP
server
December 21 1999 Page 11

B.06.00 Changes to the IMAP Server

 not

d

nt

 will
Watcher Transcript Windows

A new window, like the one below, is started for each new connection established.

The window displays the client/server conversation over that particular connection. Each line
takes the form:

<timestamp>:C|S: <dialogue>

The timestamp, given in hours, minutes, seconds and centi-seconds, is Watcher’s and is
linked to the time on the servers being monitored.

C is for Client side of the dialogue and S is for the Server side. The client dialogue is displaye
in bold.

In the window above, the *** EOF *** lines show that this temporary connection is now
closed. Dialogue will continue to be displayed in the main connection window and new
windows will appear as new temporary connections are established. In IMAP sessions
particularly, this is helpful, because you can see easily how many new connections a clie
makes within a session, and what the new connections are used for.

Saving Connection Dialogues

If you click File in the top left of a transcript window, you can opt to save in a file:

• The whole transcript displayed in the window

• Just the server side of the dialogue

• Just the client side of the dialogue

By default, the filename will be the <title of the window>.scr, for example,
watch0.scr.

More Connection Configuration Details

If you press Help in the top right of a transcript window, a dialogue box like the one below
appear.
December 21 1999 Page 12

B.06.00 Changes to the IMAP Server
This gives further details about the particular client/server connection to which this window
relates. Both ends of a socket connection need to be identified, so an arbitrary number,
assigned by the operating system, is given for the ends we have not specified, i.e.
hppwdj98.pwd.hp.com:4396 and kuda.pwd.hp.com:2500. What the peername and
sockname refer to is probably best described using the diagram we had earlier:

The important thing to note with the Help dialogue box is that it shows the client host machine
to which this dialogue refers. For instance, the Watcher configuration we set up:

watcher kuda:144 kuda:143 &

would monitor both my Outlook Express session from hppwdj98 and a telnet session to port
144 on kuda. I could then use the Help dialogue information to find out which dialogue
belonged to which session.

Watcher

IMAP
client

kuda
port 144

kuda
port 143

on
hppwdj98

IMAP
server

Client connection
details refer to either
end of this connection

Server connection
details refer to either
end of this connection
December 21 1999 Page 13

B.06.00 Changes to the IMAP Server

ing
8.

 there
hanges
Improvements To The OpenMail IMAP Implementation

The following diagram of the OpenMail IMAP architecture should already be familiar to you -
it is from the original IMAP4 OTN.

Figure 1 OpenMail IMAP Architecture

At B.06.00, the IMAP server, in.imap41d, is now a standalone daemon, which means that it
can be started and stopped with omon and omoff, e.g. omon -a imap.

Although clients continue to make new connections (and consequently, new in.imap41d and
ual.remote processes) during a session, now new copies of the running IMAP server are
created, as opposed to new processes being started from scratch (as happened under inet).
Consequently, the response time for a new connection has been improved.

Note: A Netscape Messenger session can have up to 7 concurrent connections - a total
of 21 processes, which can be a significant problem on heavily loaded systems. If
you are likely to have over 1,200 concurrent Netscape Messenger (4.5 or later)
IMAP sessions, you will need to limit the number of new connections that
Netscape clients can make. How to do this is described in the section, “Limit
The Number Of New Processes Netscape Can Start In A Session” on page 5

The basic architecture of OpenMail IMAP support has not changed much at B.06.00 but
have been changes to the way the processes involved interact. As we shall see, these c
give significant improvements in performance and reliability.

OpenMail
Server

Unix
Gateway

Sendmail

Remote UAL
Server

(ual.remote)

OpenMail
IMAP

Interface

(in.imap41d)

143

SMTP

25

Sockets

Sockets

Sockets

Receiving
Mail

Sending
Mail

IMAP
Client

Client Client
December 21 1999 Page 14

B.06.00 Changes to the IMAP Server

se of
server

ing

ge
bout

ons of

in its

e

r to

ans
m is

se
er
ll the

AL
. A lot

nd

rver’s

P

e
. These

nce
lways
Probably the three most important changes are the use of (virtual) memory mapped I/O, single
slot caching by the IMAP server and the use of server push notifications:

• Large amounts of data are transferred from the IMAP server to the IMAP client, the u
memory mapped I/O both improves performance and greatly reduces the load on the
machine.

If the UAL server and the IMAP server reside on the same machine, then files are
transferred directly from the Message Store instead of being copied across the net us
ual_recvfile and ual_sendfile.

• IMAP clients are increasingly "paging" data or asking for information about the messa
before fetching it. For example, the Jornada typically fetches a single message over a
half a dozen consecutive FETCH requests, Netscape Messenger 4.5 asks for the body
structure before fetching the parts of the message that it is able to display, older versi
Messenger have a tendency to fetch a message twice (just in case).

This makes the implementation of single level caching very effective. The OpenMail
IMAP server caches basic information about all the messages in the current mailbox
memory and maps all of the current message into virtual memory.

Extending the partial fetching of messages is an important feature of IMAP4rev1. To
optimize this feature in the OpenMail IMAP server, new temporary object files, with th
index name imapBodyStrc, are used to cache the message header and structural
information about a message. These object files exploit the ability of the item browse
render parts of a message, instead of the whole message.

• The B.06.00 IMAP server makes extensive use of server-push notifications, which me
that, when idle, it does not need to contact its associated UAL server. This mechanis
made visible to the IMAP client through the IDLE extension (see “IDLE” on page 46).

Server push notifications therefore offer significant performance improvements for tho
clients which support them (namely Outlook Express and Outlook 98). The UAL serv
can simply sleep until new mail arrives and the most the IMAP server has to do is to te
client that nothing has changed.

At B.05.10, each time a client polled for updated information both the IMAP and the U
processes were woken up; in many instances, only to report that nothing had changed
of clients polling every few minutes was a significant overhead on the server.

Internet Acknowledgements (MDNs and DSNs) are now supported on OpenMail IMAP a
the Internet Gateway. This is covered in another B.06.00 upgrade OTN, Changes To The
Internet Gateway. Tweaks for supporting the generation of Internet Acks within IMAP are
covered in “Support For Internet Acks” on page 31.

What The IMAP Server Caches In Its Memory
The following details for each message in the current mailbox are cached in the IMAP se
memory data structures:

• The OpenMail container sequence number for this message. This maps onto the IMA
message UID.

When an IMAP session is initialised, the IMAP server sends an INIT command like the
following:
UAL Server Command Trace at Wed Oct 20 16:41:36 1999
--
INIT Command: UA Id=’IMAP4 Server B.06.00.R0’, Debug Level=2, Debug
File=’’
INIT Command: Flags=0x20020, CharSet=’UTF8’, Service Level=6

The flag, 0x20000, requests that items in a container be uniquely numbered the first tim
the container is opened. It also causes subsequently new items to be given a number
sequence numbers map onto the IMAP UID numbers.

What the UAL actually requests (in a LIST command) is a "Bulletin Board Sequence
Number", though here it has nothing to do with Bulletin Boards. Bulletin Board seque
numbers can be used to number items in any container. These sequence numbers a
December 21 1999 Page 15

B.06.00 Changes to the IMAP Server

this

 into

er is

 way
” on

der and

se

f a

ser to
begin at 1 for the first item in the container, and increase by 1 for each item added. If items
are deleted, then, unlike the normal item reference, these numbers are never used again in
the same container.

• The direct reference of the message in the message store.

• INTERNALDATE - the OpenMail delivery date, that is, the time the message was put in
folder.

• Various flags including \Deleted, \Answered etc. The IMAP server keeps account of
previous flag settings, so that it knows what has changed.

Caching Rendered Messages

In addition, when a message is first fetched from the message store, it is converted back
MIME format ("rendered") by the item browser and stored in a UAL temporary file. The
IMAP server maps this file into virtual memory. This message remains current until anoth
fetched.

This memory mapping makes paging large messages very efficient. It works in the same
as fetching part of a message, which we look at in the section “Fetch Part Of a Message
page 35.

The imapBodyStrc Object File
The item browser also creates and automatically maintains an imapBodyStrc object file for
each fetched message. This temporary object file provides a cache for the message hea
structural information about the message body.

The old object files, imapHdr, which held the message header, and imapMsg, which held the
header and rendered message, are no longer created (except in an IMAP APPEND request,
which we shall look at later).

Note: The IMAP_CACHE_RFC_HEADER and IMAP_CACHE_RFC_MESSAGE tweaks
associated with the old object files are now ignored. In previous releases, the
tweaks could be used to turn off the creation of cached object files.

What is the imapBodyStrc object file used for?

The prime reason for this file is to optimize the ability of the item browser to render part o
message instead of having to render the complete message every time. This ability is
increasingly used by modern clients, such as, Jornada, Netscape 4.6 and Mulberry.

What is in the imapBodyStrc object file?

The information in this file is roughly equivalent to that returned by

FETCH n (RFC822.SIZE BODY[HEADER] BODYSTRUCTURE)

One way to see if the object file exists is to use the lo (List Object) option in omcontain.

• Start a telnet IMAP session and fetch a message bodystructure, to force the item brow
create an imapBodyStrc file for that message:

root@kuda[] #telnet kuda 143
Trying...
Connected to kuda.pwd.hp.com.
Escape character is ’^]’.
* OK OpenMail IMAP server B.06.00.R0 ready on kuda
a1 login admin admin
a1 OK LOGIN completed, now connected to kuda.pwd.hp.com
a2 select inbox
* 22 EXISTS
* 0 RECENT
* OK [UIDVALIDITY 1] UIDVALIDITY value
* FLAGS (\Answered \Flagged \Deleted \Seen \Draft $MdnSent)
December 21 1999 Page 16

B.06.00 Changes to the IMAP Server

with it
* OK [PERMANENTFLAGS (\Answered \Flagged \Deleted \Seen \Draft
$MdnSent)] flags will stay set
a2 OK [READ-WRITE] SELECT completed
a3 fetch 22 bodystructure
* 22 FETCH (BODYSTRUCTURE ("TEXT" "PLAIN" ("charset" "iso-8859-1") NIL
NIL "QUOTED-PRINTABLE" 23 2 NIL ("inline" ("filename" "a")) NIL))
a3 OK FETCH completed

• Start omcontain and open the intray of this user:

Option?u
User:admin

User Name = Mr Admin /canberra,class
User Number = 102
Ctr Handle = 3001
Done

Option?o
Ctr Handle (3001):
Entry Number:1
Ctr Handle = 3002
Done

• Find the message you fetched in the telnet session and list the object file associated
by entring the option lo and the number of the message in response to Entry Number:

Option?lo
Ctr Handle (3002):
Entry Number:29
Record No. 0
Index name = imapBodyStrc Item Number = 4284
Filename = ~/data/000000p/00006o1
Flags = 0 Domain = 2
SubDomain = 25 FileId = 6913
Object Flags = 3 File Extension =
Done

The value of the Object Flags is:

0x01 temporary

0x02 don’t mail

We can actually view the contents of imapBodyStrc object files using an X-OMTEST extension
command, om.objfile (see “X-OMTEST” on page 53). Here is an example of the
imapBodyStrc object file associated with message 1 in my mailbox:

a5 fetch 1 om.objfile (imapBodyStrc)
* 1 FETCH (OM.OBJFILE ((imapBodyStrc "16-Sep-1999 15:26:39 +0100" 0x3
{880}
OMHEADER (VERSION 1.2 FLAGS "Q 0 0 0 NIL Q 0 Q 0 NIL NIL F 0 0 1")
RFC822.HEADER {429}
Date: Thu, 16 Sep 1999 15:24:11 +0100
Message-Id: <H000006600000a85.0937491849.kuda.pwd.hp.com@MHS>
Subject: 2nd rtf test
MIME-Version: 1.0
Return-Path: <Admin_Mr/canberra_class@kuda.pwd.hp.com>
From: Admin_Mr/canberra_class@kuda.pwd.hp.com
To: Admin_Mr/canberra_class@kuda.pwd.hp.com
Content-Type: application/rtf; name="BDY.RTF"
Content-Disposition: attachment; filename="BDY.RTF"
Content-Transfer-Encoding: base64

ENV (DATE "Thu, 16 Sep 1999 15:24:11 +0100" SUBJECT "2nd rtf test" FROM
(Admin_Mr/canberra_class@kuda.pwd.hp.com) TO (Admin_Mr/
canberra_class@kuda.pwd.hp.com) MSGID "<H000006600000a85.0937491849.kuda.
December 21 1999 Page 17

B.06.00 Changes to the IMAP Server
pwd.hp.com@MHS>") BODY ((PATH 1 TYPE APPLICATION STYPE RTF TPARMS (NAME
BDY.RTF) ENC BASE64 SIZE 654 DISP ATTACHMENT DPARMS (FILENAME BDY.RTF)))
SIZE 1083 LINES 20)))
a5 OK FETCH completed

The first 2 lines of the response contain item browser information. The first line contains the
following information:

The second line is the item browser header:

The next part is the message header as a literal string (size 429 octets):

RFC822.HEADER {429}
Date: Thu, 16 Sep 1999 15:24:11 +0100
Message-Id: <H000006600000a85.0937491849.kuda.pwd.hp.com@MHS>
Subject: 2nd rtf test
MIME-Version: 1.0
Return-Path: <Admin_Mr/canberra_class@kuda.pwd.hp.com>
From: Admin_Mr/canberra_class@kuda.pwd.hp.com
To: Admin_Mr/canberra_class@kuda.pwd.hp.com
Content-Type: application/rtf; name="BDY.RTF"
Content-Disposition: attachment; filename="BDY.RTF"
Content-Transfer-Encoding: base64

This is then followed by envelope information held by the item browser. I have reformatted
this part to make it more readable:

ENV (-- envelope, for "FETCH n ENVELOPE"
 DATE "Thu, 16 Sep 1999 15:24:11 +0100" -- same as RFC822 Date: header
 SUBJECT "2nd rtf test" -- message subject
 FROM (-- list of FROM addresses
 Admin_Mr/canberra_class@kuda.pwd.hp.com
)
 TO (-- list of TO addresses

Admin_Mr/canberra_class@kuda.pwd.hp.com
)
 MSGID "<H000006600000a85.0937491849.kuda.pwd.hp.com@MHS>" --message id
)
BODY (-- body, for "FETCH n BODYSTRUCTURE"
 (
 PATH 1 -- browser path to message part

imapBodyStrc "16-Sep-1999 15:26:39 +0100" 0x3 {880}

object file name last modified date
and time

object flags:
0x01 temporary
0x02 don’t mail
(also in UAL
GET_OBJFILE

command

size in octets of the
literal string following

OMHEADER (VERSION 1.2 FLAGS "Q 0 0 0 NIL Q 0 Q 0 NIL NIL F 0 0 1")

item browser
version

item browser config
settings. Object file is
verified by comparing
these settings with the
settings stored in the
object file.
December 21 1999 Page 18

B.06.00 Changes to the IMAP Server

P
bject

 of

tain size.
 the

an 5k
 are to be
s not
 TYPE APPLICATION -- MIME type
 STYPE RTF -- MIME subtype
 TPARMS (-- content-type parameters
 NAME BDY.RTF
)
 ENC BASE64 -- content-transfer encoding
 SIZE 654 -- body size (in bytes)
 DISP ATTACHMENT -- content-disposition
 DPARMS (-- content-disposition parameter
 FILENAME BDY.RTF
)
)
)
SIZE 1083 -- total size of message
LINES 20 -- total number of lines (for IMAP)

What is meant by "automatically maintained"?

In OpenMail B.05.10, if you remember, the object files, imapHdr and imapMsg, were not
automatically updated when messages or settings changed. To ensure changes could take
effect, you had to set the tweak, UAL_IMAP4_DEL_OBJ=TRUE, and issue an IMAP CHECK
command to force the deletion of the object files. This is no longer required at B.06.00.

The item browser will now automatically recreate the imapBodyStrc file if any of the
following change:

• Item browser steering files

• Item browser tweaks

or if the item browser itself is modified.

In the annotated example above, the OMHEADER line holds information that the item browser
uses to validate the file. If this information is incorrect, it will automatically create a new
object file for the message.

Since the imapBodyStrc (and therefore the original MIME message) can always be re-
constructed from the message and content record files, there is no need to mark any
imapBodyStrc object file as a permanent object file. They can then be deleted by the IMA
server when they have been made obsolete (see “Deleting Temporary And Permanent O
Files” on page 23).

How The Size Of A Message Is Calculated
You will notice the size of the message is included at the end of the imapBodyStrc object file.
If the tweak, IMAP_MIN_SIZE_ESTIMATE, has the value 0 (zero) - the default value - the size
a message is always calculated by the item browser rendering the whole message.

For clients like Outlook Express and Netscape Messenger, which fetch the RFC822.SIZE and
RFC822.HEADER attributes of a message when just listing the contents of a folder, this can
represent a significant overhead.

The tweak can be set so that an estimated size can be returned for messages over a cer
The estimated size is taken from size of message in the message store, which is held in
message container. So, for example, setting

IMAP_MIN_SIZE_ESTIMATE=5

would mean that an estimated size is to be returned for messages which occupy more th
bytes in the message store. Messages taking up less than 5k bytes in the message store
rendered to calculate their size. Rendering these small messages to discover their size i
time-consuming.
December 21 1999 Page 19

B.06.00 Changes to the IMAP Server
For large messages, the estimated size in the message store may be less, as parts of the message
(e.g. binary attachments) would be rendered in base64. For small messages, the estimated size
in the message store may often be greater than the real size; the minimum size of a message in
the message store is 1k bytes. The estimate could be as much 30% out for large messages and
several hundred percent for small messages. The error for large messages is usually acceptable
to users, the error for small messages is not, which is why we have included this tweak.

Using this tweak may, therefore, give you a significant performance improvement at the cost of
some loss of accuracy in the reported size of the message.

Note: Some clients, Pine, for example, rely on the RCS822.SIZE being accurate. So, for
for users of these clients, this tweak must be set to zero.

How The OpenMail IMAP Server Talks To The Message Store
It is worth looking at the overall picture, at this stage, to see how the various servers and
processes interwork at B.06.00. For example, what happens when an IMAP client issues a
command to fetch a message from the message store:

FETCH 4 RFC822

The communication between the various parts of OpenMail is shown in the diagram below.
Each stage in the communication is represented by a number. These stages are then explained
in the numbered list following the diagram:

In this diagram I have used circular shapes to represent processes, to distinguish them from
files (represented by rectangles) and the main Message Store database.

1. First of all, the client issues the FETCH command, asking the IMAP server to get all of the
message with the UID of 4.

2. The IMAP server then gives the UAL the name of a temporary file and asks it to render
message into it.

3. The IMAP server first checks to see if an imapMsg message object file already exists for
this message. If not, it passes the render request to the UAL. The UAL then passes it to the
item browser, which actually does the rendering. Rendering here means reconstructing the
original MIME message from the OpenMail internal format. The UAL also hands to the
item browser the item reference of the message and the name of the destination temporary
file.

IMAP
client

1

brwmime.str
steering file

IMAP
server

UAL

item
browser
(BRW)

2

3

4

5

Message
Store
December 21 1999 Page 20

B.06.00 Changes to the IMAP Server

on

checks
 by
If an imapMsg message object file already exists for this message, the UAL copies it to the
temporary file. Note that this removes the need to render the message.

4. Before rendering the message, the item browser checks the steering file, brwmime.str, for
any required character set and bodypart conversion.

The item browser renders the message into the temporary file indicated by the direct
reference and also creates an imapBodyStrc object file to hold basic structural information
about the message.

Note: For the most part, we no longer store the whole (rendered) message in both a
permanent object file (imapMsg) and in OpenMail format in the Message Store.
This significantly reduces the amount of disk space required for IMAP clients.

When the item browser is finished, it reports back through the chain to the IMAP server to
say the task is complete.

5. The IMAP server already knows the name of the temporary file and simply sends the
contents out to the client.

In B.05.10, the UAL would have had to physically copy the file over the net to the IMAP
server. Now this is not required, because the item browser puts the rendered message in a file
already known to the IMAP server and just reports back when it is finished.

Old imapHdr And imapMsg Object Files
As the IMAP object files at B.06.00 are completely different from those created at B.05.10, we
strongly recommend that you delete all old temporary IMAP object files after you have
upgraded to OpenMail B.06.00, (see “Deleting Temporary And Permanent Object Files”
page 23).

When the IMAP server wants all or some of a message, or the message structure, it first
for an imapMsg object file. If this exists, it will be used in preference to anything generated
the item browser. This check will show in a UAL trace as a GET_OBJFILE command:

COMMAND 192 GET_OBJFILE 11:18:29
{
 UARef = 13589
 SeqNo = 8
 ListRef =
 ItemRef =
 Flags = 2
 ObjectIndex = imapMsg
 TargetFileName =
 TargetFileId = 210
 DirectRef = 000102662219e793
}

REPLY 192 GET_OBJFILE
{
 UARef = 13589
 SeqNo = 8
 ReplyFlags = 0
 ErrorNo = 1802
 Err2 = 0
 Err3 = 0
 ObjFileName =
 FileSize = 0

ModDate = 0
 ObjFlags = 0
} 11:18:29

If an imapMsg object file is not present, then a new imapBodyStrc file is created.

imapMsg obj file doesn’t exist
December 21 1999 Page 21

B.06.00 Changes to the IMAP Server

 I have

ox of

er. I

s (9):
Note: You will no longer see the ADD_OBJFILE command in the UAL trace, (except
when the IMAP append command is issued), as this is now done implicitly, as
required, by the item browser.

Permanent IMAP Object Files
When a message is dragged from one mailbox (on one server) to another mailbox (on a
different server), the message is copied over using the IMAP APPEND command. The whole
OpenMail message is stored as a literal in a permanent imapMsg object file. Currently, an
imapHdr object file is also created, which is a known bug.

This means that copying files in this way will almost double the space the message occupies on
the receiving machine.

Let’s create a message with a permanent object file (imapMsg). Then use omcontain to list
this.

• Use Outlook Express to set up two accounts, one on one server and one on another.
Mr Admin on bean and Mr Admin on kuda, so my mailbox window looks like this:

• Move a message by dragging and dropping it from the inbox of one account to the inb
the other. What will this create?

I have dragged a message from kuda to bean.

• Open an omcontain session on the receiving server and open the intray of the IMAP us
have opened and listed Mr Admin’s intray on bean:

Option?l
Ctr Handle (3002):
 2) RE: from remote (MESSAGE)
 3) test message (NON-DELIVERY MESSAGE)
 7) who’s this from (MESSAGE)
 8) testing again (MESSAGE)
 9) a little note (MESSAGE)
Done

We can now use lo to list the object files associated with the message we moved acros
Option?lo
Ctr Handle (3002):
Entry Number:9
Record No. 0
Index name = imapMsg Item Number = 1602
Filename = ~/data/0000001/0000202:2
December 21 1999 Page 22

B.06.00 Changes to the IMAP Server

te all
asily

ed to
ould

on

er. I
Flags = 2 Domain = 2
SubDomain = 1 FileId = 2050
Object Flags = 2 File Extension =
Record No. 1
Index name = imapHdr Item Number = 1602
Filename = ~/data/0000001/0000202:3
Flags = 3 Domain = 2
SubDomain = 1 FileId = 2050
Object Flags = 2 File Extension =
Done

Note that the imapHdr file has the temporary Object Flag set (0x01), but the imapMsg file
doesn’t, which means it is permanent. As I said before, the imapHdr object file shouldn’t be
created at all.

An imapBodyStrc object file is not needed for this message, because the complete,
rendered message is permanently available.

Deleting Temporary And Permanent Object Files
As a result of improvements to the item browser at B.06.00, the IMAP object files are
completely different from those created at B.05.10. We strongly recommend that you dele
old temporary IMAP object files after you have upgraded to OpenMail B.06.00. You can e
do this using omscan with the following parameters:

omscan -a -Tn -O ’imap[MH]*’

where

-a means perform this on all directories, users etc.

-Tn specifies the time, in days, since the file was accessed. So, for instance, if you want
delete all the object files which have not been accessed in the last 3 days, you w
include -T3 in the command line.

-O ’imap[MH]*’ identifies the object files to delete. -O means delete temporary object files
and you can specify the filename filter as’imapM*’ or ’imapH*’.

So, the effect of the commands:

omscan -a -T4 -O ’imapM*’

and

omscan -a -T4 -O ’imapH*’

is to search all directories, users etc. and delete any temporary object files with names
beginning "imapM" or "imapH", which have not been accessed in the last 4 days.

Object files can also be deleted using omcontain and the X-OMTEST extension command,
xom.delobj. We look at how to do this using omcontain in the next section. The extension
command is covered later, in the section “X-OMTEST” on page 53.

omcontain

You can also use the do option in omcontain to delete both permanent and temporary IMAP
object files.

Let’s use omcontain to delete the permanent object file (imapMsg) that we created when we
dragged and dropped the message from Mr Admin’s inbox on kuda to Mr Admin’s inbox
bean.

• Open an omcontain session on the receiving server and open the intray of the IMAP us
have opened and listed Mr Admin’s intray on bean:

Option?l
Ctr Handle (3002):
 2) RE: from remote (MESSAGE)
 3) test message (NON-DELIVERY MESSAGE)
December 21 1999 Page 23

B.06.00 Changes to the IMAP Server

u

 the

the
er

client
t"
s to
eeds to
k 98 and
shot"

 time
 when
 7) who’s this from (MESSAGE)
 8) testing again (MESSAGE)
 9) a little note (MESSAGE)
Done

We can now use lo to list the object files associated with the message we moved across (9):
Option?lo
Ctr Handle (3002):
Entry Number:9
Record No. 0
Index name = imapMsg Item Number = 1602
Filename = ~/data/0000001/0000202:2
Flags = 2 Domain = 2
SubDomain = 1 FileId = 2050
Object Flags = 2 File Extension =
Record No. 1
Index name = imapHdr Item Number = 1602
Filename = ~/data/0000001/0000202:3
Flags = 3 Domain = 2
SubDomain = 1 FileId = 2050
Object Flags = 2 File Extension =
Done

Note that neither imapMsg nor imapHdr have the temporary Object Flag set (0x01), which
means they are permanent object files.

• If we now use the do option on this message, all the object files, both temporary and
permanent, are deleted:

Option?do
Ctr Handle (3002):
Entry Number:9
Done

Option?lo
Ctr Handle (3002):
Entry Number:9
Done

Using omcontain does not allow you to select specific object files to delete. To do this, yo
need to use the X-OMTEST extension, xom.delobj.

Multiple Access Support
How multiple IMAP users concurrently accessing the same mailbox should be handled is
subject of RFC 2180. However, RFC 2683, IMAP4 Implementation Recommendations is easier
to read and takes a more practical approach.

The B.06.00 IMAP server uses server push notifications to present a "real time" view of
message store to clients, as opposed to a "snapshot" view, which the B.05.10 IMAP serv
presented.

Let’s assume we have two users accessing the same mailbox concurrently, one using a
which supports a "real time" view and the other using a client which supports a "snapsho
view. The "real time" user will see, almost immediately, the changes the other user make
the mailbox, for example, deleting messages and creating folders. The "snapshot" user n
reconnect before he sees the changes the other user has made. Clients such as Outloo
Outlook Express support a "real time" view. OMGUI, on the other hand, supports a "snap
view.

Because of the way the IMAP protocol is implemented, multi-access of mailboxes in real
can sometimes get temporarily out of sync. The example below shows what can happen
one client marks a message for deletion, and another client actually deletes it.
December 21 1999 Page 24

B.06.00 Changes to the IMAP Server

en

ter a

.
To explain what is happening above. Both Client 1 and Client 2 are concurrently accessing the
same mailbox using IMAP:

1. Client 2 sets the \Deleted flag on message 5.

2. Client 1 sees the \Deleted flag set on message 5 and immediately attempts to expunge the
message.

3. Nothing happens because the server has not yet had the opportunity to update this client
with the server response to Client 2’s STORE command, which set the \Deleted flag.

4. A NOOP gives the server the opportunity to update the client with any outstanding
responses, in this case, the response to the other client’s STORE command.

5. Client 1 then retries the EXPUNGE command, successfully this time.

6. Before the server can send a response to Client 2 to inform it that message 5 has be
expunged, Client 2 attempts to fetch message 5 again.

7. As the message no longer exists, Client 2 gets the error, NO Some messages no longer

exist.

8. Again, a NOOP command gives the server the opportunity to update the client with any
outstanding responses, i.e. that this message has been expunged.

Most clients do not implement the multi-access aspect of the IMAP protocol correctly; af
"NO" response from server, they should send a NOOP to ensure they are updated with
outstanding server responses from actions taken by other clients accessing the mailbox
Outlook Express gets away with it, because it issues an IDLE command, which allows the
server to send the client unsolicited responses (see “IDLE” on page 46).

Lab
1. Start OMGUI and Outlook Express sessions logged into the same user’s inbox.

2. Send some messages to this user.

3. Do they appear immediately in the client windows? If not, why not?

4. In OMGUI, delete a message. What do you see in the Outlook Express window?

Client 1 Notification Traffic Client 2

a1 SELECT inbox b1 SELECT inbox

(msg 5 modified)
modification

<----------------------------- b2 STORE 5 +FLAGS \DELETED

a2 EXPUNGE ---Nothing happens!---

a3 NOOP

*FETCH 5 FLAGS (/DELETED)

a2 EXPUNGE

deletion
-----------------------------> (msg 5 modified)

b3 FETCH 5 RFC822

NO Some messages no longer
exist

b4 NOOP

*5 EXPUNGE
December 21 1999 Page 25

B.06.00 Changes to the IMAP Server
5. In Outlook Express, delete a message. What do you see in the OMGUI window? Why?

6. In OMGUI, create a new folder. What do you see in the Outlook Express window?

7. In Outlook Express, create a new folder. What do you see in the OMGUI window? Why?

The answer to most of the questions above is that OMGUI maintains a "snapshot" view and
does not use server push notifications.

Searching
Searching has been significantly improved at B.06.00. Not all searches are handled by the
background Search server. Any searches on FLAGS and INTERNALDATE, which the IMAP
server caches in memory, are handled by the IMAP server itself. The response time for such
searches is almost instantaneous.

The following search, for example:

a1 search deleted since 15-Oct-1999

would be performed by the IMAP server, as it holds the flags and INTERNALDATE for each
message in the mailbox in its memory.

Where text searching is required, either in a header field, such as From, or the body of
messages, the background Search server is used as described in the IMAP4 OTN. A search
specification TF file is created containing search filter information and put into the "Search
Area" folder (in the Filing Tray) via a UAL_INCLUDE_FILE command. Because of the extra
processing required, these searches are not as fast as the IMAP server searches.

The Search server has been modified to allow searching against Internet addresses; at B.05.10
searches could only be made on OpenMail addresses, so we can now request a search like:

a1 search recent from "joyce@pwd.hp.com"

This search request involves searching flags and text, so both the IMAP server and the Search
server would be required. First of all, the IMAP server checks its cached data structures to find
which messages have the recent flag set. It then constructs a search specification file for the
text search, from "joyce@pwd.hp.com", on the "Recent" messages it has found and sends it
to the Search server. Only the direct references of the messages which have the \Recent flag
set are sent to the Search server.

We can look at the Search Specification file constructed for the above search request using
omcontain:

Option?t
Ctr Handle (3003):
Entry Number:12
File Name: ~/data/000000t/00005sg
HEADER (DN) 1 0 2 1005
 ** Warning - Insufficient fields present (Record No. 1)
SEARCH_REQUEST (DN) 0x0 -1 1000
 ** Warning - Insufficient fields present (Record No. 2)
SEARCH_TARGET (DN) "00010241503e9b3d"
 ** Warning - Insufficient fields present (Record No. 3)
SEARCH_TARGET (DN) "0001024234b1dee8"
 ** Warning - Insufficient fields present (Record No. 4)
FILTER_START (DN) 0x0 0x0 0
FILTER_NAME (DN) 0x0 0x8001 19 1 0 0 "S=joyce@pwd.hp.com"
FILTER_END (DN)
Done

From its cached information, the IMAP server determines the "Recent" messages and sends the
Search server the direct references for these messages only in the SEARCH_TARGET records.
December 21 1999 Page 26

B.06.00 Changes to the IMAP Server
The contents of the FILTER_NAME record are:

Below are some more examples of Search Specification files. The first is for a combined
search on the \Deleted flag and the value of the FROM field in the DL. Again, the IMAP server
determines the messages with the \Deleted flag set and sends the direct references for these in
the Search Specification file:

Option?t
Ctr Handle (3003):
Entry Number:8
File Name: ~/data/000000a/000069g
HEADER (DN) 1 0 2 1005
 ** Warning - Insufficient fields present (Record No. 1)
SEARCH_REQUEST (DN) 0x0 -1 1000
 ** Warning - Insufficient fields present (Record No. 2)
SEARCH_TARGET (DN) "000102540c47ff92"
 ** Warning - Insufficient fields present (Record No. 3)

...

SEARCH_TARGET (DN) "00010244259ec6e0"
 ** Warning - Insufficient fields present (Record No. 8)
FILTER_START (DN) 0x0 0x0 0
FILTER_BOOLEAN (DN) 0x0 0x0 24
FILTER_NAME (DN) 0x0 0x8001 19 1 0 0 "S=Mr Admin"

FILTER_END (DN)
Done

Possible values for the last value in the FILTER_BOOLEAN record are:

18 MAPI attachment

21 Read/Unread

22 IMAP \Flagged

23 IMAP \Draft

24 IMAP \Deleted

25 IMAP msg UID

26 IMAP \Answered

Note: No FILTER_BOOLEAN record is created for a search on "recent" messages. This is
because only the IMAP server (and not the Search server) knows whether a
message is "recent".

The next example is for a combined search on the \Answered flag and the string "clever" in
the body of the message:

Option?t
Ctr Handle (3003):
Entry Number:23
File Name: ~/data/000000a/000069v
HEADER (DN) 1 0 2 1005
 ** Warning - Insufficient fields present (Record No. 1)

1 - equals

FILTER_NAME (DN) 0x0 0x8001 19 1 0 0 "S=joyce@pwd.hp.com"

0x8000 - Internet form of addr
0x0001 - match DL names in FROM
0x0002 - match DL names in TO
0x0004 - match DL names in CC
0x0008 - match DL names in BCC

19 - name in DL
3 - Sender
17 - Recipient

string to
search for

\Deleted flag

look in DL
December 21 1999 Page 27

B.06.00 Changes to the IMAP Server
SEARCH_REQUEST (DN) 0x0 -1 1000
 ** Warning - Insufficient fields present (Record No. 2)
SEARCH_TARGET (DN) "0001024853c9dc56"
 ** Warning - Insufficient fields present (Record No. 3)
FILTER_START (DN) 0x0 0x0 0
FILTER_BOOLEAN (DN) 0x0 0x0 26
FILTER_STRING (DN) 0x0 0x2 20 1 0 0 "clever"

 ** Warning - Insufficient fields present (Record No. 6)
FILTER_END (DN)
Done

As at B.05.10, once the search specification file has been constructed and submitted, the IMAP
server waits for the notification of search completion. The notification itself is handled by the
normal notification server mechanism. On receipt of the notification, the IMAP server prints
the list of matching messages listed in the SearchResults object file.

With IMAP_LOGLEVEL=8, here is an excerpt from the UAL trace file for Mr Admin;
OM102U.log, showing the UAL notification and object file commands/responses initiated by
an IMAP search which requires the Search server:

COMMAND 350 ADD_NOTIFICATION 16:20:22
{
 UARef = 16279
 SeqNo = 49
 ListRef =
 ItemRef =
 DirectRef = 00010e1070647dd5
 AddNFlags = 0
 AddNEvents = 128
 Key =
}

...

COMMAND 352 GET_NOTIFICATION 16:20:23
{
 UARef = 1
 SeqNo = 0
 Key =
 GetNFlags =
 MaxNumRecs = 100
}

REPLY 352 GET_NOTIFICATION
{
 UARef = 1
 SeqNo = 0
 ReplyFlags = 0
 ErrorNo = 0
 Err2 = 0
 Err3 = 0
 NotifRef = 3
 Key = 0
 Event = 128
 DateTime = 940605623
 Status1 = 0
 Status2 = 1
 TopChildDRef = 0000000000000000
 Flags = 0
 ExtraDRefs =
} 16:20:23

\Answered flag

look in body

search spec file direct ref

search complete notification

search complete

number of hits
December 21 1999 Page 28

B.06.00 Changes to the IMAP Server

they are

arches,
ke the
COMMAND 192 GET_OBJFILE 16:20:23
{
 UARef = 16279
 SeqNo = 50
 ListRef =
 ItemRef =
 Flags = 2
 ObjectIndex = SearchResults
 TargetFileName =
 TargetFileId = 210
 DirectRef = 00010e1070647dd5
}

REPLY 192 GET_OBJFILE
{
 UARef = 16279
 SeqNo = 50
 ReplyFlags = 0
 ErrorNo = 0
 Err2 = 0
 Err3 = 0
 ObjFileName = /var/opt/openmail/user/u000036/TMPA16279/000124o
 FileSize = 53
 ModDate = 940605623
 ObjFlags = 0
} 16:20:23

Although searching has been improved, there are still some limitations:

• Unable to search personal names in addresses, for example, "Joyce Ford", because
usually missing.

• CHARSET option is not supported. Only ASCII can be searched.

• Can search plain text and html but not RTF.

• With Search server used for text searches and IMAP server used for flag and date se
the limited understanding of each server can cause problems in complex searches, li
following:

Let us assume we have the following messages:

No. Subject Flag

1. golf

2. tennis

3. golf \Recent

4. tennis \Recent

The client issues the following search request:

Find messages with subject "golf" and \Recent flag set or subject "tennis" and
\Recent flag unset.

direct ref of SearchResults obj file
December 21 1999 Page 29

B.06.00 Changes to the IMAP Server
We could show these conditions using a parse tree:

The IMAP server understands:

FLAGS such as \Answered , \Seen etc.

INTERNALDATE

ALL

The Search server understands:

FLAGS such as \Answered , \Seen etc.

INTERNALDATE

most of the rest but ...

NOT \Recent flag

NOT most RFC822 headers. Some header information such as the value of To, From,
CC, BCC and Subject are moved to OpenMail containers, which the Search server can
search.

So the IMAP server will see the request as:

recent or not-recent

which will be TRUE for all messages! So it will pass direct reference for all the messages
in the Search Specification file to the Search server.

The Search server will see the request passed to it as:

"subject golf" or "subject tennis"

which again will be TRUE for all messages.

So the result of this search request will be all the messages, when it should only be
messages 2 and 3.

IMAP_SEARCH_TIMEOUT Tweak

Normally, a search will run until it completes. This tweak allows search requests to be
abandoned after a specified number of seconds. Note that this merely abandons the search, it
does not stop the Search server from running.

The default setting is

IMAP_SEARCH_TIMEOUT=0

This can be set for system, client or user. However, it is not advisable to set it under normal
running conditions, as it is likely to lead to dead search specification files cluttering up the
search folder.

or

and and

subject "golf" subject "tennis"recent not recent
December 21 1999 Page 30

B.06.00 Changes to the IMAP Server
Support For Internet Acks
Support for the Internet Acks, MDNs and DSNs, is discussed in the B.06.00 upgrade OTN,
Changes To The Internet Gateway. However, there are two IMAP tweaks for Internet Acks;
one to enable the IMAP server to generate the acks on behalf of the client, the other allows you
to customise the name of the IMAP flag which gets set when an MDN or DSN has been sent
for a message.

IMAP_AUTOMATIC_MDN

IMAP clients are supposed to be be able to generate Message Disposition Notification
messages (MDNs, see RFC 2298). Since this is a new standard, many existing clients do not
know what to do with the Disposition-Notification-To: header, let alone generate
MDNs. If, this tweak is set to TRUE, the IMAP server will generate MDNs automatically when
a message becomes read or is deleted before being read.

It can be set for the system, a client or a user and the default setting is:

IMAP_AUTOMATIC_MDN=FALSE

IMAP_MDNSENT_FLAG

This IMAP flag is set by the IMAP client or the IMAP server (see the description for
IMAP_AUTOMATIC_MDN) to indicate that a Message Disposition Notification message (MDN)
has been sent for this message. The flag shows up in the list of flags that can be set in response
to an IMAP SELECT or EXAMINE command. If the flag name is empty, then nothing is
advertised by the IMAP server.

At present, the name of the MDN sent flag has not been standardized and different clients may
expect of different names. When, eventually, the name is standardized then the default value
will be changed to reflect the standard.

Note that because RFC 2298 specifies that an MDN must only be sent once for a given
message, it is not possible to clear the $MdnSent flag once it has been set for a given message.

The tweak can be set for the system, a client or a user and the default setting is:

IMAP_MDNSENT_FLAG=$MdnSent

If, for example, you wanted to set the MDN sent IMAP flag to one of the earlier, now
discredited, proposals for this flag, you could set the tweak as follows:

IMAP_MDNSENT_FLAG=\MdnSent

Security Issues
There have been numerous alerts about the security of freely available IMAP servers. The two
most common forms of attack are buffer overflow and causing denial of service.

Buffer Overflow

This is usually caused by a very long argument, for example, a password, sent with some
destructive programming tagged on the end. In this way, access can be gained to the stack.

To counter this, the OpenMail IMAP server performs size checks on everything that is sent to
it, often before the data is retrieved.

Denial Of Service Attacks

This may happen when someone quickly starts up a large number of IMAP sessions which do
nothing. The server quickly becomes overloaded and is unable to service any connection
requests.

The following two tweaks are available to prevent this:

IMAP_CONNECTION_LIMIT - This system wide option enables you to set the maximum number
of concurrent connections allowed at any one time. The default setting is
December 21 1999 Page 31

B.06.00 Changes to the IMAP Server

ibly
t

AP
may

h

r and

he
IMAP_CONNECTION_LIMIT=0

which means the IMAP server will accept as many connections as machine resources
permit. If you set the value to greater than zero, the IMAP server will only allow the
specified number of connections at any one time.

On a server with, potentially, a very high number of IMAP connections, it is advisable
to set the IMAP_CONNECTION_LIMIT option. As one IMAP session can involve several
connections and associated processes, the default setting (zero) allows the IMAP
server to use all the available process slots, preventing any other users from accessing
the server.

We mentioned earlier the problem of a single Netscape Messenger client session being
able to have as many as 7 concurrent connections (i.e. 21 processes). With the current
limit of 30,000 processes on an HP-UX server, this means a maximum configuration
of 1428 Netscape Messenger clients at any one time. Obviously, for other clients that
do not make so many connections during a session, the limit can be higher.

To increase the number of concurrent clients, you can configure Netscape as described
in the section, “Limiting The Number Of New Processes Netscape Can Start In A
Session” on page 58.

IMAP_CONNRATE_LIMIT This system wide option enables you to limit the number of
connections in any one second. The default setting is

IMAP_CONNRATE_LIMIT=0

which means that the IMAP server will accept new connections as fast as it poss
can. If the IMAP_CONNRATE_LIMIT is greater than zero, the IMAP server will allow, a
most, the specified number of connections in any one second.

For this option to take effect, you need to restart the IMAP server.

Warning! It is advisable to set this option on a server with a very high number of IM
users, who all tend to login at the same time. The default setting of zero
mean that the system is devoted almost entirely to creating new IMAP
processes. By setting the limit to, 3, for example, you will ensure that the
IMAP server will only allow about 180 new connections per minute, whic
should be well within the capabilities of most servers.

The IMAP_CONNRATE_LIMIT tweak can be used together with the UAKD_CONNRATE_LIMIT
tweak, which limits the rate at which connections can be made to the UAL. If you set both, we
advise that you either set them to the same value or set UAKD_CONNRATE_LIMIT to slightly
more than IMAP_CONNRATE_LIMIT.

Catching The Culprit

If you have problems with someone causing denial of service attacks, a useful tool is the
openly available utility, lsof (List Open Files). You can obtain lsof from

ftp://vic.cc.purdue.edu/pub/tools/unix/lsof

To find the culprit, you could issue the command:

lsof -i:143

which not only lists the files being accessed visa port 143 (IMAP), but also lists the sende
receiver IP addresses.

What To Set When The UAL Server Is On A Different Machine
If your UAL server and IMAP server are running on different machines, you need to set t
tweak, IMAP_REMOTE_UAL_ENABLED, to TRUE. This can be set for the system (~/sys/

general.cfg), a client (~/sys/client.cfg/<client host machine name>) or a user
(~/sys/user.cfg/<user OpenMail ID number>).
December 21 1999 Page 32

B.06.00 Changes to the IMAP Server

mote

 UAL

p on

AL

 and
 UAL
er
If set to TRUE, users can specify the name of a remote machine on which the UAL Server is
running. The IMAP Server will then use this remote UAL Server.

Users specify the use of a remote UAL Server by connecting as <username>@<hostname>,
where <hostname> is the name of the remote machine to which they want to connect.

For example, Mr Admin’s OpenMail account and the UAL server he is to use are on the
machine called bean. The IMAP server he is to use is on kuda. To enable the use of a re
UAL server, I first added the option

IMAP_REMOTE_UAL_ENABLED=TRUE

to Mr Admin’s user specific configuration file, ~/sys/user.cfg/102. (It is advisable to then
omoff and omon the IMAP server).

From his client machine, he can then start a telnet IMAP session on kuda, which uses the
server on bean to access Mr Admin’s OpenMail account on bean:

#telnet kuda 143
Trying...
Connected to kuda.pwd.hp.com.
Escape character is ’^]’.
* OK OpenMail IMAP server B.06.00.R0 ready on kuda
a1 login admin@bean admin
a1 OK LOGIN completed, now connected to bean.pwd.hp.com
a2 select inbox
* 3 EXISTS
* 0 RECENT
...

The IMAP/UAL logging settings and IMAP capabilities used in this session are those set u
the IMAP server machine (kuda). The IMAP log files will be on the IMAP server machine
(kuda) and UAL trace files will be on the UAL server machine (bean).

Warning! If you set the test IMAP capabilities, X-OPENMAIL and X-OMTEST (see
“Optional IMAP4rev1 Functionality Supported” on page 44), on the IMAP
server host machine, these will be enabled automatically on the remote U
server machine. The X-OMTEST capability allows a user to perform potentially
dangerous operations, such as manipulating IMAP configuration settings
deleting files in the message store. To prevent such access on the remote
server machine, you have to disable these capabilities on the IMAP serv
machine.

The default setting of this option is

IMAP_REMOTE_UAL_ENABLED=FALSE

which will prevent users from conecting to a remote UAL Server.
December 21 1999 Page 33

B.06.00 Changes to the IMAP Server

ten

trace
Support For Imap4rev1 Functionality

The main functional changes between IMAP4 (RFC 1730) and IMAP4rev1 (RFC 2060) are
the additions of a STATUS command and a new partial FETCH syntax

STATUS Command
The purpose of the STATUS command is similar to that of the EXAMINE command, in that it
allows a client to find out the state of another mailbox; whether new messages have arrived,
how many messages are unseen, the next UID to be assigned, etc.. Unlike EXAMINE, STATUS
does not require a new connection to be made and does not cause the currently selected
mailbox to be deselected.

The command syntax is:

STATUS <mailbox name> (<list of one or more data items>)

The mailbox name is obviously the name of the target folder and data items can be MESSAGES,
RECENT, UIDNEXT, UIDVALIDITY, UNSEEN. Unlike LIST, STATUS does not accept wildcards.

In the example below, inbox remains the currently selected mailbox, even the STATUS request
on the mine1 mailbox. The status request is for the number of messages in the mailbox and the
UID to be assigned to the next message that arrives:

a1 select inbox
* 18 EXISTS
* 0 RECENT ...
a1 OK [READ-WRITE] SELECT completed
a2 status mine1 (messages uidnext)
* STATUS mine1 (MESSAGES 3 UIDNEXT 4)
a2 OK STATUS completed

Examples of client use of this command are:

• Outlook Express, when you press Send and Receive.

• Netscape Messenger, when you press File -> Update Message Count.

As this command avoids the need for another connection to the IMAP server, it does ligh
the load on the IMAP server. However, the UAL still has to do a LIST command on the
mailbox to service the request, which can be costly.

Looking at a UAL trace on the server, you would see a LIST command with ListFlags set to
4, to force a reread of the container records. The example below shows part of the UAL
for an IMAP STATUS command.

COMMAND 121 LIST 15:08:41
{
 UARef = 7772
 SeqNo = 47
 ListRef =
 ListFlags = 4
 StartRecord = 0
 MaxNumRecords = 1
 Fields = 4194554
 DirectRef = 000102505e55ab6b
 MAPIFields =
 PrepListFlags =
 PrepListFilter =
 NfFlags =
 NfEvents =
 NfKey =
 FilterFile =
}
REPLY 121 LIST

reread container records
December 21 1999 Page 34

B.06.00 Changes to the IMAP Server

e

rt.

the
{
 UARef = 7772
 SeqNo = 47
 ReplyFlags = 0
 ErrorNo = 0
 Err2 = 0
 Err3 = 0
 ListStatus = -1
 ItemRef = 15
 Depth = 1
 Subject =
 ItemType = -100
 CreateDate =
 AttachDate = 938614119
 Contents = 2

AbsoluteRef = 28
 Flags1 = 131232
 Flags2 = 32768
 MsgFlags = 4096

...

Fetch Part Of a Message
In IMAP4rev1, the FETCH command has been extended to let you specify more precisely the
part(s) of the message body you want returned. In this section, I only intend giving an
overview of the extended features of the FETCH command. For more detail, I suggest you read
the FETCH command part of RFC 2060.

You can still have, for example:

FETCH 1:* ALL

to fetch all of the message or

FETCH 1:* BODY

to fetch the basic structure.

The extended form of the command is:

FETCH <msgs> BODY[<section>]<<partial>>

where

<msgs> is the message UID or range of messages, for example, 1:*

[<section>] is the part of the message body that you want. This can be one of HEADER,
HEADER.FIELDS, HEADER.FIELDS.NOT, MIME or TEXT and/or a numeric message part
number. Here’s what RFC 2060 says about part numbers:

"Multipart messages are assigned consecutive part numbers, as they occur in th
message. If a particular part is of type message or multipart, its parts MUST be
indicated by a period followed by the part number within that nested multipart pa

A part of type MESSAGE/RFC822 also has nested part numbers, referring to parts of
MESSAGE part's body...

Here is an example of a complex message with some of its part specifiers:

HEADER ([RFC-822] header of the message)

TEXT MULTIPART/MIXED

1 TEXT/PLAIN

2 APPLICATION/OCTET-STREAM

3 MESSAGE/RFC822

3.HEADER ([RFC-822] header of the message)

no. of new records
December 21 1999 Page 35

B.06.00 Changes to the IMAP Server

s

, the

he

e
e. In
lp you
3.TEXT ([RFC-822] text body of the message)

3.1 TEXT/PLAIN

3.2 APPLICATION/OCTET-STREAM

4 MULTIPART/MIXED

4.1 IMAGE/GIF

4.1.MIME ([MIME-IMB] header for the IMAGE/GIF)

4.2 MESSAGE/RFC822

4.2.HEADER ([RFC-822] header of the message)

4.2.TEXT ([RFC-822] text body of the message)

4.2.1 TEXT/PLAIN

4.2.2 MULTIPART/ALTERNATIVE

4.2.2.1 TEXT/PLAIN

4.2.2.2 TEXT/RICHTEXT"

Don’t worry about this now. We will look at messages and try fetching some part
later on.

<<partial>> is the starting octet, followed by a dot, followed by the number of octets
required, for example, <0.128>

Below are some possible examples of FETCH commands.

The first returns 350 octets of message 1, starting at octet 0. Without the partial specifier
whole message would be returned:

a1 FETCH 1 BODY[] <0.350>

The next example would return the text part of message 1, without headers:

a1 FETCH 1 BODY[TEXT]

The next would return 200 octets, beginning at 0, of the text part of all the messages in t
mailbox:

a1 FETCH 1:* BODY[TEXT] <0.200>

The next would return the FROM and DATE header fields of messages 1, 2 and 3:

a1 FETCH 1:3 BODY[HEADER.FIELDS (FROM DATE)]

The final example would return the header within part 1 of message 2:

a1 FETCH 2 BODY[2.1.HEADER]

An Example

Here’s how to sort out IMAP part numbers in the FETCH command. Create a short text messag
and forward it to yourself 3 times. Use plain text not RTF at this point, just to keep it simpl
each of the forwarded messages use a different subject and add a little text. This is to he
to see the parts of the message.

Start a telnet’d IMAP session to access the final message.

Fetch the whole message:

a3 fetch rfc822

On the next page is the result of this FETCH on the message I created.
December 21 1999 Page 36

B.06.00 Changes to the IMAP Server
Date: Fri, 15 Oct 1999 12:05:10 +0100
Message-Id: <H000006700000ee3.0939985479.kuda.pwd.hp.com@MHS>
Subject: 4 from normal
MIME-Version: 1.0
Return-Path: <Normal_Mr/canberra_class@kuda.pwd.hp.com>
From: Normal_Mr/canberra_class@kuda.pwd.hp.com
To: admin/canberra_class@kuda.pwd.hp.com
Content-Type: multipart/mixed; boundary="openmail-part-0000158b-00000001"

--openmail-part-0000158b-00000001
Content-Type: text/plain; charset=US-ASCII
Content-Disposition: inline; filename="4"
Content-Transfer-Encoding: 7bit

we want to end up at Admin. This is the top level
--openmail-part-0000158b-00000001
Content-Type: message/rfc822

Date: Fri, 15 Oct 1999 12:04:08 +0100
Message-Id: <H000006600000ec3.0939985420.kuda.pwd.hp.com@MHS>
Subject: 3 from admin
MIME-Version: 1.0
Return-Path: <Admin_Mr/canberra_class@kuda.pwd.hp.com>
From: Admin_Mr/canberra_class@kuda.pwd.hp.com
To: normal/canberra_class@kuda.pwd.hp.com
Content-Type: multipart/mixed; boundary="openmail-part-0000158b-00000002"

--openmail-part-0000158b-00000002
Content-Type: text/plain; charset=US-ASCII
Content-Disposition: inline; filename="3"
Content-Transfer-Encoding: 7bit

this is message 3 from admin to normal
--openmail-part-0000158b-00000002
Content-Type: message/rfc822

Date: Fri, 15 Oct 1999 12:03:18 +0100
Message-Id: <H000006700000eb3.0939985360.kuda.pwd.hp.com@MHS>
Subject: 2 from normal
MIME-Version: 1.0
Return-Path: <Normal_Mr/canberra_class@kuda.pwd.hp.com>
From: Normal_Mr/canberra_class@kuda.pwd.hp.com
To: admin/canberra_class@kuda.pwd.hp.com
Content-Type: multipart/mixed; boundary="openmail-part-0000158b-00000003"

--openmail-part-0000158b-00000003
Content-Type: text/plain; charset=US-ASCII
Content-Disposition: inline; filename="2"
Content-Transfer-Encoding: 7bit

this is message 2 from normal to admin

--openmail-part-0000158b-00000003

BODY[0] or
BODY[HEADER]

BODY[1]

BODY[2.1]

BODY[2]

BODY[2.2.1]

BODY[2.2]

BODY[1.MIME]

BODY[2.HEADER]

BODY[2.2.HEADER]
December 21 1999 Page 37

B.06.00 Changes to the IMAP Server

n the

out this
ile (it

aps
art
[3.2]

tails of
Start by fetching first level parts, e.g. FETCH n body[0] then FETCH n body[1] etc. I’ve
outlined what these gave me in the example above.

Next, fetch the next level, e.g. FETCH n body[2.1] then FETCH n body[2.2] etc.

Carry on down the levels until you fetch the last text part of the nested message, which i
example above, is body[2.2.2.1].

Now try introducing some names, e.g.:

FETCH n body[2.header]

FETCH n body[2.2.2.text]

FETCH n body[2.2.header.fields (subject)]

To get the MIME headers, precede MIME with the text part number, e.g. body[1.mime]
above.

What’s Happening On The Server?

Both the item browser and the IMAP server can return part of a message, so how do you know
which one is returning the part you requested?

The diagram below shows repeated fetches on part [3.2] of message 1. When the client first
issues a fetch on the message, the IMAP server doesn’t have any cached information ab
message, so it asks the item browser to render the message and place it in a particular f
sends the item browser the direct reference of this file).

The item browser renders the whole message into the designated file and constructs the
imapBodyStrc object file for this message.

The IMAP server then caches in its memory basic information about this message and m
into virtual memory the complete message file. It parses the complete message to find p
[3.2], which it then sends to the client. In this case, it is the IMAP server which finds part
and returns it to the client.

The client then requests message 2 to be fetched, so the IMAP server cache now has de
message 2, not message 1.

Content-Type: message/rfc822

Date: Fri, 15 Oct 1999 12:02:13 +0100
Message-Id: <H000006600000ea3.0939985291.kuda.pwd.hp.com@MHS>
Subject: 1 from admin
MIME-Version: 1.0
Return-Path: <Admin_Mr/canberra_class@kuda.pwd.hp.com>
From: Admin_Mr/canberra_class@kuda.pwd.hp.com
To: normal/canberra_class@kuda.pwd.hp.com
Content-Type: text/plain; charset=US-ASCII
Content-Disposition: inline; filename="1"
Content-Transfer-Encoding: 7bit

deepest message from admin to normal
--openmail-part-0000158b-00000003--

--openmail-part-0000158b-00000002--

--openmail-part-0000158b-00000001--

BODY[2.2.2]

BODY[2.2]
cont’d

BODY[2]
cont’d

BODY[2.2.2.1]
December 21 1999 Page 38

B.06.00 Changes to the IMAP Server
Part [3.2] of message 1 is then requested again. The IMAP server no longer has that
information in its cache, so it asks the item browser for information. The item browser then
returns the imapBodyStrc object file for that message and the IMAP server parses it to find the
"path" of part [3.2].

The IMAP server now hands the item browser the path to part [3.2] and a direct reference and
asks the item browser to find the message part and put in the file indicated by the direct
reference.

All the IMAP server needs to do, when the item browser indicates it is finished, is to pass the
file to the client.

Later, we will look at proprietary OpenMail test extensions (X-OMTEST), which allow us to
clear the IMAP server cache and/or delete the imapBodyStrc object file to force certain
behaviour by the IMAP server or item browser.

The IMAP_USE_ITEM_BROWSER_SELECTION Tweak

If the item browser is having problems rendering parts of a message, you can set this tweak to

IMAP_USE_ITEM_BROWSER_SELECTION=TRUE

If set to true, the IMAP server will always ask the item browser to render the complete
message, instead of parsing the message and asking the item browser to render a part. In this
case, it will always be the IMAP server which parses the rendered message and extracts the
requested part.

Some clients, such as older Netscape clients, require the whole message to be rendered even if
only part is needed.

Client IMAP UAL Item Browser (BRW)

FETCH 1 BODY[3.2] ---------------BODYSTRUCTURE------------>

Renders whole msg
and generates
imapBodyStrc

Parse to get part [3.2]

<-----[3.2]--------------

<---Complete Msg----------

FETCH 1 BODY[3.2]

<-----[3.2]-------------- IMAP gets this from cache

FETCH 2 RFC822 ...

FETCH 1 BODY[3.2] ---------------BODYSTRUCTURE--------------->

Parse object file to find
path of [3.2]

<-------------------------- Returns existing
imapBodyStrc object
file

--------------------fetch "path [3.2]"-------------->

part 3.2 put in specified
file

<----------------------OK done that--------------------------

<--part [3.2] file sent to client-------
December 21 1999 Page 39

B.06.00 Changes to the IMAP Server

in. The
tlook
, a
.

ring an

 the
hift

Asking the item browser to always render the complete message can be a considerable
performance hit for some clients, so don’t set this tweak in a normally running system unless
you have to.

You can set it at system, client or user level.

Unicode Support
Support in OpenMail for the Universal Character Set (Unicode) is new at B.06.00. Both IMAP
and LDAP include Unicode support.

Unicode characters are encoded using various Transformation Formats (UTF). There are two
used in IMAP; a modified version of UTF-7 for non-ASCII mailbox names and UTF-8 for
other strings. The IMAP server handles conversion between Modified UTF-7 and UTF-8.

Note: When we talk about the use of UTF-7 or UTF-8 in relation to IMAP, we are
referring to the character set used in the communication of the IMAP protocol
only, not the character set used in any message content. The encoding of all
message content is covered by MIME specifications.

The IMAP4rev1 specification is unclear about the treatment of MIME header field encoding
and this may cause problems for some clients. In the OpenMail implementation, MIME
headers are encoded according to MIME specifications. So any non-ASCII personal names in
addresses in MIME headers will be MIME encoded. The encoding of personal names in
addresses may also cause problems for the IMAP SEARCH request (see “Searching” on
page 26).

Another area where the specification is unclear is the character set to be supported at log
OpenMail IMAP server uses UTF-8 for login names, while Netscape Messenger and Ou
Express use ISO-8859-1. Therefore, if you are using one of these clients with OpenMail
problem could arise if the IMAP login name includes a character outside the ASCII range

The diagram below shows the character sets used in client and server communication du
IMAP session.

UTF-7 and Modified UTF-7

Internet mail (RFC 822) and many mail gateways and applications currently support only
7 bit US-ASCII character set. UTF-7 encodes Unicode characters in 7 bit ASCII octets (s
sequences are used to for characters outside the US-ASCII range). As UTF-7 preserves

Client

IMAP
server

UAL Openmail
Message Store

Modified
UTF-7 UTF-8

ISO8859-1
T61
December 21 1999 Page 40

B.06.00 Changes to the IMAP Server

ple,
US-ASCII characters, it offers an encoding solution suitable for both multibyte and
non-multibyte applications; clients that do not understand Unicode can still see US-ASCII
characters.

As some of the characters used in UTF-7 conflict with the special characters used in some
IMAP clients, a modified version of UTF-7 is used for non-ASCII mailbox names. Below is an
extract from RFC 2152 describing the conflicting characters and the basic difference between
UTF-7 and Modified UTF-7:

"UTF-7 uses the "+" character for shifting; this conflicts with the common use of "+" in
mailbox names, in particular USENET newsgroup names.

UTF-7’s encoding is BASE64 which uses the "/" character; this conflicts with the use of "/" as
a popular hierarchy delimiter.

UTF-7 prohibits the unencoded usage of "\"; this conflicts with the use of "\" as a popular
hierarchy delimiter.

UTF-7 prohibits the unencoded usage of "~"; this conflicts with the use of "~" in some servers
as a home directory indicator.

UTF-7 permits multiple alternate forms to represent the same string; in particular, printable
US-ASCII chararacters can be represented in encoded form.

In modified UTF-7, printable US-ASCII characters except for "&" represent themselves; that
is, characters with octet values 0x20-0x25 and 0x27-0x7e. The character "&" (0x26) is
represented by the two- octet sequence "&-".

All other characters (octet values 0x00-0x1f, 0x7f-0xff, and all Unicode 16-bit octets) are
represented in modified BASE64, with a further modification from [UTF-7] that "," is used
instead of "/". Modified BASE64 MUST NOT be used to represent any printing US-ASCII
character which can represent itself.

...

"&" is used to shift to modified BASE64 and "-" to shift back to US- ASCII. All names start in
US-ASCII, and MUST end in US-ASCII (that is, a name that ends with a Unicode 16-bit octet
MUST end with a "- ")."

UTF-8

As already mentioned, with the exceptions of international mailbox names and MIME encoded
headers, all other strings in the IMAP protocol are in the UTF-8 character set.

UTF-8 encodes Unicode characters as a varying number of octets. As with UTF-7, US-ASCII
characters are also valid UTF-8 characters; character values from 0000 0000 to 0000 007F
(US-ASCII range) correspond to octets 00 to 7F (7 bit US-ASCII values). So clients which do
not support Unicode can still see ASCII text.

What Can We See On The Server?

To see the conversation between the IMAP server and UAL server, when the IMAP server
wants to set up a UAL connection, turn on UAL symbolic tracing for an IMAP connection as
follows:

• Set IMAP_UAL_TRACE_LEVEL=2 in a file in the directory, ~openmail/sys/client.cfg.
The name of the file should be the fully qualified name of the client machine. For exam
my client machine is bean, so I set up a file, bean.pwd.hp.com.

• From the client machine, start an IMAP session on the server, for example:

telnet kuda 143

• Login to a user:

a1 login admin admin

Look in ~openmail/tmp and you should see a trace file with a name of the form:
December 21 1999 Page 41

B.06.00 Changes to the IMAP Server

uld

o
UXnnnnnC.trc

where nnnnn is either the Unix user ID number or the OpenMail User ID number, if the user
was created using a pool ID (for more information on OpenMail pool IDs, see the OTN,
Changes to OpenMail user creation and management at B.06.00).

Below is an extract from my trace file. You can see UTF-8 specified by the IMAP server as the
character set it will use during UAL session initialisation:

UAL Server Command Trace at Wed Oct 20 15:53:37 1999
--
INIT Command: UA Id=’IMAP4 Server B.06.00.R0’, Debug Level=2, Debug
File=’’
INIT Command: Flags=0x20020, CharSet=’UTF8’, Service Level=6
INIT Command: User Name = ’Admin^]Mr^]^]^]canberra^]class’
INIT Reply: Version=’B.06.00.R0’, Features=0x6ff, GMT Offset=3600, Host
Name=’kuda’
INIT Reply: Host File Name = ’/var/opt/openmail/tmp/UAL15294’
...

Some References

The following references may prove useful, if you need to look further into Unicode or the way
it works with MIME:

"The Unicode Standard, Version 2.0", The Unicode Consortium, Addison-Wesley, 1996.
ISBN 0-201-48345-9.

ISO/IEC 10646-1:1993(E) Information Technology--Universal Multiple-octet Coded
Character Set (UCS). See also amendments 1 through 7, plus editorial corrections.

MIME - (RFC 2045 through 2049)

UTF-7 - RFC 2152

UTF-8 - RFC 2279

Unicode with MIME - RFC 1641

Summary Of Differences Between IMAP4 And IMAP4rev1
The following list just summarizes the differences between RFC 1730 (IMAP4) and RFC 2060
(IMAP4rev1):

• A server that supports IMAP4rev1 will include the string " IMAP4rev1" in response to the
CAPABILITY command. A server that also provides backwards support for IMAP4, sho
include the string "IMAP4" in addition to "IMAP4rev1".

• The STATUS command has been added.

• To support fetching parts of messages, various part specifiers have been added

HEADER

HEADER.FIELDS

HEADER.FIELDS.NOT

MIME

TEXT

In addition, the "<" origin "." size ">" suffix for BODY text attributes has been added t
allow you to specify the starting point and number of octets to be fetched.

• You can now fetch nested MULTIPART parts of a message.

• Server supported authenticators, such as AUTH=LOGIN, are now identified by capabilities.

• The PARTIAL command is obsolete

• The following FETCH attributes are obsolete
December 21 1999 Page 42

B.06.00 Changes to the IMAP Server
RFC822.HEADER.LINES

RFC822.HEADER.LINES.NOT

RFC822.PEEK

RFC822.TEXT.PEEK

• Body part number 0 is obsolete

A full list of obsolete syntax is given in RFC 2062.

The OpenMail IMAP server maintains compatibility with IMAP4 (RFC 1730), although the
origunal Nokia Communicator 9000, which uses PARTIAL, and Eudora Pro appear to be the
only strictly IMAP4 clients.
December 21 1999 Page 43

B.06.00 Changes to the IMAP Server

, and
 user.
Optional IMAP4rev1 Functionality Supported

In this section, we will look at the optional extensions to the IMAP4rev1 standard, which are
supported by the OpenMail IMAP server at B.06.00. These can be enabled using the tweak,
IMAP_CAPABILTIES.

To find out what extensions a server supports, a client issues a CAPABILITY command. Here is
the response to a CAPABILITY command on a default B.06.00 setup:

root@bean[] #telnet bean 143
Trying...
Connected to bean.pwd.hp.com.
Escape character is ’^]’.
* OK OpenMail IMAP server B.06.00.00 ready on bean
a2 capability
* CAPABILITY IMAP4 IMAP4rev1 AUTH=LOGIN NAMESPACE IDLE
a2 OK CAPABILITY completed

Possible values that can be returned by the B.06.00 IMAP server are:

IMAP4

IMAP4rev1

AUTH=LOGIN

NAMESPACE (RFC 2342)

IDLE (RFC 2177)

LITERAL+ (RFC 2088)
CHILDREN

X-NETSCAPE

X-OPENMAIL

X-OMTEST

The default value of the tweak is:

IMAP_CAPABILTIES=IMAP4 IMAP4rev1 AUTH=LOGIN NAMESPACE IDLE

Although, IMAP capabilities can be configured on a system-wide, client or user basis,
changing the set of capabilities between initial connection and becoming authenticated is
contrary to RFC 2060 and may confuse some clients. Most clients issue a CAPABILITY request
when they first connect and use whatever capabilities are advertised. For this reason, the IMAP
server only allows the set of capabilities advertised and supported to be extended, not reduced.

So, if we want to give one user, Mr Admin (OpenMail user ID, 102), the additional capability,
X-OPENMAIL, while other IMAP connections across the system use the default capabilities, we
can add the line

IMAP_CAPABILTIES=X-OPENMAIL

to Mr Admin’s user configuration file, ~openmail/sys/user.cfg/102. Notice that the
system wide capabilities are assumed. We only have to specify the additional extension.

To see the effect of this, we can start a telnet session and issue the CAPABILITY command
twice; once when the session starts, to show what extensions are available system wide
again when Mr Admin is authenticated, to show the additional extension available to this

root@kuda[sys] #telnet kuda 143
Trying...
Connected to kuda.pwd.hp.com.
Escape character is ’^]’.
* OK OpenMail IMAP server B.06.00.R0 ready on kuda
a2 capability
* CAPABILITY IMAP4 IMAP4rev1 AUTH=LOGIN NAMESPACE IDLE
a2 OK CAPABILITY completed
a3 login admin admin
December 21 1999 Page 44

B.06.00 Changes to the IMAP Server

IMAP

g to

is a
e64.

ction,

om

TF-8,
ation
nt

n-

f a

ssue a
e a
a3 OK LOGIN completed, now connected to kuda.pwd.hp.com
a4 capability
* CAPABILITY IMAP4 IMAP4rev1 X-OPENMAIL AUTH=LOGIN NAMESPACE IDLE
a4 OK CAPABILITY completed

At the time of writing, Netscape Messenger 4.6 and OutLook Express 5 support the following
capabilities:

IMAP4 IMAP4rev1 IDLE X-NETSCAPE NAMESPACE AUTH=LOGIN

As we shall see, the extent to which they support NAMESPACE is debatable.

The following sections give a description of what each of the extensions offer.

IMAP4
This capability indicates that the IMAP server supports the basic protocol as defined in
RFC 1730. Note that the IMAP4 commands defined in RFC 1730 but absent in RFC 2060 are
still supported even if this capability is not advertised.

IMAP4rev1
This indicates that the server supports the basic protocol as defined in RFC 2060. The B.06.00
IMAP server always advertises this capability, regardless of tweak settings.

AUTH=LOGIN
The IMAP protocol allows for two different styles of authentication:

• Using a LOGIN request that simply passes the user name and password in clear to the
server

• An AUTHENTICATION request that allows a more secure credentials exchange accordin
some mechanism advertised by the IMAP server

The only "secure" authentication mechanism offered by the IMAP server at the moment
non-standard AUTH=LOGIN mechanism, which encodes the username and password in bas
This mechanism is used by Netscape and Outlook Express and offers a degree of prote
but is still not very secure.

Both authentication mechanisms pass the username and password unchanged (apart fr
base64 decoding) to the UAL server for authentication.

One potential problem here is that the UAL server us told that the client character set is U
so the username (at least) is presumed to be in UTF-8. Unfortunately, the IMAP specific
is silent about the character set used for login names and different clients assume differe
character sets. Some clients, for example, assume that the character set is ISO 8859-1
(Netscape and Outlook Express) and trying to log in with any user name that includes no
ASCII characters will necessarily fail.

CHILDREN
The CHILDREN extension is the subject of an Internet draft, draft-gahrns-imap-child-mailbox-
01.txt. The purpose of the extension is to provide an efficient way of letting clients know i
mailbox has child mailboxes.

If the client issues an initial LIST "" % to list the first level mailboxes, the IMAP server
returns the attribute \HasChildren or \HasNoChildren to indicate the existence of nested
mailboxes accessible to the current, authenticated user. This saves the client having to i
LIST "" * or LIST "" % on each mailbox to find out if there are nested folders. This can b
significant overhead if there are a lot of mailboxes.

Here is the server response I get from a LIST "" % on my machine, with the CHILDREN
capability enabled:
December 21 1999 Page 45

B.06.00 Changes to the IMAP Server

be

tc. In
iated

ent
rocess
es, all

lient
ited

* OK OpenMail IMAP server B.06.00.R0 ready on kuda
a1 login admin admin
a1 OK LOGIN completed, now connected to kuda.pwd.hp.com
a2 list "" %
* LIST (\NoInferiors \HasNoChildren) "/" INBOX
* LIST (\HasNoChildren) "/" Meetings
* LIST (\HasNoChildren) "/" Products
* LIST (\HasChildren) "/" Personel
* LIST (\HasNoChildren) "/" Admin
a2 OK LIST completed

Don’t confuse \HasNoChildren with the \NoInferiors attribute. \HasNoChildren means
there are currently no nested mailboxes below the mailbox. \NoInferiors indicates that
nested mailboxes can never be created below the mailbox.

IDLE
If this capability is advertised, then the server will support the IDLE extension as defined in
RFC 2177. This extension allows a client to tell the server that it is not busy but wants to
kept updated on changes to to selected mailbox.

In IMAP4, the client had to poll the server in order to be updated on new mail, deletions e
terms of what was going on on the server - both the IMAP server process and the assoc
UAL process were "woken up" to find out what had changed. To see the impact of this,
consider a system with 10,000 IMAP users logged on, but not doing very much. Each cli
polling every 5 minutes, on average. The result is 20,000 processes (one IMAP server p
and one UAL process for each client connection) starting up every 5 minutes. In most cas
the processes will do is report to the client that nothing has changed.

With the IDLE capability enabled, the client no longer polls the server. Instead, when the c
is not busy, it issues an IDLE command, which signals to the server that it can send unsolic
responses to keep the client informed of changes to the mailbox.

To see this in action, try the following:

• Turn on logging by setting the option IMAP_LOGLEVEL=8.

• Restart the IMAP server:

omoff -d0 -a imap

omon -a imap

• Start an IMAP session by telnet’ing to port 143.

• LOGIN to a user then select his inbox.

• Issue an IDLE command:

a1 IDLE

• Start up OMGUI and login to the same user.

• Send a message to youself (ie the user you are logged on as).

• Look at the message, then delete it.

• Send the string "DONE" to end the IDLE command.

• Close OMGUI and LOGOUT of the telnet session.

• Go to ~openmail/tmp and look at the appropriate log file. I used the default setting for
IMAP_LOGFILE and my client machine was kuda.pwd.hp.com, so the log file was
~openmail/tmp/imap.kuda.pwd.hp.com.

Below is an excerpt from my log file:

11847 14:24:17 C: a1 login admin admin
11847 14:24:26 S: a1 OK LOGIN completed, now connected to kuda.pwd.hp.com
11847 14:24:36 C: a2 select inbox
December 21 1999 Page 46

B.06.00 Changes to the IMAP Server
11847 14:24:36 S: * 21 EXISTS
* 0 RECENT
* OK [UIDVALIDITY 1] UIDVALIDITY value
* FLAGS (\Answered \Flagged \Deleted \Seen \Draft $MdnSent)
* OK [PERMANENTFLAGS (\Answered \Flagged \Deleted \Seen \Draft $MdnSent)]
flags will stay set
11847 14:24:36 S: a2 OK [READ-WRITE] SELECT completed
11847 14:26:29 C: a3 idle
11847 14:26:30 S: + idling
11847 14:28:02 S: * 22 EXISTS
11847 14:28:02 S: * 1 RECENT
11847 14:28:20 S: * 22 FETCH (FLAGS (\Seen \Recent))
11847 14:28:38 S: * 22 EXPUNGE
11847 14:28:38 S: * 21 EXISTS
11847 14:28:38 S: * 0 RECENT
11847 14:29:01 C: DONE
11847 14:29:01 S: a3 OK IDLE completed

When the client sends the IDLE command, the server initially responds with + idling.

During the minute or so following the IDLE command, while the client is inactive, the server
sends unsolicited responses to tell the client that a new message has arrived:

11847 14:28:02 S: * 22 EXISTS
11847 14:28:02 S: * 1 RECENT

Then, when the new message has been read by the other user accessing this mailbox using
OMGUI, the server sends:

11847 14:28:20 S: * 22 FETCH (FLAGS (\Seen \Recent))

When the other user then deletes the new message, the server sends:

11847 14:28:38 S: * 22 EXPUNGE
11847 14:28:38 S: * 21 EXISTS
11847 14:28:38 S: * 0 RECENT

Before issuing any further commands, the client interrupts by sending any string, in this case
"DONE", to tell the server that the IDLE command is no longer in operation.

The IMAP_IDLE_TIMEOUT Tweak

This tweak allows you to set the number of minutes an IMAP connection may remain idle
before the connection is closed by the IMAP server. The default setting is 30 minutes. Any
non-negative integer is permitted. A value of zero (0) will disable the timeout completely.

Some clients, notably Outlook Express, wait exactly thirty minutes between commands and
may, therefore, get logged out prematurely. For these clients, it is sometimes useful to set the
idle timeout to 31 minutes:

IMAP_IDLE_TIMEOUT=31

Generally, the idle timeout will be set on a system-wide basis, although it may be set
differently for specific users and/or specific client machines to meet local needs.

For compatability with B.05.10, the old tweak name, UAL_IMAP4_TIMEOUT, will be used if
IMAP_IDLE_TIMEOUT is not defined.

What Is Happening On The Server?

The IDLE extension enables "server push" notifications on the OpenMail server. This feature
was introduced at release B.05.20 of the MAPI Service Providers for Outlook on OpenMail.
Rather than repeat the detailed discussion here, I suggest you take a look at the section on
Notifications in the OTN, OpenMail Outlook (MAPI) Support [web ID: 300-0154].

Now, instead of the idling client regularly polling the server and waking up the UAL and
IMAP processes to see what has changed, the client does not contact the server, except perhaps
a NOOP command once every 30 minutes to ensure it is not disconnected. All that is required to

client issues IDLE command

new mail arrived

new mail read
new msg deleted

client exits IDLE command
December 21 1999 Page 47

B.06.00 Changes to the IMAP Server

ges
e

 the

s it

s
he
service these occasional requests is for the IMAP server process to respond that nothing has
changed. The UAL process is not involved and can sleep until something happens to the
mailbox, for example, new mail arrives. When something happens, the Notification Server will
send the UAL process unsolicited notifications to be sent to the client via the IMAP server.

The IDLE extension is used by Outlook Express and gives significant performance benefits for
that client.

To see the effect of server push notifications from the end user’s point of view:

• Open Outlook Express, Outlook 98 and OMGUI and log into the same user.

• Select his inbox.

• In Outlook Express, create or delete a couple of messages and you will see the chan
immediately in Outlook 98 (because, as we have said, the MAPI service providers us
server push notifications).

OMGUI does not use server push notifications, so the changes will not be visible in
OMGUI until the client next polls the server.

LITERAL+
This capability indicates support for "non-synchronizing" literals, as defined in RFC 2088.
This is an attempt to reduce traffic, by reducing the need for the server to respond before
rest of input can be sent.

For example, a client could send login data in sections. Without the LITERAL+ extension, the
conversation would look something like this:

17:39:05.38:C: a1 login {5}
17:39:06.39:S: + Continue please
17:39:16.73:C: admin {8}
17:39:16.74:S: + Continue please
17:39:19.13:C: Maty6_45
17:39:28.45:S: a1 OK LOGIN completed, now connected to kuda.pwd.hp.com

admin is the user name, Maty6_45 is the password. {5} and {8} specify the length, in octets,
of the next bit of data (i.e. literal) that the server is to expect.

Adding "+" immediately after the octet count indicates that the LITERAL+ feature is being
used. The above communication can then be speeded up as follows:

17:45:33.60:C: a1 login {5+}
17:45:50.95:C: admin {5+}
17:45:55.70:C: admin
17:45:59.90:S: a1 OK LOGIN completed, now connected to kuda.pwd.hp.com

While this is a supported and standards track capability, it should be used with caution a
leaves the server open to denial-of-service attacks (see “Denial Of Service Attacks” on
page 31).

NAMESPACE
The purpose of the NAMESPACE capability is to simplify client configuration by enabling client
to find out the prefix and delimiters used by the server for the namespaces available to t
current, authenticated user. The standard defines three types of namespace:

• Personal

• Other users

• Public
December 21 1999 Page 48

B.06.00 Changes to the IMAP Server

espace
e

ge the

onal

n the

es.

fix
tinct

s

ce,
A user’s inbox and personal folders are in the personal namespace. The other users’ nam
defines the other users’ mailboxes, to which this user has access. The public namespac
defines the publicly shared mailboxes, such as OpenMail bulletin boards. The OpenMail
IMAP server only supports personal and public namespaces.

The NAMESPACE command is defined in RFC 2342. As the command relates to a user, the
session needs to be in authenticated state before the NAMESPACE command is issued. Here’s an
example of the command and server response:

a1 login admin admin
a1 OK LOGIN completed, now connected to kuda.pwd.hp.com
a1 namespace
* NAMESPACE (("" "/")) NIL (("#bb/" "/"))
a1 OK NAMESPACE completed

The server response gives the following information:

These are the default settings. There are several tweaks available to enable you to chan
settings:

• IMAP_FOLDER_PREFIX can be used to change the prefix string which precedes all pers
folder names.

• IMAP_BB_PREFIX can be used to change the prefix string which precede all bulletin board
names.

• IMAP_FOLDER_SEPARATOR can be used to change the separator used in folder names i
personal namespace.

• IMAP_BB_SEPARATOR can be used to change the separator used in bulletin board nam

IMAP_FOLDER_PREFIX and IMAP_BB_FOLDER_PREFIX

These options, which can be set for the system, client or user, have the following default
values:

IMAP_FOLDER_PREFIX=
IMAP_BB_FOLDER_PREFIX=#bb

The folder prefix string precedes all mailbox names for private folders. The BB folder pre
precedes all mailbox name for bulletin board (public) folders. These prefixes must be dis
and must not contain the folder separator characters defined in either
IMAP_FOLDER_SEPARATOR or IMAP_BB_FOLDER_SEPARATOR.

In addition, the strings should be ASCII rather than modified UTF-7 or UTF-8. This mean
restricting the prefix to printable ASCII characters and avoiding the character "&".

Configuring Netscape Messenger To See Bulletin Boards

Despite the fact that Netscape Messenger supports the NAMESPACE capability, it does not
recognise anything with # in it, so does not recognise the default bulletin board namespa
which has the prefix #bb.

To enable Netscape Messenger to see existing OpenMail bulletin boards:

* NAMESPACE (("" "/")) NIL (("#bb/" "/"))

Personal namespace prefix

Personal namespace delimiter

Public namespace prefix

Public namespace prefix

Other user namespace not available
December 21 1999 Page 49

B.06.00 Changes to the IMAP Server

y.

rator

h you

 "-"
these

specify
ay be

ation

ords,
On the server:

• Change the value of IMAP_BB_FOLDER_PREFIX to something that does not include a "#"
character, for example:

IMAP_BB_FOLDER_PREFIX=Bulletin Boards

• omoff/omon the IMAP daemon.

In Netscape Messenger:

• Select Edit -> Preferences -> Mail Servers

• Select the required mail server and press Edit.

• Go to the Advanced tab.

• In the field for the name of the Public (shared) namespace, type "Bulletin Boards".

• Restart Messenger and the Bulletin Board folder should appear in the folder hierarch

IMAP_FOLDER_SEPARATOR and IMAP_BB_FOLDER_SEPARATOR

These options, which can be set for the system, client or user, have the following default
values:

IMAP_FOLDER_SEPARATOR=/
IMAP_BB_FOLDER_SEPARATOR=/

The folder separator is the character used to separate folder names in an IMAP mailbox
specification. For example, with a separator of / and a folder, kanga, with a nested folder, roo,
the corresponding IMAP mailbox name is kanga/roo.

There are two distinct folder separators, one for private folders and one for bulletin board
(public) folders. To make sure your OpenMail folders are visible to IMAP clients, the sepa
must be something that does not appear in the folder names. For example, if an existing
OpenMail user has a folder called Sales/Forecasts, this folder will not be seen through the
IMAP server, because it cannot be distinguished from a folder called Forecasts within a
folder called Sales.

The folder separator is a single ASCII character, anything in the range 1 to 127. Althoug
can choose any ASCII character, choosing letters like e is not generally advised. Indeed,
choosing anything from the modified base64 alphabet (0-9, a-z, A-Z, "+" and ",") or "&" or
is not recommended. Also, using the characters "%" and "*" may cause problems since
characters are special to the IMAP protocol.

To avoid clashes with characters that can reasonably appear in folder names, you could
a control character as the separator, for example, Ctrl-A, although some IMAP clients m
upset by this.

RFC 2683, IMAP4 Implementation Recommendations, recommends that the separator
character should only be "/", "\" or ".". The character must be represented in the configur
file literally, sequences like \x65 are not supported.

For compatability with B.05.10, the tweak name UAL_IMAP4_SEPARATOR may be used if
IMAP_FOLDER_SEPARATOR is not defined.

X-NETSCAPE
This capability provides support for the non-standard NETSCAPE command used by the Manage
Mail Account feature in Netscape Messenger (Communicator -> Server Tools ->
Mail Account). Used together with the tweak, IMAP_X_NETSCAPE_URL, the X-NETSCAPE
capability allows a customized mail management web profile to be used with Netscape
Messenger. The intent is that the page referred to by the URL can be used to set passw
define auto-action rules etc.
December 21 1999 Page 50

B.06.00 Changes to the IMAP Server

ified

tary

sages

ion

 by any

as a
lder

is /.

So, in addition to adding X-NETSCAPE to IMAP_CAPABILITIES, you also need to specify a
URL for the tweak IMAP_X_NETSCAPE_URL. For example, the tweak could point to an
OpenMail web client profile on my machine, kuda:

IMAP_X_NETSCAPE_URL=http://kuda.pwd.hp.com/cgi-bin/ice.cgi/prof=ICE

If the X-NETSCAPE capability is not defined, then this tweak has no effect. If the
IMAP_X_NETSCAPE_URL is not defined, then the X-NETSCAPE capability is implicitly turned
off.

The capability can be set for the system or specific clients or users.

When the user selects the Mail Account option in Netscape Messenger, the client issues the
NETSCAPE command and the IMAP server returns the URL defined by
IMAP_X_NETSCAPE_URL. The IMAP server doesn’t actually do anything with the URL and
doesn't care what it points to. Here’s an IMAP trace of what happens:

12181 16:50:12 S: 1 OK AUTHENTICATE completed, now connected to
kuda.pwd.hp.com
12181 16:50:12 C: 2 netscape
12181 16:50:12 S: * OK [NETSCAPE]
* VERSION 1.0 UNIX
* ACCOUNT-URL http://kuda.pwd.hp.com/cgi-bin/ice.cgi/prof=ICE
12181 16:50:12 S: 2 OK NETSCAPE completed

Since IMAP_X_NETSCAPE_URL can be specified on a per-user basis, it is possible to have a
separate URL for each user on a machine. For example, Mr Admin’s URL might be spec
in his configuration file, ~openmail/user.cfg/102, as

IMAP_X_NETSCAPE_URL=http://www.kuda.pwd.hp.com/~admin/mail.html.

X-OPENMAIL
Extensions providing useful IMAP testing tools are provided under two OpenMail proprie
capabilities: X-OPENMAIL and X-OMTEST. Either or both capabilities can be given to any
OpenMail user. Without administrator privileges, the user only has access to his own mes
in the message store.

The extensions under the X-OPENMAIL extension are "safe" and can be present in a product
server. The extensions under the X-OMTEST capability should not be present in a production
server as they circumvent some security checks. These extensions are not, as yet, used
client.

In this section we will look at the X-OPENMAIL extensions. X-OMTEST extensions are covered in
the next section.

Folder Syntax Extension.

With X-OPENMAIL enabled, folder names can be represented as an IMAP list rather than
string with folder separators. The first element of the list is the namespace prefix. The fo
name, kanga/roo, represented as an IMAP list would be ("" "kanga" "roo"), assuming
that the namespace prefix for the folder is the empty string and that the folder separator
The strings in these lists are UTF-8 rather than modified UTF-7.

Using this extension the folder Sales/Forcasts will be visible, even when the folder
Separator is /. For example, we could use the list format to specify the folder in the IMAP
SELECT or LIST command:

SELECT ("" "Sales/Forcasts")

where "" is the namespace prefix for private folders.

Note that the command CREATE ("" "x/y") will create an almost invisible folder if the
folder separator is /.
December 21 1999 Page 51

B.06.00 Changes to the IMAP Server

nt

t

ent
The LIST and LSUB commands can be used with list form folder names. The first argument is a
LIST folder name and the second argument is a maximum depth. So, for example,

LIST ("" kanga roo) 1

will list all the immediate children of the specfied folder.

LIST ("" kanga roo) 2

will list list grandchildren as well.

LIST ("" kanga roo) 0

will list all the descendants.

Lab

• Set X-OPENMAIL capability for the user, Mr Admin.

• Test that X-OPENMAIL extension works when set in user.cfg. Remember you have to
login to user then send CAPABILITY command to see it. Have you restarted the IMAP
daemon?

Seeing folder names in modified UTF-7 and UTF-8:

1. Use IMAP telnet to create folder X&AM8-Y

2. Use MAPI(Outlook) to view this folder. What do you see?

3. Use Folder syntax extension to view folder name. What do you see? Why is it differe
from MAPI(Outlook) view?

Note: "&" is used to shift to modified BASE64 and "-" to shift back to US- ASCII.

Seeing UTF 7 folder names:

1. Use MAPI to create folder X&AM8-Y

2. Look at it in IMAP. What do you see? Why is it different?

3. Use Folder syntax extension and look again. Again, what do you see and why?

Direct Reference Access

With X-OPENMAIL enabled, the FETCH command takes an additional argument, DIRECTREF, to
fetch the OpenMail direct reference of a message:

a1 fetch 13 (directref)
* 13 FETCH (DIRECTREF 000102567276e431)
a1 OK FETCH completed

Similarly, the STATUS command can be used to return the direct reference of the folder. (A
present, you need to enable X-OMTEST for this to work):

a2 status mine1 (messages directref)
* STATUS mine1 (MESSAGES 1 DIRECTREF 0001061704ccdb0f)
a2 OK STATUS completed

Viewing Configuration (Tweak) Settings

The XOM.CONFIG command is particularly useful in a test situation, as it will report the curr
settings of IMAP tweaks:

a6 xom.config
* CONFIG "IMAP_CAPABILITIES=IMAP4 IMAP4rev1 X-OPENMAIL AUTH=LOGIN
NAMESPACE IDLE"
* CONFIG "IMAP_AUTOMATIC_MDN=FALSE"
* CONFIG "IMAP_BB_FOLDER_PREFIX=Bulletin Boards"
* CONFIG "IMAP_BB_FOLDER_SEPARATOR=/"
* CONFIG "IMAP_CACHE_RFC822_HEADER=FALSE"
* CONFIG "IMAP_DELETE_SUBFOLDERS=FALSE"
December 21 1999 Page 52

B.06.00 Changes to the IMAP Server
* CONFIG "IMAP_CACHE_RFC822_MESSAGE=FALSE"
* CONFIG "IMAP_FOLDER_PREFIX="
* CONFIG "IMAP_FOLDER_SEPARATOR=/"
* CONFIG "IMAP_IDLE_TIMEOUT=30"
* CONFIG "IMAP_LOGFILE=~/tmp/imap.%h"
* CONFIG "IMAP_LOGLEVEL=0x8"
* CONFIG "IMAP_MDNSENT_FLAG=$MdnSent
* CONFIG "IMAP_MIN_SIZE_ESTIMATE=0
* CONFIG "IMAP_SEARCH_TIMEOUT=0
* CONFIG "IMAP_REMOTE_UAL_ENABLED=TRUE"
* CONFIG "IMAP_UAL_TRACE_LEVEL=8"
* CONFIG "IMAP_USE_ITEM_BROWSER_SELECTION=TRUE"
* CONFIG "IMAP_X_NETSCAPE_URL=http://kuda.pwd.hp.com/cgi-bin/ice.cgi/
prof=ICE
a6 OK XOM.CONFIG completed

The X-OMTEST extensions allow you to change configuration settings using the XOM.CONFIG
command.

Note: IMAP_CACHE_RFC822_HEADER=FALSE and
IMAP_CACHE_RFC822_MESSAGE=FALSE are now ignored. At B.05.10 they
were used to turn off the creation of cached object files.

X-OMTEST
As with X-OPENMAIL, this capability denotes proprietary extensions for testing against the
OpenMail server. This capability should not normally be enabled, as it allows a client to
modify the message store and the configuration of the running IMAP server in ways which are
dangerous.

Dynamically Modify Configuration Settings

In addition to reporting the current setting of various tweaks, the XOM.CONFIG command can
also modify them. For example, to change the IMAP_IDLE_TIMEOUT tweak to 31, the
command is:

XOM.CONFIG IDLE.TIMEOUT 31

The option name used in the command is the tweak name without the initial IMAP_ prefix and
the remaining underscores replaced with periods. The option name part of the command line is
case insentive.

Each IMAP server process keeps a copy of the current configuration option settings in its
memory. The XOM.CONFIG command makes changes to this copy. This means that most of the
changes have immediate effect, without having to stop and restart the IMAP server process. It
also means that the changes are only applicable to the current session.

Note: If logging is already enabled, you cannot use XOM.CONFIG to change the log
filename. The logging level can be changed mid session and logging can be
turned on (in which case, changes to the log filename will be effective).

This extension is particularly useful for testing folder prefix and separator settings and for
changing capability settings in a test environment.

Some care has to be exercised when dynamically changing tweaks. Obviously, changing the
set of known capabilities, disabling the X-OMTEST capability, for example, can render the
XOM.CONFIG command inoperable. Some changes are slightly less obviously dangerous; for
example, setting folder separator to, say, "e" will tend to make a lot of folders invisible.

Object File Access

The FETCH command takes an additional verb, OM.OBJFILE, that takes a list of object file
names as its parameter, so, for example:

FETCH 1 OM.OBJFILE (imapBodyStrc)
December 21 1999 Page 53

B.06.00 Changes to the IMAP Server

 “The

f

ensure
. The
are
will fetch details about the imapBodyStrc object file associated with message 1. Note that
OM.OBJFILE is case insensitive, but the object file name is case sensitive:

a5 fetch 1 om.objfile (imapBodyStrc)
* 1 FETCH (OM.OBJFILE ((imapBodyStrc "16-Sep-1999 15:26:39 +0100" 0x3
{880}
OMHEADER (VERSION 1.2 FLAGS "Q 0 0 0 NIL Q 0 Q 0 NIL NIL F 0 0 1")
RFC822.HEADER {429}
Date: Thu, 16 Sep 1999 15:24:11 +0100
Message-Id: <H000006600000a85.0937491849.kuda.pwd.hp.com@MHS>
Subject: 2nd rtf test
MIME-Version: 1.0
Return-Path: <Admin_Mr/canberra_class@kuda.pwd.hp.com>
From: Admin_Mr/canberra_class@kuda.pwd.hp.com
To: Admin_Mr/canberra_class@kuda.pwd.hp.com
Content-Type: application/rtf; name="BDY.RTF"
Content-Disposition: attachment; filename="BDY.RTF"
Content-Transfer-Encoding: base64

ENV (DATE "Thu, 16 Sep 1999 15:24:11 +0100" SUBJECT "2nd rtf test" FROM
(Admin_Mr/canberra_class@kuda.pwd.hp.com) TO (Admin_Mr/
canberra_class@kuda.pwd.hp.com) MSGID "<H000006600000a85.0937491849.kuda.
pwd.hp.com@MHS>") BODY ((PATH 1 TYPE APPLICATION STYPE RTF TPARMS (NAME
BDY.RTF) ENC BASE64 SIZE 654 DISP ATTACHMENT DPARMS (FILENAME BDY.RTF)))
SIZE 1083 LINES 20)))
a5 OK FETCH completed

For a description of the contents of the imapBodyStrc object file, look back at the section
imapBodyStrc Object File” on page 16.

Search Specification

You use the XOM.SEARCHSPEC command in the same way as the SEARCH command, for
example:

a5 xom.searchspec subject golf

except that it returns the search specification transaction file (base64 encoded) instead o
running the search.

To decode the output, you can use the mmencode utility for encoding/decoding MIME
messages. You can obtain this, as part of Metamail, by ftp:

ftp://ftp.research.telcordia.com:/pub/nsb/mm2.7.tar.Z

To decode the output from the XOM.SEARCHSPEC command, type the following line:

mmencode -u > /tmp/xxx

The command will then sit, waiting for input. Cut the encoded text output by XOM.SEARCHSPEC
and paste it as input to mmencode. Press Enter. The decoded output is sent to file /tmp/xxx.
Then run tfbrowse on the file:

tfbrowse -i /tmp/xxx

The output is the search specification file.

Count Strings

The XOM.COUNT.STRINGS command was written to test the lexical phase in the server. It
returns the MD5 checksum of each of its arguments. The purpose of this extension is to
that the server correctly retrieves atoms, quoted strings and literal strings from the client
server computes the MD5 checksum of each of its argument strings. You can then comp
these checksums against those you generate independently using the GNU md5sum utility.

It is fairly unlikely that you would want (or need) to use this extension.
December 21 1999 Page 54

B.06.00 Changes to the IMAP Server

e
ssage

e
ver

cture
Delete Object Files

The command XOM.DELOBJ will delete object files. For example,

XOM.DELOBJ 1:* (imapMsg imapHdr)

will delete all the old IMAP server cache files in the current folder. The command

XOM.DELOBJ 1:* ALL (imapMsg imapHdr)

will also delete any object files that are marked as permanent.

This command, together with XOM.CLEARCACHE, can be used in test situations to return to the
point before a message is initially processed.

There are alternative ways of deleting object files. You could use the "do" option in
omcontain to delete temporary or permanent object files. As described in “Deleting
Temporary And Permanent Object Files” on page 23, omscan can be run wth the -O option to
delete temporary, but not permanent, object files.

Flush Internal Cache

The XOM.CLEARCACHE command flushes the internal caches of the IMAP server. The cach
comprises, at most, the message structure and a memory mapped file for the current me
and computed message sizes for some or all the messages in the current folder.

The reason you might want to use this command is to clear any cached information in th
server, so that tests can be sure that they are getting fresh information from the UAL ser
and/or the item browser.

Following illustrates Netscape Messenger type interaction, where the message body stru
is requested first:

Client IMAP UAL BRW

FETCH [3.2] ---------------BODYSTRUCTURE------------>

Renders msg, generates
imapBodyStrc

Parse to get part 3.2

<-----3.2--------------

<---Complete Msg----------

FETCH [3.2]

<-----3.2-------------- IMAP gets this from cache

XOM.CLEARCACHE

FETCH [3.2] ---------------BODYSTRUCTURE--------------->

Parse object file to find
path of 3.2

<-------------------------- Returns existing
imapBodyStrc object
file

--------------------fetch "path [3.2]"-------------->

part 3.2 put in specified
file

<----------------------OK done that--------------------------

<--part 3.2 file sent to client-------
December 21 1999 Page 55

B.06.00 Changes to the IMAP Server

et
ontainer
Note: In the first instance it is the IMAP server that returns the message part. In the
second instance, the item browser returns it).

To get back to the "new message" state, you would have to delete the imapBodyStrc object
file as well as clearing the cache.

XOM.CLEARCACHE will also clear out its knowledge of the size of messages. This could be
useful if you are testing the effects of the MIN_SIZE_ESTIMATE tweak. Try the following
exercise:

Initial setup: IMAP_MIN_SIZE_ESTIMATE=0, send a message greater than 10k bytes in size.

a1 FETCH 1:* RFC822.SIZE

Where are we getting the size from? (Answer - imapBodyStrc created by item browser).

a2 FETCH 1:* RFC822.SIZE

Where are we getting the size from this time? (Answer - IMAP server’s in memory data
structure of this msg).

Change the configuration setting as follows:

a3 XOM.CONFIG MIN.SIZE.ESTIMATE 10

What does this do? (Answer - changes threshold below which messages are rendered to g
size. The estimated size of messages greater than 10kbytes is taken from the message c
in the message store).

Enter the request:

a4 XOM.CLEARCACHE

What have we cleared? (Answer - IMAP server’s in memory cache of this message).

a5 FETCH 1:* RFC822.SIZE

Where are we getting the size from this time? (Answer- imapBodyStrc created by item
browser).

What would we have to do to get back to "new message" state? (Answer - clear the IMAP
server cache and delete the imapBodyStrc object file).
December 21 1999 Page 56

B.06.00 Changes to the IMAP Server

but it
 did:

.

 in an

 to see

ome
Common Problems

Missing Folders And Bulletin Board Access
Folders that contain the folder separator (usually /) generally go missing. They are easily
brought back by changing the folder separator (using the tweaks IMAP_FOLDER_SEPARATOR
for user folders or IMAP_BB_FOLDER_SEPARATOR for Bulletin Board folders). This can be done
on a per-client machine or per-user basis.

Clients that use LIST ""% are likely to be able to see the Bulletin Boards. Clients that use
LIST "" * are quite likely not to be able to see the Bulletin Boards.

For LIST "" % to work in this instance the folder prefix and and Bulletin Board prefix should
be defaulted.

Configuring Netscape To See Folders And Bulletin Boards

Netscape Messenger 4.5/6 gets confused with \ (back slash) as a folder separator. Messenger
also has problems with #bb (the default) as the Bulletin Board prefix. In fact, any folder that
contains a # is ignored by Netscape.

Use the tweaks, IMAP_FOLDER_SEPARATOR and/or IMAP_BB_FOLDER_SEPARATOR , to change
the user and Bulletin Board folder separators to something else, making sure that you do not
use a character which appears in folder names.

Use the tweak, IMAP_BB_FOLDER_PREFIX, to change the Bulletin Board prefix, for example:

IMAP_BB_FOLDER_PREFIX=bulletin-boards

Configuring Outlook Express To See Bulletin Boards

Outlook Express 5’s implementation of the NAMESPACE extension is unreliable, leading to
problems seeing Bulletin Boards. I can get Outlook Express to view the Bulletin Boards,
needs reconfiguring each time I want to update the list of Bulletin Boards. Here is what I

• Server setting in general.cfg:

IMAP_BB_FOLDER_PREFIX=Bulletin Boards

• In Outlook Express, add an account (Tools->Accounts) for access to the Bulletin Boards

• In Outlook Express (Tools->Accounts->Properties->IMAP) set root folder path to be
/Bulletin-Boards

• Untick "Check for new messages" and "Store special folders" boxes.

• Now right click on the account name, select IMAP folders, and Reset list. This will
give an error.

• Now, again in Tools->Accounts->Properties->IMAP, set root folder path to be
Bulletin Boards (remove the leading '/').

• Once again, right click on the account name, select IMAP folders, and Reset list. This
time the Bulletin Board names should be downloaded.

This does not seem to be a very workable solution, but it shows that the client is behaving
inconsistent way, and that it can see the Bulletin Boards under some circumstances.

Error Message: "NO some messages no longer exist"
This can tend to be a "catch all" error. It normally indicates concurrent access to a user’s
folders, that is, one client has deleted a message that another client would like to be able
(see “Multiple Access Support” on page 24). Most clients handle this reasonably well.

Unfortunately, the same error message tends to crop up when the item browser fails in s
way.
December 21 1999 Page 57

B.06.00 Changes to the IMAP Server

,
Deleting Folders Containing Subfolders
Although the IMAP protocol forbids deleting folders that contain other folders, some clients
will attempt to delete a folder without first deleting any folders that it contains. If the tweak,
IMAP_DELETE_SUBFOLDERS, is set to TRUE, then the IMAP server will allow folders to be
deleted, regardless of whether they contain any subfolders. For these non-conforming clients,
this can improve usability.

Note: This tweak does not affect conforming clients at all.

The tweak can be set for the system, a client or a user and the default setting is:

IMAP_DELETE_SUBFOLDERS=FALSE

Lack Of Understanding Of Standards
Many clients do not have a correct understanding of MIME and/or IMAP. The OpenMail
IMAP server can cope with most excesses, but the incorrect implementation of the following
parts of the standards by certain clients is difficult to deal with:

Unreliable And Fragile Clients
Some clients seem to have just been inadequately tested. Mulberry, for example, is very
unreliable in the face of concurrent access: if some other client is reading messages or deleting
them, Mulberry gets a notification that upsets it badly.

Limiting The Number Of New Processes Netscape Can Start In A Session
Normally, for each new IMAP session there will be a minimum of three processes - a UAL
process (ual.remote), an IMAP server process (in.imap41d) and item browser process
(item.browse). During the session, the client usually makes additional, temporary
connections to perform operations, such as authentication. Each of these temporary
connections will require their own instances of the server processes, ual.remote,
in.imap41d and item.browse.

During an IMAP session, Netscape 4.5 (and later) will keep up to seven connections open at
any one time - a total of 21 processes! It seems that one of these is for the inbox, one for
checking new mail and five for looking at different folders. The number of connections builds
up gradually, you get one when you first sign on, one when the first check for new mail kicks
in, and then the remaining five fill up as you start visiting folders. A server with a large number
of IMAP users may quickly run out of process resources! If you want a more in depth
discussion of this problem, see the OpenMail web document, web ID 100-1396 "Problem with
Netscape and Multiple Connections and the solution".

Fortunately, there is an option in Netscape to limit the number of connections the client can
make.

Standards Relating To ... Clients At Fault

Forwarded messages Eudora Pro

multipart/alternative Eudora Pro and Netscape, to some extent

Content-type Outlook ‘98 and Outlook Express

Content-disposition Outlook‘98, Outlook Express and Netscape
to some extent
December 21 1999 Page 58

B.06.00 Changes to the IMAP Server
It is possible to set a parameter called "mail.imap.max_cached_connections" to 1 (the
default is 5) in a preferences file, prefs.js, which you will find (on a PC) in Program Files ->
Netscape -> Users -> default. It is advisable to take a copy of this file before editing it. This
parameter can also be set on a site-wide basis at installation time. It is documented as being the
maximum number of non-inbox connections that will be held open at any one time. See:

http://developer.netscape.com/docs/manuals/deploymt/jsprefs.htm

With this set, you will probably notice that the maximum number of connections stays around
one: occasionally a new connection will be fired up and so you’ll have two connections for a
few seconds, but one of the connections gets shut down fairly soon. With new mail
notification turned off, it seems that you just have the one connection all the time.

In addition, Netscape actually seems to be rather faster. The reason for this is may be that
instead of creating new sessions, which takes a while, the server just re-uses the one
connection that it already has, which doesn’t take long.

If you were going back and forth between a small number of largish folders, then you would
get the performance benefit of having more than one connection available, because the UAL
server wouldn’t have to keep listing folders.
December 21 1999 Page 59

B.06.00 Changes to the IMAP Server
Watcher TCL Script

#!/bin/sh
-*- tcl -*- \
##
#This TCL script allows you to monitor client/server connections.
#You need to have the TCL interpreter library included in your PATH.
#IMPORTANT NOTE: This script is provided as is and is NOT supported by HP
##

exec wish "$0" "$@"

if {$tcl_platform(platform) == "unix"} {
 catch {

tk_setPalette \
foreground [option get . foreground Foreground] \
background [option get . background Background]

 }
 option add *borderWidth 1
}

proc watchConversation {serverHost serverPort clientFD addr port} {
 for {set i 0} {[winfo exists .watch$i]} {incr i} {}

 set w [toplevel .watch$i]
 menu $w.menu
 menu $w.menu.file -tearoff false
 menu $w.menu.help -tearoff false
 $w.menu add cascade -label File -underline 0 -menu $w.menu.file
 $w.menu add cascade -label Help -underline 0 -menu $w.menu.help
 $w conf -menu $w.menu

 $w.menu.file add command -label "Save transcript..." -underline 5 \
 -command [list saveTranscript $w]

 $w.menu.file add command -label "Save client..." -underline 5 \
 -command [list saveTranscript $w C]

 $w.menu.file add command -label "Save server..." -underline 5 \
 -command [list saveTranscript $w S]

 $w.menu.help add command -label About -underline 0 \
 -command [list aboutConnection $w]

 text $w.text \
 -wrap none \
 -font textFont \
 -insertbackground red \
 -yscrollcommand "$w.yscroll set" \
 -xscrollcommand "$w.xscroll set"

 scrollbar $w.yscroll \
 -orient vertical \
 -command "$w.text yview"

 scrollbar $w.xscroll \
 -orient horizontal \
 -command "$w.text xview"

 global tcl_platform
 if {$tcl_platform(platform) == "unix"} {

$w.text conf \
-foreground Black \
-background WhiteSmoke \
-cursor "xterm red"

$w.yscroll configure -width 10
$w.xscroll configure -width 10
December 21 1999 Page 60

B.06.00 Changes to the IMAP Server
 }
 $w.text tag configure "S" -font serverFont
 $w.text tag configure "C" -font clientFont

 grid $w.text -row 0 -column 0 -sticky nswe
 grid $w.yscroll -row 0 -column 1 -sticky nsw
 grid $w.xscroll -row 1 -column 0 -sticky swe
 grid columnconfigure $w 0 -weight 1
 grid rowconfigure $w 0 -weight 1
 focus $w.text

 set serverFD [socket $serverHost $serverPort]
 fconfigure $clientFD -buffering line -translation binary
 fconfigure $serverFD -buffering line -translation binary
 fileevent $clientFD readable "clientToServer $w"
 fileevent $serverFD readable "serverToClient $w"

 global $w.clientFD
 global $w.serverFD
 set $w.clientFD $clientFD
 set $w.serverFD $serverFD
 bind $w <Destroy> {

if {[string compare "%W" "[winfo toplevel %W]"] == 0} {
 catch {close ${%W.serverFD}}
 catch {close ${%W.clientFD}}
 catch {fileevent ${%W.serverFD} readable {}}
 catch {fileevent ${%W.clientFD} readable {}}
 catch {unset %W.serverFD}
 catch {unset %W.clientFD}
}

 }
}

proc clientToServer {w} {
 upvar #0 $w.clientFD clientFD
 upvar #0 $w.serverFD serverFD

 if {[gets $clientFD line] < 0} {
if [catch {close -write $serverFD}] {
 close $serverFD
}
if [catch {close -read $clientFD}] {
 close $clientFD
}
appendText $w.text "C" "*** EOF ***"

 } elseif [catch {puts $serverFD $line} msg] {
appendText $w.text "C" [string trimright $line "\r\n"]
if [catch {close -write $clientFD}] {
 close $clientFD
}
if [catch {close -read $serverFD}] {
 close $serverFD
}
appendText $w.text "S" "ERROR: $msg"

 } else {
appendText $w.text "C" [string trimright $line "\r\n"]

 }
}

proc serverToClient {w} {
 upvar #0 $w.clientFD clientFD
 upvar #0 $w.serverFD serverFD
December 21 1999 Page 61

B.06.00 Changes to the IMAP Server
 if {[gets $serverFD line] < 0} {
catch {close $serverFD}
unset serverFD
after idle "catch {close \${$w.clientFD}}; catch {unset $w.clientFD}"
appendText $w.text "S" "*** EOF ***"

 } elseif [catch {puts $clientFD $line} msg] {
appendText $w.text "S" [string trimright $line "\r\n"]
catch {close $clientFD}
catch {unset clientFD}
appendText $w.text "C" "ERROR: $msg"

 } else {
appendText $w.text "S" [string trimright $line "\r\n"]

 }
}

proc timestamp {} {
 global tcl_platform
 # We should probably calibrate this on a per-platform basis, but I
 # "know" that UNIX clicks are microseconds and Windows95 clicks are
 # milliseconds.
 switch $tcl_platform(platform) {

unix {
 set centis [format "%02d" [expr ([clock clicks] % 1000000)/10000]]
}
windows {
 set centis [format "%02d" [expr ([clock clicks] % 1000)/10]]
}

 }
 return [clock format [clock seconds] -format "%H:%M:%S.$centis"]
}

proc appendText {w tag msg} {
 $w insert end \

"[timestamp]" timestamp \
":$tag: " "" \
$msg $tag \
"\n" ""

 global $w-update
 if {![info exists $w-update] || [lsearch [after info] [set $w-update]]
< 0} {

set $w-update [after 500 "catch {$w see insert}; update idletasks"]
 }
}

proc makeWatcher {{from {}} {to {}}} {
 for {set i 0} {[winfo exists .f$i]} {incr i} {}
 set f [frame .f$i]

 upvar #0 $f watcher
 checkbutton $f.active -command [list runStopWatcher $f] \

 -text "" \
 -onvalue 1 -offvalue 0 \
 -variable ${f}(start) \
 -takefocus 0

 set watcher(start) 0
 entry $f.from -textvariable ${f}(fromHostPort)
 set ::${f}(fromHostPort) $from
 entry $f.to -textvariable ${f}(toHostPort)
 set ::${f}(toHostPort) $to

 bind $f.from <Return> [list $f.active invoke]
 bind $f.to <Return> [list $f.active invoke]
December 21 1999 Page 62

B.06.00 Changes to the IMAP Server
 grid $f.active -row 0 -column 0 -sticky we
 grid $f.from -row 0 -column 1 -sticky we
 grid $f.to -row 0 -column 2 -sticky we
 grid columnconfigure $f 1 -weight 1
 grid columnconfigure $f 2 -weight 1
 pack $f -side bottom -expand 1 -fill both

 focus $f.from
 focus .
}

proc runStopWatcher {f} {
 upvar #0 $f watcher

 if {$watcher(start)} {
set fromHost ""
set fromPort ""
set toHost ""
set toPort ""
foreach {fromHost fromPort} [split $watcher(fromHostPort) ":"] break
foreach {toHost toPort} [split $watcher(toHostPort) ":"] break

if [string match "" $fromPort] {
 set fromPort $toPort
} elseif [string match "" $toPort] {
 set toPort $fromPort
}
if {[string match "" $fromPort] || [string match "" $toPort]} {
 tk_messageBox -icon error -type ok \

 -message "At least one port must be specified"
 set watcher(start) 0
 return
}

if [string match "" $toHost] {
 if [info exists env(OMCURRENT)] {

set toHost $env(OMCURRENT)
 } else {

tk_messageBox -icon error -type ok \
-message "No target host"

set watcher(start) 0
return

 }
}

if [catch {
 if [string match "" $fromHost] {

set watcher(sock) [socket -server [list watchConversation $toHost
$toPort] $fromPort]

 } else {
set watcher(sock) [socket -myaddr $fromHost -server [list

watchConversation $toHost $toPort] $fromPort]
 }
} msg] {
 tk_messageBox -icon error -type ok -message $msg
 set watcher(start) 0
}

 } else {
close $watcher(sock)

 }
}

December 21 1999 Page 63

B.06.00 Changes to the IMAP Server
proc saveTranscript {w {tag ""}} {
 if ![regexp {\.([^.]+)} $w {} file] {

set file transcript
 }
 set file [tk_getSaveFile \

 -defaultextension .scr \
 -initialfile $file \
 -parent . \
 -title "Save Transcript" \
 -filetypes {

{"Transcript Files" {.scr}}
{"All Documents" {.*}}

 }]

 if ![string match "" $file] {
if [catch {
 set fd [open $file w]
 if [string match "" $tag] {

puts $fd [$w.text get 1.0 end-1c]
 } else {

foreach {first last} [$w.text tag ranges $tag] {
 append text [$w.text get $first $last] "\n"
}
puts -nonewline $fd $text

 }
 close $fd
} msg] {
 tk_messageBox -icon error -type ok \

 -message $msg
}

 }
}

proc aboutConnection {w} {
 upvar #0 $w.clientFD clientFD
 upvar #0 $w.serverFD serverFD

 if {[info exists clientFD] && ![catch {fconfigure $clientFD} conf]} {
append msg "Client Connection:\n"
foreach {tag value} $conf {
 switch -- $tag {

-peername {
 append msg " peername: [join [lrange $value 1 end] :]\n"
}
-sockname {
 append msg " sockname: [join [lrange $value 1 end] :]\n"
}

 }
}
append msg "\n"

 } else {
append msg "No client connection\n\n"

 }

 if {[info exists serverFD] && ![catch {fconfigure $serverFD} conf]} {
append msg "Server connection:\n"
foreach {tag value} $conf {
 switch -- $tag {

-peername {
 append msg " peername: [join [lrange $value 1 end] :]\n"
}
-sockname {
 append msg " sockname: [join [lrange $value 1 end] :]\n"
December 21 1999 Page 64

B.06.00 Changes to the IMAP Server
}
 }
}

 } else {
append msg "No server connection"

 }

 tk_messageBox -icon info -type ok -message [string trim $msg]
}

if {$tcl_platform(platform) == "unix"} {
 # Set a 75dpi screen regardless ...
 tk scaling [expr 75.0/72.0]
 set family "Courier"
 set size 12
 event add <<Cancel>> <Control-c>
} else {
 bind all <F12> {console show}
 bind all <Shift-F12> {console hide}
 event add <<Cancel>> <Escape>
 set family "MS Sans Serif"
 set size 8
}
bind all <<Cancel>> {after idle [list destroy [winfo toplevel %W]]}

foreach font {textFont clientFont serverFont} {
 font create $font -family $family -size $size
}
font configure clientFont -weight bold

if {$argc < 2} {
 makeWatcher
} else {
 foreach {from to} $argv {

makeWatcher $from $to
 }
}

December 21 1999 Page 65

	Summary
	Readership
	Revision History
	Comments Please!
	Contents
	Introduction
	Logging
	IMAP_LOGLEVEL
	Where To Set IMAP_LOGLEVEL
	Effect on UAL Tracing
	Compatibility With B.05.10

	IMAP_LOGFILE
	IMAP_UAL_TRACE_LEVEL
	Lab
	Watcher Connection Monitoring Tool
	Configuring Watcher
	Watcher Transcript Windows
	Saving Connection Dialogues
	More Connection Configuration Details

	Improvements To The OpenMail IMAP Implementation
	What The IMAP Server Caches In Its Memory
	Caching Rendered Messages

	The imapBodyStrc Object File
	What is the imapBodyStrc object file used for?
	What is in the imapBodyStrc object file?
	What is meant by "automatically maintained"?

	How The Size Of A Message Is Calculated
	How The OpenMail IMAP Server Talks To The Message Store
	Old imapHdr And imapMsg Object Files
	Permanent IMAP Object Files
	Deleting Temporary And Permanent Object Files
	omcontain

	Multiple Access Support
	Lab
	Searching
	IMAP_SEARCH_TIMEOUT Tweak

	Support For Internet Acks
	IMAP_AUTOMATIC_MDN
	IMAP_MDNSENT_FLAG

	Security Issues
	Buffer Overflow
	Denial Of Service Attacks
	Catching The Culprit

	What To Set When The UAL Server Is On A Different Machine

	Support For Imap4rev1 Functionality
	STATUS Command
	Fetch Part Of a Message
	An Example
	What’s Happening On The Server?
	The IMAP_USE_ITEM_BROWSER_SELECTION Tweak

	Unicode Support
	UTF-7 and Modified UTF-7
	UTF-8
	What Can We See On The Server?
	Some References

	Summary Of Differences Between IMAP4 And IMAP4rev1

	Optional IMAP4rev1 Functionality Supported
	IMAP4
	IMAP4rev1
	AUTH=LOGIN
	CHILDREN
	IDLE
	The IMAP_IDLE_TIMEOUT Tweak
	What Is Happening On The Server?

	LITERAL+
	NAMESPACE
	IMAP_FOLDER_PREFIX and IMAP_BB_FOLDER_PREFIX
	Configuring Netscape Messenger To See Bulletin Boards
	IMAP_FOLDER_SEPARATOR and IMAP_BB_FOLDER_SEPARATOR

	X-NETSCAPE
	X-OPENMAIL
	Folder Syntax Extension.
	Lab
	Direct Reference Access
	Viewing Configuration (Tweak) Settings

	X�OMTEST
	Dynamically Modify Configuration Settings
	Object File Access
	Search Specification
	Count Strings
	Delete Object Files
	Flush Internal Cache

	Common Problems
	Missing Folders And Bulletin Board Access
	Configuring Netscape To See Folders And Bulletin Boards
	Configuring Outlook Express To See Bulletin Boards

	Error Message: "NO some messages no longer exist"
	Deleting Folders Containing Subfolders
	Lack Of Understanding Of Standards
	Unreliable And Fragile Clients
	Limiting The Number Of New Processes Netscape Can Start In A Session

	Watcher TCL Script

