
AUTOMATED PERFORMANCE MANAGEMENT ADVICE
USING COMPUTATIONAL INTELLIGENCE

Adam Grummitt
Metron Technology Limited

adam@metron.co.uk

This paper discusses the demand for a practical approach to automate
performance analysis and capacity planning for typical enterprise-wide
systems. Users of performance management tools now expect the
exercise to be simple and readily automated. The full range of
Computational Intelligence (CI) techniques available to achieve this is
described. Previous attempted solutions exploiting expert systems are
used to demonstrate the problems. A pragmatic approach is described,
based on using combinations of established statistical and CI techniques
in a particular case study.

1. PERFORMANCE MANAGEMENT

Performance Management is the computer-assisted
control of all aspects of the performance of a computer
system. Along with other functions, such as resource
management, security management and privacy
management, it forms a key part of System
Management.

Performance Management has been defined in many
ways over the years. A simple outline is that it is like a
“MAP” to guide you to effective use of Information
Technology (IT), in that it deals with the Measurement,
Analysis and Planning of computer performance. The
same “MAP” also enables you to Monitor the present,
Analyze the past and Predict the future. Clearly key
findings need to be broadcast effectively. Actions
need to be taken in the light of the observations,
interpretations and predictions, with tracking of the
actuals to prove and refine the planning function.

The performance analyst may spend a certain amount
of time tuning a system to overcome problems.
Equally, rogue modules in application software can be
optimized to avoid unnecessary resource demands.
But there comes a point where these activities become
self-defeating, with diminishing returns because the
system itself is saturated.

Capacity planning, the art of designing and configuring
a computer system to avoid saturation and achieve
predetermined performance targets, is well established
for conventional systems.

The performance analyst’s role is to evaluate hardware
configurations, analyze workload throughput,
transaction response times and device utilizations,
tune for optimal performance, define configuration
updates to meet any immediate problems and to plan
for potential expansion (or contraction) of workload or
configuration in the light of business forecasts.

2. COMPUTATIONAL INTELLIGENCE

Computational Intelligence (CI) may be thought of as
“Artificial Intelligence” (AI) but that is a somewhat
discredited term. AI could have been better called
synthetic intelligence. AI may be thought of in terms of
expert systems, but successful expert systems have
proved elusive in general domains. CI may be thought
of as the application of Knowledge-Based Information
Systems (KBIS) theory, but that too is more of an
academic discipline rather than a proven commercial
software technique.

CI is the application of computational techniques to
create agents that behave in an apparently intelligent
manner. The agent does what is appropriate for its
goal, is flexible to changing environments, makes
appropriate choices from any conflicting input and
sometimes learns from experience [1].

The agent has to take on board knowledge about its
world and past experience to learn from, as well as
goals that it must try to achieve and observations about
the current environment.

Intelligent agents in the past have tended to be of four
main types – the robotic (factory or hazardous
environment), the deductive (chess), the diagnostic
(medical or other specialist expertise) and those that
make use of natural language (translation or reference
systems).

The most successful expert systems to-date have had
the advantage of a “small world” or “tight domain” with
a solid base of proven observations and expertise and
limited goals.

The knowledge base for each application would
typically be huge, requiring a formal means of defining
the information. The instance data of given
parameters for the case in hand would usually be
constrained to be comparatively small.

3. PERFORMANCE MANAGEMENT & CI

There are some areas in which the environment has
been so tightly defined that CI techniques can be
exploited. This is in real terms, not in the fashionable
use of the latest jargon that allows marketing spin to
influence product descriptions. Old examples of such
spin were “interfaces” described as “integration” or
“linked files” suddenly becoming “relational databases”.
Likewise, knowledge-based systems are more than
agents which “know” the environment and so “select”
the relevant metrics (i.e. merely have a domain specific
file layout). Neural networks are more than agents that
merely happen to have their data collection metric
definitions structured as tables. Expert systems and
rule-based systems are still evolving and incorporate
more than decision tables and domain specific
information.

Computer performance might initially be thought of as
having most of the properties that would suit it to the
application of CI. Certainly the instrumentation and
metrics are reasonably constrained and defined.
However, the expertise and experience for each
domain is changing so quickly that it is a challenge to
create the knowledge base before the system has
moved on to a new architectural release.

Furthermore, the instance dataset is huge, which
makes the problem more difficult. The old monitor
listing from a mainframe filling a desk has been
replaced by numerous tables of data on the machine
itself. The instrumentation is still voluminous and
requires major interpretation skills. These are rare and
so automated systems are in demand.

As applications are increasingly based on standard
commercial packages, many sites now have no in-
house development, little systems software expertise
or awareness of systems management let alone
performance management. Sadly there is no kudos
associated anymore with acquiring such computer

expertise. Thus sites in the distributed world, when
they experienced performance problems in vital
applications, had to find new performance specialists
to apply performance management techniques.

These neophyte performance specialists brought a
more business-driven approach. The challenge was
not to try to produce the most detailed analysis of the
characteristics and components of a computer system,
but rather an indication of its behavior sufficient to give
reasonable answers to business questions.
Tolerances in accuracy of 10-20% became more
acceptable, and the detail of particular machine
components or application transactions less
significant. What was more vital was a pragmatic
approach with as much automation as practical, given
the large numbers of nodes to be addressed and the
small amount of time available for each.

Further, as hardware prices fall, and incremental
upgrades apparently become easier, so there is an
increasing superficial belief that performance
management is less critical. Yet the true total IT
expenditure is still increasing and the financial leverage
for performance management is greater than ever.

The typical management request is for a shrink-
wrapped solution, with minimized staff costs. The
assumption is that performance can be built into the
system itself or else provided automatically without
requiring rare skills or expensive tools. The computer-
literate manager might well also express the
requirement that the system be expert so that it would
make appropriate diagnostic analysis and provide
intelligent advice.

4. ARTIFICIAL INTELLIGENCE

The performance management applications typically
envisaged for AI techniques are in the areas of
alerting, metric analysis and correlations, tuning and
optimization and analytical modeling.

The intelligent selection of alerts is a good area for AI
given that it is a constrained problem. It requires more
than just Boolean combinations of threshold conditions
and use of neural networks and pattern recognition
over periods of time. It enables effective exception
reporting regimes to be incorporated into automatic
management reports with improving filters and better
exception handling built over time.

Similarly, the intelligent analysis of metrics to reveal
significant bottlenecks is a potentially good area for AI.

Intelligent advice for tuning and optimization is a
dynamic area as systems evolve with new features and
releases. It requires a huge library of up-to-date
knowledge of the detail of a domain. Traditional
approaches to this area tend to yield verbose pages of
advisory text, which require the reader to already
understand the problem in detail just to be able to
comprehend the text. It may often be easier for such
an expert reader to just look at the metrics directly
without comprehensive automated advice. However,
AI systems that focus on the key areas to address and
highlight outstanding measures can save investigative
time. Various commercial examples of automatic
advice and guidance systems for tuning exist. ES/1
Advisor JP was the catalyst for this paper [2].

Experience of developing an AI system to review the
results of analytical models and their interpretation with
respect to defined Service Level Agreements (SLA)
showed the difficulty of presenting results in a friendly
way [3].

Figure 1 below shows typical expert advice for a
particular node. It is based on assessing the results of
an analytical model for a particular message pair in a
particular transaction as part of the on-line workload.
In the enterprise-wide system of today, many systems
are viewed as application servers, without too much
business interest in the finer analysis of the workload
components. Thus such early efforts at exploiting
expert systems were not widely adopted.

Metron’s ATHENE V1.0 Decision Support 3900

Component Type Required Desirable Baseline Projected Response Times <secs>
Resp.Time Resp.Time Resp.Time 1 2 3
<secs> <secs> <secs> ONE TWO THREE

SYSTEM tp - - 0.05 0.05 0.05 0.05
SPOOLERS tp - - 0.44 0.44 0.44 0.46
TP1 tp 0.80 0.70 0.64 0.70 0.80 1.09
TP2 tp 4.50 4.00 2.25 2.56 3.20 5.28
BATCH ba 725.00 700.00 574.10 624.15 682.91 762.70

Explanation of Causes

Increase in arrival rate of TP1 affected
Itself by increasing:

Queueing at the CPU by 10.05%
Queueing at DA20 by 23.11%
Queueing at DA22 by 17.85%

TP2 by increasing:
Queueing at the CPU by 14.28%
Queueing at DA20 by 21.94%
Queueing at DA22 by 19.58%

Increase in MPL of BATCH affected
Itself by increasing:

Queueing at DA23 by 9.42%

Summary of Recommendations

1 Move 100% of the I/O generated by TP1 from DA20 to DA21 to reduce:
Queueing at DA20, reducing the response time of itself and TP2

2 Move 100% of the I/O generated by TP2 from DA22 to DA12 to reduce:
Queueing at DA22, reducing the response time of itself, TP1 and BATCH

3 Upgrade the CPU from 3980 to SX450-10 to reduce:
Busy time at the CPU, reducing the response time of TP1, TP2 and BATCH

This expensive operation is only necessary if you feel that the response time of
BATCH really must be better than within 5% of the target.

Benefits of Recommendations

Workloads that Target Excess New % Reduction of
Exceeded Targets Response <s> Response <s> Response <s> Excess Response

TP1 0.70 0.40 0.67 107.5
TP2 4.00 1.28 3.18 164.1
BATCH 700.00 62.70 718.29 70.8

Figure 1. A typical piece of advice based on the results of a model of current behavior, with
precise definition of the reasoning attached. Although the advice is sound and the presentation
logical, it requires an experienced user to interpret it carefully - and such a user would possibly
prefer to control the model making and interpretation directly.

The user interface for analysis of newer distributed
systems is now also required to present a high-level

overview with the facility to drill down into the detail of a
particular node or sub-system as required. However,

the numbers of processors and disks on some newer
machines make the presentation of the results in an
accessible way somewhat challenging. Perhaps the
adoption of huge screens, 3D graphics, surface
envelope plots or even virtual reality will eventually help
to meet the challenge. In the meanwhile, other
techniques such as wizards are emerging to help.

Wizards can be useful training aids and also good for
rarely used functions, but tend to “get in the way” of the
experienced user. The best wizards allow for this by
enabling both ”beginner” and “expert” modes of
working, or else allow the user to move from the wizard
to a “tab & form” screen-fill style of entry.

Wizards can ease the learning curve for new
packages, as can some expert advice and guidance
built into hypertext help and improved forms of
computer based training exploiting multi-media and
animation.

Clearly the success of Big Blue in chess has improved
the AI system image - but that is a highly constrained
domain, where the rules are clear and there is a vast
library of experience embodied in classical games. So
the ability of the program to look at numerous options
and consider so many moves ahead and assess them
in the light of preferred patterns and known situations
is confinable. Furthermore, the presentation of the
result is embodied in a single simple command to
move a selected piece to a given square.

5. EXPERT SYSTEMS

Chess is a highly specialized use of expert systems.
Other uses where success has been achieved, are
somewhat rare and tend to lie in the medical world.
Even there most systems fail to be reliable. They are
typically described as being “brittle”, requiring expert
interpretation and serving essentially as prompters to
the diagnostician. Yet they have the advantages of
typically a single problem or condition, with a small
number of observable metrics and a larger number of
subjective signs and symptoms, to be compared with a
vast library of known case histories.

Expert systems normally have a large knowledge base
of known facts and a small number of precise and/or
qualitative observations. A significant rule base is
used for the interpretation of one against the other with
an inference engine selecting the most likely diagnosis.

Past experience of building an expert system for
Software Performance Engineering (SPE) showed the
challenge of knowledge acquisition and also the
difficulty when a large fact base has to be presented to
an inference engine [4].

This is indicated in figure 2 below.

Metron’s PERSEUS 8.00 TP Message

Application : IND1TLM3
Message Pair : E-ADD-A Type: Query

Data Description User/Default
Values

Significance H
Multiphase Y
Computing Intensity H
Programming Language COBOL
Av.Day Think/Type Time (s) 30
Av.Day Message Pairs/Hr 1
Av.Day No. Active Terminals 1
Av.Day Desired Response (s) 0.5
Av.Day Maximum Response (s) 1.0
Av.Day Interval (s) 3600

Pk.Day Think/Type Time (s) 30
Pk.Day Message Pairs/Hr 8
Pk.Day No. Active Terminals 1
Pk.Day Desired Response (s) 1.0
Pk.Day Maximum Response (s) 2.0
Pk.Day Interval (s) 450
Conv.I/O Logical Reads 0
Conv.I/O Logical Writes 0
Conv.I/O CAFS searches 1
IDMS I/O Keyed Find/Obtain 0
IDMS I/O Keyed Store 0
IDMS I/O Keyed Modify 0
IDMS I/O via Find First 0
IDMS I/O via Oth Find/Obtain 0
IDMS I/O via Store 0
IDMS I/O via Modify 0
IDMS I/O via Erase 0
IDMS I/O via Connect/Disconn 0
IDMS I/O CAFS Searches 0
Total DML statements obeyed 0

Figure 2. A typical pair of input screens to
define part of the logical specification of an
application for SPE.

The advantage we have in performance management
is that it is a constrained domain, usually with precise
and voluminous instrumentation (although not always
including the key metrics). The knowledge acquisition
phase for SPE clearly requires the extended presence
of experts in the area. Also in the case of SPE, the
facts to be presented for interpretation are also
unusually large.

Figure 2 above shows parts of the first two of three
sample screens to be completed for each key
message pair. Similar detail is required of the
database and other aspects of the system. This is a
significant demand on the quality of a typical logical
specification and is not always readily available

6. KNOWLEDGE-BASED INFORMATION SYSTEMS

KBIS have developed to exploit the structured
representation of knowledge. This has moved in the
same direction as software in general, towards object
definition. Each object has attributes, relationships
with other objects and is part of a higher group or
class. The same object approach is adopted for data
modeling and object oriented programming. In data
modeling, entities are defined via normalization
techniques. An entity is an object. The type of entity is
the class of object. An object-oriented approach has
four main features:

• Data abstraction
• Attribute inheritance
• Data encapsulation
• Dynamic binding

Data abstraction extracts the data definitions into
classes and objects. It thus maps the problem domain
(data) and the system’s responsibility (procedures)
from the real world.

Attribute inheritance allows for the definition of two
different classes in terms of their common base set
and then two new classes just logging the defined
differences. Inheritance allows representation of
commonality to maximize code re-use.

Data encapsulation is the incorporation of both the
object definition (instance attributes) and the methods
that define an object. This assumes that the methods
and attributes are unique (effectively that data
modeling and entity analysis have taken place).
Encapsulation facilitates resilience to change.

Thus data and code are in the same object,
sometimes called “information binding” with the private
properties controlled by the object itself. Dynamic
binding is the creation of derived classes during run-
time (as opposed to compilation time).

Figure 3 below shows the typical structure of a KBIS.
Essentially the input data has to be fed into an
inference engine where it is assessed against
knowledge in the rulebase. An explanation module
then presents the conclusion in a report.

Figure 3. Knowledge-Based Information System Structure

Real World interface - GUI

Acquisition Module

Knowledge collection

Instance data
- given transient facts
- parameters
- metrics from OS & RDBMS & App instrumentation
- problem statement

Knowledge Base
Representation of domain expertise

Fact base Rule base
Given static facts

Meta-rules
(rules about rules

eg prefer rules about A
to rules about B)

Inference Engine

Application of domain knowledge

Explanation Module

Gives problem resolution statement

A knowledge base is a set of production rules with
variables (also referred to as assignments or
unification) – typically:

IF <condition> THEN <conclusion>
IF the tap on the barrel is open THEN wine flows

For a particular problem:

• Select the available rules
• Determine the applicable set
• Resolve any conflicts
• Select a rule to “fire”

Uncertainty lies in the rule itself, the evidence offered
or the use of vague language. “The bottle is large” is
vague. The real question is “How many glasses can I
pour?” Thus the wrong statement and the wrong set
were selected.

The logic to process such knowledge falls into either of
two main classes, Bayesian updates or fuzzy logic.

Bayesian updating is a means of handling uncertainty
by assessing the probability of an assertion when
evidence for or against the assertion is provided. Thus
it assesses the likelihood that a hypothesis arises
either from statistical variations or from randomness.
Bayesian updating enables combinations of dependent
probability to allow for combining evidence [5].

Possibility theory leads to fuzzy logic and fuzzy sets.
This addresses vagueness in the use of language and
looks at the meaning of a hypothesis. Consider set
theory with a variable (say wine temperature) and
mutually exclusive sets “high”, “right” and “low”. “The
temperature is high” is a fuzzy statement, with
temperature being the fuzzy variable and high the
fuzzy set.

7. MACHINE LEARNING

This discipline tends to be split into two areas,
symbolic and numerical. The symbolic covers the
formulation and modification of explicit rules, facts and
relationships. The numerical applies where the system
can be numerically instrumented.

Machine Learning can be either supervised (by a
“teacher”) or explorative (unsupervised). The latter is
where the system continuously searches for patterns/
relationships in the input data. The former is more
relevant to this paper with a variety of approaches:

• Rote – spoon-fed correct decisions
• Advice – general advice with likelihood attached
• Induction – specific examples and conclusions are

used as a basis for improvement
• Analogy – specific examples and conclusions are

used as a basis for extrapolation in similar tasks

• Explanation Based Learning – where analysis of a
set of given examples is used to guide future
problem solving

• Case Based Reasoning – previous experiences
are filed with outcomes and the system recalls and
adapts them to resolve new circumstances

• Model Based Reasoning – where models of how
components operate and combine to form a device
are constructed from both first principles (where
the basic laws of physics determine apparent
behavior) and second principles (where reasoning
is based on consideration of component behavior)

• Neural Networks – where each node performs a
simple computation operation independently of the
other nodes. This facilitates a parallel structure
that is clearly good for massively parallel
processing. It is good for yielding approximate
answers within the range of examples, but not for
extrapolation outside. For that, fuzzy logic is
required, or an appropriate algorithm (if a formal
relationship can be defined).

8. STATISTICAL METHODS

Using the term CI loosely to imply the illusion of
intelligence, traditional statistical methods can be
exploited to extract the key information from large sets
of data. Early approaches to computer guidance were
based on the use of statistical methods. These
methods are well established and yet still provide good
“advice” based on simple mathematical algorithms [6].

Statistics start with the observation of a variable, which
is either a Category or an Ordinal. A category variable
is nominal (e.g. a Mondavi bottle) whereas an ordinal
variable is a metric (such as 75 cl of Merlot).

Variable

Sample observations of a single variable form a set of
values. Consider a set of data x1, x2, x3...xN where N is
the number of data items.

More practically, consider a group of seven at a dinner
estimating how many centiliters of wine there are in a
particular glass. The 7 estimates are 12, 15, 15, 17,
20, 22 and 25.

The basic information for a single variable is:

• N The number of observations in the analysis (7)
• The sum of the data (126)
• The minimum value of the data (12)
• The maximum value of the data (25)

• x The mean of the data (18) where x
N

xi
i

N

=
=
∑1

1

• σ2 The variance of the data (17.71) where

∑
=

−=
N

i
i xx

N 1

22)(
1σ

• σ The standard deviation of the data (4.21)

where
2σσ =

• AD The average deviation of the data (3.7) where

AD = −
=
∑1

1N
x xi

i

N

The mean x is equivalent to the average and is defined
by the sum of the values divided by the number of
samples. The other three statistics below the mean on
this list are measures of variation. As a reminder, the
other expressions for the “middle” of a set are the
Mode, which is the most frequent observation (15), and
the Median, which splits the distribution into equal
halves in terms of observations (17).

The variance σ2 is a measure of the scatter around the
mean and is defined as the mean of the squared
deviations about the average. Variance σ is useful for
comparing two distributions. The Standard Deviation
is another measure of the same scatter, and is defined

as the square root of variance. The average deviation
AD is the mean of the deviations about the average.

The following examples are all based on a case study.
A site installed and ran performance agents on their
system for a couple of weeks and returned the
collected data for technical investigation and a
consultancy report. This was undertaken both
manually and automatically.

The manual investigation had the advantage of being
able to exploit both spreadsheet and graphical options
interactively. The first step was to review the entire
dataset presented.

Figure 4 below shows a typical set of such data
presented for the CPU utilization of a single node over
the given period of time. Figure 5 shows the drill-down
to the selected day and busy period for analysis,
including a set of observation statistics.

Figures 6 & 7 show extracts from the automatic reports
generated against the same data.

Figure 4. Shows part of the CPU data collected over two weeks as a
spreadsheet (left). The CPU series and its date/timestamp have been
selected for plotting both as a frequency distribution or histogram (top
right) and a time series plot (bottom right). The frequency distribution
shows a typical decay from low utilization to occasional high utilization but
with an unusual peak at 90-100%. The time series clearly identifies 20
April as the busiest day.

Figure 5. Shows the selected day’s CPU utilisation spreadsheet
(top left). A plot over the period 9-5 is at top right, showing 4
apparently busy peaks (at tea-breaks at 10.30, 12, 2 & 3.30?).
The period from 10-11 was selected and plotted (bottom right),
together with the statistics for the observations during that
period (bottom left).

 SYSTEM PERFORMANCE REPORT
 FOR INSTALLATION SDH, SYSTEM IMAGE ALPHA
 ANALYSIS PERIOD 20/04/99 09:00 - 20/04/99 17:00

CPU SUMMARY
Total CPU Util. (%)
Highest value of 99.00 (%) occurred at 20/04/99 13:54
Lowest value of 5.00 (%) occurred at 20/04/99 09:38
Average Value of 31.50 (%)

I/O SUMMARY
Physical Read/Writes (/sec)
Highest value of 62.00 (/sec) occurred at 20/04/99 15:40
Lowest value of 2.00 (/sec) occurred at 20/04/99 11:08
Average Value of 7.08 (/sec)

USER SUMMARY
CPU Total (secs): Busiest Users over the Measurement Period
Total of CPU Total (secs): 8347.53
UNIX User CPU Total (secs) % of CPU Total (secs) Cumulative %
oracle 4153.00 49.75% 49.75%
delphi 2699.94 32.34% 82.09%

COMMAND SUMMARY
CPU Total (secs): Busiest Commands over the Measurement Period
Total of CPU Total (secs): 8348.54
UNIX Command CPU Total (secs) % of CPU Total (secs) Cumulative %
oraclelive 4021.00 48.16% 48.16%
oracle 846.35 10.14% 70.09%
dfrunreport 829.62 9.94% 80.03%

Figure 6. Extract from the Automatic System Performance Report Highlights only are shown.
The busiest interval is also automatically presented with similar statistics The top items
contributing 50% were selected. This report also highlights 20 April and draws attention to oracle
and delphi users and the commands oraclelive, oracle and dfrunreport.

 ORACLE SYSTEM PERFORMANCE REPORT
 FOR INSTALLATION SDH, SYSTEM IMAGE WORLD+LIVE
 ANALYSIS PERIOD 20/04/99 09:00 - 20/04/99 17:00

SYSTEM SUMMARY
Total CPU Util. (%)
Highest value of 92.30 (%) occurred at 20/04/99 15:42
Lowest value of 0.60 (%) occurred at 20/04/99 09:38
Average Value of 15.37 (%)

FILE I/O SUMMARY
Physical Reads/Writes (/sec): Busiest Files over the Measurement Period
Total of Physical Reads/Writes (/sec): 3105847.84
Oracle File Physical % of Cumulative %

Read/Writes Physical
(/sec) Read/Writes

(/sec)
/midland/oracle/live/data/data_ts02.dbf 100.69 93.37% 93.37%
/midland/oracle/live/data/data_ts01.dbf 6.41 5.94% 99.31%

SESSION SUMMARY
Session Logical I/O (/sec): Busiest Sessions over the Measurement Period
Total of Session Logical I/O (/sec): 13700.09
Oracle Session Session % of Cum

Logical Session ulative
I/O (/sec) Logical

I/O (/sec)
DELPHI, 16, 317, delphi, 9482, oracle@ALPHA (TNS V1-V2) 845.77 6.17% 6.17%
DELPHI, 15, 1521, pridpath, 23366, oracle@ALPHA (TNS V1-V2) 501.68 3.66% 9.83%
DELPHI, 16, 16108, delphi, 525, oracle@ALPHA (TNS V1-V2) 482.24 3.52% 13.35%
DELPHI, 14, 705, delphi, 7557, oracle@ALPHA (TNS V1-V2) 472.22 3.45% 16.80%
DELPHI, 21, 1019, pridpath, 28306, oracle@ALPHA (TNS V1-V2) 461.32 3.37% 20.17%
DELPHI, 15, 1976, ajames, 13905, oracle@ALPHA (TNS V1-V2) 452.74 3.30% 23.47%
DELPHI, 15, 1736, pridpath, 29371, oracle@ALPHA (TNS V1-V2) 447.27 3.26% 26.73%
DELPHI, 6, 601, apratt, 30825, oracle@ALPHA (TNS V1-V2) 446.17 3.26% 29.99%
DELPHI, 21, 346, jsheen, 15725, oracle@ALPHA (TNS V1-V2) 429.79 3.14% 33.13%
DELPHI, 16, 14207, ajames, 6380, oracle@ALPHA (TNS V1-V2) 420.20 3.07% 36.20%
DELPHI, 21, 884, jsheen, 6425, oracle@ALPHA (TNS V1-V2) 419.34 3.06% 39.26%
DELPHI, 20, 318, pridpath, 30858, oracle@ALPHA (TNS V1-V2) 405.10 2.96% 42.22%
DELPHI, 15, 1687, apratt, 29957, oracle@ALPHA (TNS V1-V2) 386.82 2.82% 45.04%
DELPHI, 21, 906, parcher, 225, oracle@ALPHA (TNS V1-V2) 385.58 2.81% 47.85%
DELPHI, 6, 1579, jsheen, 13718, oracle@ALPHA (TNS V1-V2) 378.32 2.76% 50.61%

Figure 7. Extract from the Oracle System Performance Report. Again selecting 20 April and
highlighting delphi and other users’ busy sessions.

Distribution Statistics

Standard Deviation is the statistic most often used to
describe variation in data because of its relationship
with the normal distribution. If the data describes a
normal distribution (i.e. bell shaped or Gaussian as first
derived by de Moivre) then it has a standard shape.
Approximately 68% of the data lies in the range mean
± one standard deviation; approximately 95% lies in
the range mean ± 2 standard deviations and
approximately 99.7% lies in the range mean ± 3
standard deviations. In this case, the three ranges are
14-22, 10-26 and 6-30.

The “average deviation” is a measure used in some
cases and is more robust than the standard deviation
in the case of a distribution with a number of outlying
points, because it is less affected by unusual values.

Shape statistics give an indication as to the shape of a
given distribution being analyzed.

Skewness is a measure of asymmetry with positive
skewness indicating a tail towards the right (positive x-

direction) and negative skewness indicating a tail
towards the left (negative x-direction).

• Kurtosis is a measure of the degree of peaking of
a distribution, positive values indicating a sharp
peak and negative values indicating a flat-topped
distribution.

Significance

The significance of a finding about two variables can
be assessed statistically using probability theory. This
is usually approached obliquely via the Null
Hypothesis. Ask not “Are they related?”, ask rather
“What is the statistical significance of the reliability of
the assumption that they are not related?”. So if we
are to compare two variances to see if they have a
significant correlation, we put forward the null
hypothesis that they are not related and define the
probability of that statement being rejected [7].

Correlation

Correlation concerns the strength of the relationship
between the values of two variables. It only implies the
fact that there is an apparent similarity in the two
series, not that there is any causal link between them.
The aim of multiple correlation is to find a suitable
equation to explain two or more variables. In the
general case the equation is:

y x x xn n= + + + +β β β β0 1 1 2 2 Κ

The xi ' s are the predictor variables whereas y is the
dependent variable. Multiple correlation is the process
by which the linear correlation coefficient between
each constituent variable is calculated. This results in
a correlation matrix.

Figure 8 below shows the initial manual correlation
identified by selecting the key users and plotting their
CPU utilizations against the total system CPU
utilization. There is a clear relationship in terms of
being synchronized such that the peaks in the predictor
variable contribute to the peaks in the dependent
variable.

These series can be investigated using statistics, but it
is always essential to use the right tools. Comparisons
of means and variances in this case will show the
apparent lack of a relationship (see figure 9).
Comparison of spectral analyses will highlight the clear
relationship between total CPU utilization and the CPU
utilization of one of the key users (see figure 10).

Performance Analysis can be undertaken automatically
using a “correlation engine”. This undertakes
correlation tests between all pairs of key metrics to
identify any significant associations. After sorting on
the significance values found, it presents a report with
the key findings automatically highlighted, generating
text based on the metrics involved.

Figure 11 below shows an automatic report where a
correlation engine has been used to compare values of
key metrics to search for any significant correlations.
The primary application is the use of a correlation
engine for highlighting areas as tuning targets. It is
sorted into levels of significance to bring the tuner’s
attention to the key areas first. It reveals the same key
relationships as identified manually.

Note that the significance tests on the correlations
found have been banded into three groups (high, close
and reasonable correlation).

Regression

Regression analysis determines the nature of a
relationship between two variables and enables
interpolation and extrapolation from it. This
relationship can be assumed to be linear or
polynomial. Figure 10 shows linear regression being
applied to two series with confidence limits shown.
The confidence limits can be set to 90%, 95% or 99%
and expressed in terms of the predicted value of the
next point in the series lying within a certain range or
the confidence that a range of new points will have a
mean within that certain range.

This can be tested by four main techniques:

• Linear correlation coefficients
• Spearmans rank correlation coefficient
• Sum squared differences of ranks
• Confidence intervals

The data series as presented may first require some
manipulation. If it is excessively “noisy” then
smoothing techniques can help reveal the underlying
nature. Typically this is done by “moving average” or
by Savitzky-Golay smoothing. Also, the data may have
a few spurious values which can be neglected by
“robust” curve fitting. If the data has missing points or
requires extra values, then interpolation and
extrapolation are used, typically “linear” or better by the
“natural cubic spine” method.

Significance Testing

There are three main methods available to compare
two data sets, to see whether the data are similar:

• t-test to compare means
• F-statistic to compare variances
• Kolmogorov-Smirnov (KS) statistic for both

Suppose we are working with two data sets. Set A is
a1, a2, a3 … aN where NA is the number of data in set A
and set B is b1, b2, b3…bN where NB is the number of
data in set B. The variances are calculated and
represented as σA

2 and σB
2 respectively.

The t-statistic (Student's t-test) is a measure of
equivalence of the mean of the two data sets. Exactly
equal means give a near zero value. This statistic is
interpreted via the probability that two distributions with
equal means could have a t-statistic as large as the
one given by chance.

Figure 10. What is necessary is a
spectral analysis. This is only
undertaken after first using linear
regression to find a trend,
detrending to get an oscillating
series and then applying Fourier
Analysis. In this case the two
spectral analyses are clearly
similar, with the statistics summary
showing the two harmonic
frequencies revealing patterns
every 23/46 minutes (tea breaks
again – perhaps dfrunreport
pseudo-batch jobs initiated at brew-

Figure 9. However, standard
tests for means and variances will
not show the relationship. The
two series are shown in the
spreadsheet on the left. The
table on the right shows the three
tests used, showing t approx 0
and F & KS approx 1 . The Help
at the bottom reminds us that this
implies they are not similar

Figure 8. Manual correlation –
looking at the plots for the three
key CPU utilization columns (total
system, total oracle, total delphi.
There is a clear relationship with
the contributions of the two key
users to the total CPU readily
seen.

 CORRELATION REPORT
 FOR INSTALLATION SDH, SYSTEM IMAGE ALPHA
 ANALYSIS PERIOD 20/04/99 09:00 - 20/04/99 17:00

HIGHLY CORRELATED METRICS (100% - 95%)
No metrics were highly correlated.

CLOSELY CORRELATED METRICS (95% - 90%)
No metrics were closely correlated.

REASONABLY CORRELATED METRICS (90% - 70%)
Metric 1 Metric 2 Correlation

Coefficient
Total CPU Util. (%) CPU Total (secs) for UNIX User oracle 84.5%
Total CPU Util. (%) CPU Total (secs) for UNIX Command oraclelive 83.62%
Total CPU Util. (%) CPU Total (secs) for UNIX User delphi 70.75%

Fig 11. Automatic Correlation shows the three most significant correlations for this installation.
Again it draws attention to the oracle and delphi users and the command oraclelive.

The first step in the calculation of t is to derive the
standard error of the differences of the means SD.
The t-statistic is then:

t
a b

SD

=
−

The F-statistic is a measure of the equivalence of the
variance of two data sets. It is essentially the ratio of
the two variances and hence values near 1 indicate
equal variances. The F-statistic is then:

F A

B

=
σ
σ

2

2

The KS statistic is a measure of the overall
equivalence of the data sets in two dimensions. The
mean, variance and time are all taken into account.
Equal data sets will have values close to zero. The
probability associated with this statistic indicates the
significance level at which the null hypothesis of
equal distributions is rejected. High values indicate
that the data sets are indeed unequal. Suppose we
have a set of data representing CPU % Idle
measurements numbered from 1 to N. Then, if the
data are sorted into ascending order, a cumulative
distribution function can be defined for the data
which indicates the fraction (or percentage) of data
to the left of a given value. The KS statistic is simply
the maximum difference between two such
cumulative distributions of two data sets. The
advantage of this statistic is that significance levels
may be calculated for it.

Other statistical techniques are important to time-
based series, such as signal or spectral analysis.
The primary technique is Fourier analysis, which can
be used to identify any seasonal variations in a
series of values. Figure 10 above shows the power
spectrum with the dominant cycles and their
wavelengths for the two series concerned.

9. PRACTICAL APPLICATION OF CI

It is useful to select from all the above options in CI
to find the most practical to apply to the required
areas of performance management. Ideally in any
area, it would be possible to apply both deduction
and abduction (deduction predicts an effect from a
given cause; abduction finds a cause given a
particular effect).

New tools need to be intelligent, provide advice, and
attempt to be as automated as practical. This does
not suggest that tuning, optimization and capacity
planning can be handled totally automatically.
Experience of expert systems in the computer world
and elsewhere seem to indicate that they are best
used as support tools for the educated user. This is
somewhat paradoxical, given their objective was
originally seen as being able to incorporate the
expertise in the tool itself, so that “expert” domains
are made accessible to the non-expert.

A distinction has to be made between those systems
where the marketing material makes veiled
references to knowledge bases and expertise and
true expert systems which claim the formal use of AI
techniques or knowledge-based information
systems. The former may be an exaggerated
description of procedural programming techniques
where the result is context sensitive and
considerable expertise has gone into the logic to
define the conditions and filters used. The latter
typically incorporates an inference engine.

Computers seem on the surface to obey chaotic
behavior. However, taking larger populations and
longer time-spans, it can be treated adequately as
ordered. So statistical methods can be used with
some validity, although boundary conditions can
affect the results. There are two main approaches to
handling this data. The stochastic approach
assumes that all the parameters (e.g. the inter-arrival
time of transactions and their service times) are
random variables which can be characterized by
given distributions and hence definable means. The

operational analysis approach relies on all quantities
being measured or otherwise known data.

Automated alerts, interpretation of monitor logs,
application of error diagnostics and many other
areas have been addressed in the past. The use of
KBIS in SPE & SLA has been mentioned. Yet few of
these more advanced approaches have become
major commercial applications. A more pragmatic
approach is that of using statistical methods.
Workload growth and current performance analysis
can be addressed in this way. (Clearly for service
level prediction, where contention and queuing can
dominate, different methods such as analytical
modeling are required.) Simple trends and
regression analysis can be used to review workload
growth, with confidence limits shown on the plot.

A few sample screens have been shown above.
They demonstrate that with a standard statistical
approach it is feasible to automatically isolate the
exceptions that merit reporting and so focus the
attention of the performance analyst on key areas.

10. SUMMARY

The traditional approach to performance
management and capacity planning has to be
modified to cater for new demands. The need is for
fast tools to provide adequate detail to answer the
technical questions arising from the need to maintain
required service levels in the light of changing
business circumstances. The tools need to
incorporate expert systems to save new users’ time
and to act as a reminder to experienced users to
check for possible alternative interpretations.

The tools need to cater for the complexities of client-
server distributed systems and other enhancements
to both hardware and software. Applications and
frameworks need to provide the instrumentation to
feed the data capture so that the end-user can see
the results with minimal system interference.

The statistical analyses outlined in this paper can
play a valuable role in isolating significant
correlations and patterns of events. Disparate data
can then be integrated into a format and language
appropriate to the typical technical user. Thus it can
enhance the timeliness of performance management
and control. Further, such systems can be improved
either by learning from its own experience or by
experts applying their expertise to improve it, so that
the skills shortage issue can be addressed.

Performance management is alive and well, but
needs to heed new requirements. The objective is to
provide fast analysis tools that can be applied
automatically where accuracy is less important than
gaining a general sense of direction. The evolution

of statistical, intelligent and expert systems will
gradually provide a sensible degree of automation
and intelligent support for Performance Management
and Capacity Planning across the enterprise.

ACKNOWLEDGEMENTS

I would like to thank Kawano San for his inspiration
on this theme, Dr Uli Harder for trying to explain
some of the maths to me, Andy Mardo for clarifying
its significance, Liz Norris for creating the new CI
code and Tim Foxon for providing the case study.

REFERENCES

[1] Computational Intelligence, Poole, Mackworth &
Goebel ISBN 0-19-510270-3 OUP 1998

[2] Methodology for System Performance
Evaluation, Kawano, CMG97

[3] Knowledge Based Decision Support for Capacity
Management Tools, Lowe, CMG91

[4] Performance Engineering – Better bred than
dead, Wilson, CMG91

[5] Knowledge-Based Systems for engineers and
scientists, Hopgood, ISBN 0-8493-8616-0 CRC
1993

[6] Statistics without tears, Rowntree, ISBN 10-9-8
Penguin 1981

[7] Introduction to Statistical Modelling, Krzanowski,
ISBN 0-340-69185-9 Arnold 1998

	Adam Grummitt�Metron Technology Limited
	
	
	
	Pk.Day Maximum Response (s)	2.0

	6. KNOWLEDGE-BASED INFORMATION SYSTEMS
	8. STATISTICAL METHODS
	Variable
	CPU SUMMARY
	I/O SUMMARY
	USER SUMMARY
	COMMAND SUMMARY
	ANALYSIS PERIOD 20/04/99 09:00 - 20/04/99 17:00
	SYSTEM SUMMARY
	FILE I/O SUMMARY
	SESSION SUMMARY
	
	
	
	
	
	
	Logical	Session	ulative

	Distribution Statistics
	Significance
	Significance Testing
	CORRELATION REPORT

	FOR INSTALLATION SDH, SYSTEM IMAGE ALPHA
	ACKNOWLEDGEMENTS

