
Understanding and Optimizing Disk I/O Page: 1
Paper ID#-78

HP INTERWORKS 2000 PAPER PRESENTATION
Understanding and Optimizing Disk I/O -

Strategies, Tools, Hardware, and
Applications

or
Winning over Disk I/O worries

By Jeff Kubler
Kubler Consulting, Inc.

Introduction

As CPU power and speed increase, with the advent of new and faster
processing chips, the importance of fast access to data increases. Strategies
that help the disk controllers quickly retrieve and pass needed data to processes
requesting them are vital in making process throughput faster. Strategies for the
reduction of disk I/O is important in reducing the time processes require to
complete. A proper understanding of these strategies is vital in promoting fast
response time.

This paper will first generally discuss disk I/O, I/O strategies, tools used in
enhancing I/O, hardware used to better (by enhancing efficiencies) or make I/O
more secure, and applications that can be used to improve I/O. The paper will
attempt to leave you with different strategies for “Winning over Disk I/O Worries”
to help you have the keys for success in this arena.

Mike Loukides said of disk I/O “This is the single most important aspect of I/O
performance.” From System Performance Tuning By Mike Loukides O’Rielly &
Associates, Inc.

The general issue in helping your disk environment become as efficient as
possible is the issue of data locality. The term “Data Locality” describes the
location of data on disk (it is sometimes referred to as locality of reference).
Data can be located in more or less efficient ways that can help make disk I/O
more or less efficient. Data Locality encompasses both the issue of the
placement of files on disk or on multiple disks and the issue of records within the
files placed on disk. The many different relational databases make any generic
conversation difficult. The lack of system available commands capable of
analyzing the internal structure make a specific conversation difficult. Thankfully,
many of these database structures come with their own analyzer which helps
provide guidance when optimizing them for greater efficiency. What general

Understanding and Optimizing Disk I/O Page: 2
Paper ID#-78

information we can provide about the whole area of relational database will be
presented as part of this paper.

Some general comments about disk efficiency: it is usually good practice to
spread the disk workload as evenly as possible and across as many disk drives
as possible. Also, provided disk technology is the same, smaller drives and
more of them is usually better. Another generally accepted dictum is to get as
may controllers as possible, in fact a one for one relationship is great (one
controller per disk drive) however, usually too expensive to implement.

What is disk I/O?

The first question to be sure we have a general understanding of is the question,
“What is Disk I/O?” Disk I/O is the act of retrieving and/or updating information
stored on a disk drive or in a disk environment.

 We know that all system activity begins with a process. In the life of a process
data is usually one of the key elements needed for completion of that processes
purpose. The required data may reside in one of two places, either in memory or
on disk. If the data is in memory it had to be moved there from disk at one time
and if changed will eventually need to be posted back to disk. In the illustration
that follows we show how the disk is involved in serving the needs of the
process. Disk will go out and either read or update data depending on the needs
of the process. Since disk I/O is the slowest part of any function we always seek
to avoid as much disk I/O as possible, but it is still central to most processes.
Disk access is usually thought to be at least 7 to 8 times slower (could be 100 to
1000 times slower) then memory access. Therefore, we can conclude that more
main memory is always good and helpful in improving performance. How you
use that memory and how it is allocated among buffer caches and general
memory is a question for another paper.

Understanding and Optimizing Disk I/O Page: 3
Paper ID#-78

Anatomy of a Process
1. Interactive (Real Time) Process

← Transaction Turn-around Time →

ENTER PROMPT ENTER

Computer Think/ Think/
Process Time Type Talk to Customer Type

 ← Response Time → ← User Think Time →

 CPU Processing Time

Memory Disk I/O
 Manager I/O Completion

 1 2 3 4 5 Repeat 1-5
Until Finished

Disk I/O Components

O/H Seek Time Latency Xfr

 Figure 1 - Anatomy of a Process

In the illustration, “Anatomy of a Process” we see broken out several
components of disk I/O (under “Disk I/O Components”). These components
make up the time it takes for disk I/O to complete: Overhead - the general action
of talking to the disk controller, Seek Time - the time it takes to find the correct
track on disk, Latency - the time it may take to arrive at the requested data once
the correct track is located (disk drives are spinning so there is a possibility that
you will not be over the requested data when the track is located), and Xfr - the
transfer of data to the controller and back to memory. The ability to optimize disk
activity to shorten the seek times, reduce latency times, and reduce the call for
disk I/O is the goal of this paper.

Understanding and Optimizing Disk I/O Page: 4
Paper ID#-78

If you miss getting all the data you have to wait until the entire disk revolves
around again. This latency can significantly degrade the performance of the
disk.

General Measurements of Disk I/O

 Now that we have a general understanding of the tasks involved in moving data
from disk to memory for use by a process we need to find some measured
values that are good indicators of whether we have efficient or inefficient retrieval
of data. Here is a list of important indicators you can use to evaluate disk
efficiencies.

Disk I/O Queue Length
Ldev 60 05/08/96 00:12 - 23:52

03:02 06:02 09:03 12:03 15:03 18:03 21:03

0

1

2

3

4

Disk I/O Queue Length
All Disk Drives 04/01/96 07:20 - 14:13

08:01 09:01 10:01 11:02 12:02 13:03 14:03

0

10

20

30

40

50

Figure 2 – Disk I/O Queue Length

Disk I/O Queue Length - Disk I/O queue length is the number of disk I/O
requests waiting for disk access. When a process needs disk data a disk I/O
request is sent to the appropriate controller. If another request is already being
serviced the request will queue (line up) behind the previous request.

CPU Utilization
05/08/96 04:45 - 23:53

��
CPU busy

�
CPU pause

06:06 08:06 10:08 12:09 14:00 16:01 18:02 20:02 22:03

0

25

50

75

100

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

CPU Utilization by Category
03/01/96 08:10 - 16:00

�
User

��
Nice

�
Real

�
Overhead

�
Pause

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

0

25

50

75

100

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������

Figure 3 – CPU Utilization

Understanding and Optimizing Disk I/O Page: 5
Paper ID#-78

Pause or Wait for disk - This is the percentage of a processes response due to
waiting for disk I/O.

Disk Service Time by Drive (ms)
08/03/95 00:10 - 23:00

Ldev 1 Ldev 2 Ldev 3 Ldev 4

0

5

10

15

20

25

30

35

���
���
���
���
���
������

�
�
�
�
�
�

���
���
���
���
������
���

�
�
�
�
�
�

���
���
���
���
���
������

�
�
�
�
�
�

���
���
���
���
���
���
������

�
�
�
�
�
�
�

Figure 4 -- Disk Service Time

 The disk service time is a measure of how quickly data is typically received for
the average request. Different hardware types have a typical expected service
time and when the reality is in wide variance from this expectation there are
problems.

Other measurements of importance are:The disk utilization – this value tells, over
an interval how busy an individual disk device is. Having a disk device operate
above 20 or 30 percent means that the device is getting too much activity to be
effective; The total disk I/O count -- may indicate that there are simply too many
I/O’s for the environment to handle; The buffer cache efficiency – these values
(there is a read value and a write value) tell how much I/O is being reduced
because a good percentage are being found in the buffer, therefore, disk I/O
was not required.

Optimal Disk I/O
The best disk I/O is really none at all and some day there may be systems with
so much memory you effectively avoid disk I/O. However, until that day, the best
situation is to have as much memory as can be afforded or is configurable, the
fastest disk I/O environment possible in view of other considerations such as
High Availability, and a tuned application and database engine which avoids
unneeded disk I/O.

Causes of Disk I/O Inefficiency
Generally, disk I/O inefficiencies are said to occur whenever I/O could have
eliminated or reduced had the needed data been more efficiently located on disk.
Sometimes performance must be sacrificed in order to ensure other goals are
met such as high availability requirements and data integrity needs. However,
even when choices are made to sacrifice some performance much can be done

Understanding and Optimizing Disk I/O Page: 6
Paper ID#-78

to optimize I/O. A number of disk I/O issues cause the general I/O problems
most sites encounter. Fragmentation, disk I/O imbalance, lack of disk space,
database engine inefficiencies, poorly planned file systems, poorly configured
systems with too little swap space, the use of networked file systems, blah, blah
all conspire to make disk I/O inefficient. Before discussing these two quick
asides need to be made, one is to discuss the question of data integrity Vs
performance and the other is the importance of adequate memory.

Data Integrity VS Performance
An important question when thinking about disk I/O should begin your thought
process on disk I/O optimization: “How important is the data I am storing?”
Sometimes choices are made which actually make for a less efficient I/O
environment simply because of a greater need for data integrity.

Memory Vs Disk

The symbiotic relationship between memory and disk needs to be kept in mind at
all times. Several things about this relationship should be kept in mind: too little
memory makes the disk I/O environment work harder, improperly utilized
memory (too much or too little buffer cache) can also have a detrimental impact
on disk I/O.

Fragmentation
 Fragmentation is defined as the process of breaking things up into smaller
pieces. A fragment is a part detached or broken off of the whole. More
specifically fragmentation is defined as “The propensity of the component disk
blocks of a file or memory segments of a kernel data structure to become
separated from each other.” The greater the fragmentation, the more work has
to be performed to retrieve the data.

 In disk I/O terms fragmentation exists on two levels: file fragmentation refers to
the tendency of files to be split into pieces or extents. This happens in order to
make sure that a file can be built. The draw back here is that, for many types of
I/O, more time is now needed to find and fetch all of the needed extents.

Disk Fragmentation

 Disk fragmentation refers to the phenomena that occurs when the usage of the
disk itself becomes very “patchwork” like. As files are built and purged the space
they took up may not be readily usable and new files who use the space may
need to be cut into many extents. The illustration below helps in understanding
what fragmentation looks like from the disk fragmentation view.

Understanding and Optimizing Disk I/O Page: 7
Paper ID#-78

Figure 5 -- Disk fragmentation illustration

File Fragmentation

 File fragmentation results from a disk that is quite full or from an already
fragmented disk. In order for the file system to find space for a file it must break
the file up in to many pieces called extents. Having multiple pieces of files
results in a longer time being spent in disk seeks, more time in latency, and more
disk transfers.

 Frequent creation and deletion of files, and the deletion and extension of logical
volumes may cause fragmentation.

Disk I/O Imbalance

 Disk I/O imbalance refers to what occurs when one or more disk devices exist in
an environment. If requested I/O ends up on one or more of those drives more
than others you have an imbalance. This results in more pause for disk and
higher disk I/O queue lengths as more requests contend for I/O on that device.
This makes processes wait longer for requested information and results in slower
response times. The figure below illustrates what a disk I/O imbalance looks
like.

Understanding and Optimizing Disk I/O Page: 8
Paper ID#-78

Disk I/O by Drive
09/29/97 - 09/30/97

c0t10d0 c0t5d0 c0t8d0 c0t9d0 c1t2d0

0.0

0.5

1.0

1.5

2.0

��
��
��
��
��
��
�����
���

��
��
��
��
��
��
��
��

��
�����
��
��
�������

��
��
��
��
��
�����

��
��
��
��
��
��
��

�����

 Figure 6 -- Disk I/O by Drive

 The vertical axis in Figure 6 is the average number of I/O’s per second measured
over the interval.

Inadequate Disk Space

Adequate disk space is essential to any computer system. Monitoring disk space
is always an important facet of system performance. Running out of disk space
(either on a system wide basis or a file system basis) can cause your system
performance to stop altogether or a lack of disk space can at least prevent
certain programs and applications from executing. The df command will show
used and available disk space.

File System Optimization

Several different files systems are currently available. HFS - High Performance
File System, VxFS - Veritas File System (JFS or Journaled File System) and
NFS - Network File System are usually the names that come to mind. The
choice of file systems and the configuration options used in setting them up can
be a performance issue.

The High Performance File system - HFS- is probably the least prone to cause
performance issues due to configuration issues.

The Journaled File System (JFS) is generally seen as a good way to accelerate
the speed of recovery should a system failure occur. This file system performs

Understanding and Optimizing Disk I/O Page: 9
Paper ID#-78

an integrity check in seconds that can be favorably compared to the file system
check 'fsck' offered with the standard UNIX file system.

NFS Diskless is the technology for sharing file systems and other hardware and
software resources among a group of computers in one or more LANs. NFS
places important data across the LAN and is thus open to many performance
problems as now the performance of the disk drive and the network are
important and potential problems.

Once the choice of file systems has been made the individual file systems need
to be configured. The newfs command is used to create new filesystems. When
creating file systems try to adhere to these goals: distribute the workload evenly,

• keep similar types of files in the same file systems, keep similar projects or
groups together, give each filesystem a block size appropriate to the files it will
contain, use as few filesystems per disk as possible, avoid the use of file system
paging if possible.

Configuration issues
A system configured to too few controllers per drive may run into an I/O
bottleneck as too much I/O tries to flood the channel. The environment for this
situation would have to occur in a very heavy I/O situation.

The configuration of swap space can lead to another configuration problem.
Swap space needs to be adequate (the usual rule of thumb is twice the amount
of physical memory - a smaller percentage for larger memory systems) and
should be spread over several devices. Inadequate or poorly planned swap
space can end up putting a great amount of I/O on one or more disk drives.

Relational Database inefficiencies

In the UNIX world there are many different databases in use. A few examples
include: ORACLE, INGRESS, and INFORMIX. The normal make for these
relation databases usually includes the following files: TABLES - which hold the
data; INDEXES - These provide faster retrieval of data; Rollback logs -
containing the transaction information needed to take out a transaction if it is
aborted (Also to allow the database to recover after a system or database crash);
Before IMAGE LOGS (possibly redo logs - ORACLE or physical logs -
INFORMIX) contain information used to reconstruct the database during
recovery.

The issues here are that inefficient tables, inappropriately created indexes (or
the lack thereof), improperly placed rollback logs or before image logs will hinder
performance. What follows is a few quick bits of information to help understand
relational databases and a few rules to help.

Understanding and Optimizing Disk I/O Page: 10
Paper ID#-78

RDBM
MAKEUP

TABLE
DATA

INDEX
ROLLBACK

LOGS

BEFORE
IMAGE LOGS

Figure 7 - Typical makeup of Relation Database

Most of the relational databases in use also have their own monitoring programs
which allow you to monitor and tune the databases. Check with your database
provider to find out how to use the appropriate monitor. Performing the needed
housekeeping measures to the tables and indexes will help keep you database
in high efficiency. To tune the disk environment for RDB usage try the following:

• Optimize placement of Tables and Indexes - RDBMS’ work best with their
data tables spread over as many physical disk drives as possible. This
lowers the amount of disk head contention. Several small drives should be
preferred to a single large drive.

To work toward the best locality use the following rules:

• Place table files, indexes, and logs on separate disk drives.

ABASE BLESABASE EXESACLE EDOOGSRATINGSTEM

Figure 8 - Typical disk configuration for Oracle

Understanding and Optimizing Disk I/O Page: 11
Paper ID#-78

Strategies

Many strategies exist in the area of disk I/O. Some are inherent in the operating
system. Some can be configurable choices to either use and/or ignore. Some
tend to either support data integrity or help the area of disk I/O. Others deal with
specific processes that are helpful in optimizing specific database or file access.

Memory - memory is the scratch pad for all current work. Memory is checked to
see if needed data is resident before going to disk, so any data that can be found
here will help eliminate I/O. Part of this attempt is a part of memory called the
buffer cache.

Buffer Cache - “The buffer cache is a pool of buffers that provides intermediate
storage for data moving to or from the system’s disk drives.” System
Performance Tuning, by Mike Loukides. Buffer cache size is of key importance.
It is controlled by a min and max percent and too high a value can cause
occasional problems, as demand for user memory can not be met. Too low will
cause additional I/O.
Some strategies are made by choice. Here are some of the available:

JBOD - This stands for “Just a bunch of disks” and is the simplest and possibly
the most straightforward way of understanding and working with disk I/O
performance.

Striping- disk striping is another technique some suggest to increase per-process
disk performance. With disk stripping the file system is placed across more than
one drive. The files in the file system are also across more than one drive. This
should allow disks to work in parallel. Disk stripping is effective for programs that
stress disk I/O to large files.

File System vs Raw I/O - is favored by database applications as it bypasses the
file system management routines. Reads and writes are made directly from
memory to the surface of the disk.

 “This is a topic that has been generating much discussion and confusion within
the Oracle community. The general assumption that raw devices will always give
you a 10-15% performance boost is not always true. Disks and OS file system
technologies are changing rapidly and there are cases where OS level buffering
could provide better performance than raw devices. Also, another factor to
consider when deciding between raw devices and file systems is the
administrative overhead of raw devices.”

“The difficulty in deciding between raw devices and file systems is that it is not
possible to predict in advance whether your database will benefit from raw
partitions. Also, it is not easy to convert database files that are stored on raw
devices to a file system and vice versa. Therefore, you should tune other parts
of your subsystem first and only move to raw devices when I/O is still a

Understanding and Optimizing Disk I/O Page: 12
Paper ID#-78

performance bottleneck.“ Oracle 7 Tuning Reference Guide, For OLTP
Applications, Version 1.0, Design And Migration Services, Oracle Worldwide
Alliances, March, 1997.

Tools

Database reloads and loads. All RDMS engines contain the ability to unload the
current data, delete the table and re-add the information. Re-indexing follows
and what you should end up with is a more efficient storage of data and a more
efficient database. How often you perform this depends on the environment and
the demand for faster access to the data.

System reloads - system reloads are an effective means to reduce or eliminate
disk and file fragmentation. However, they can be costly in time and do rely
upon good data preserved on tape.

Online JFS on-line defrag tool - HP OnLineJFS allows administration of a
Journaled File System without taking it offline, eliminating the need for planned
downtime. JFS expansion, backup, and disk defragmentation can all be
achieved on-line using HP OnLineJFS.

Tools in the disk I/O optimization area consist of a number of commands: iostat
- Reports I/O statistics for terminals, disks, and the system; Bdf - reports the
number of free disk blocks; glance and sos - two commonly used and helpful
monitoring tools; link - symbolic links allow for the movement of files and the
creation of a directory entry pointing to the file on the new location; df command -
reports the number of free file system blocks.

Hardware

The appropriate hardware is vital in the gaining the proper performance from the
I/O environment. Regardless of what configuration/software/hardware is in use
,it is important to keep up with technology. Here are several different options in
the hardware area:

Mirroring - This allows data to be protected by placing a copy of the data in two
places. The big disadvantage here is that you have to have twice to hardware.
This can be expensive as you must pay for more disk drives, controllers etc. The
issue with mirroring is that there are now:

• 2 places to write to

• 2 places that can be read from.

If writing to a mirrored logical volume, LVM sends the request to all the physical
extents in the logical extent in a parallel way. This duplicity causes some
additional overhead. The system must process each request so there is a
possible performance degradation. However, reads have two potential places to
read from.

Understanding and Optimizing Disk I/O Page: 13
Paper ID#-78

RAID Configurations - RAID (or Redundant Array of inexpensive Disks) is a
group of disk connected to the same controller. There are a number of different
configurations of RAID drives available. One issue with arrays is that they tend
to be of large size. More I/O comes to these devices. Because of this they have
a tendency to cause a bottleneck on I/O.

AUTORAID - AutoRAID is a high performance fault tolerant RAID subsystem that
is said to require little or no knowledge of RAID to install and configure.
AUTORAID disk array technology offers the fault tolerance of RAID but is said to
be easier to use. AutoRAID Array Technology continually tunes the array for
optimal performance and intelligently adapts to the workload.

Solid State Disk - are extremely fast storage devices that are designed to appear
as a standard disk drive to your operating system. Instead of rotating mechanical
heads and platters, they utilize solid-state memory (RAM).

SSA - SSA offers alow-cost, full-duplex, frame multiplexed communication
interface for the interconnection of storage devices, storage subsystems,
servers, workstations and PCs. SSA technology is said to provide superior
performance due to its greater bandwidth for multiple, concurrent, full duplex I/O
operations.

Large Cached Systems - A number of vendors combine a large disk farm with a
large amount of memory to act as a cache of disk data. EMC is one of the most
notable (others include SEEK Systems, and Imperial Technology – sorry if I have
neglected others) describing their systems as “Integrated Cached Disk Arrays”.
These devices are often seen as both potential disk I/O problem solutions and
high availability solutions. For EMC, in particular, I have heard the value of
100GB’s of storage as a good decision point for selecting EMC as the high
availability disk subsystem of choice. The others I have no “rule of thumb” to
recommend their use but they can be great for highly active OLTP environments.

The following general information should be kept in mind in reference to disk
hardware. The five most common disk interfaces are: single ended SCSI - this
has a transfer rate of 5 Mb per second. These average about 15 to 20
milliseconds for disk service time; Differential SCSI - can transfer up to 10 Mb
per second and the cable connection can total 25 meters in length; FAST &
Wide SCSI - it gives a transfer rate of 20 Mb per second. These average 10 to
15 milliseconds per I/O; HP Fibre Link (HP-FL) - These average 30 to 35
milliseconds per I/O; HP Instrument BUS (HP-IB) - the transfer rate is no more
than 1 Mb per second. These average 30 to 35 milliseconds per I/O.

The capabilities of each type vary in terms of their ability to retrieve data. The
fastest are the Fast and Wide SCSI.
 Several disk drives can be placed on one controller. The ideal here would be to
have one controller per drive but cost usually makes this ideal impossible. As
practical limit, you should limit your systems to 7 single ended devices per
controller,15 fast and wide devices per controller, 6 HP-IB devices per controller

Understanding and Optimizing Disk I/O Page: 14
Paper ID#-78

and 8 HP-FL devices per controller (of course having devices or as old a
technology as the last two violates other rules - get ride of um!). Different
vendors may have their own limitations gained from experience. You should ask
them for their limitations!

Applications

Applications to aid disk I/O are found either from Hewlett-Packard as part of the
available software, add on purchases or from third parties.

Logical Volume Manager - LVM is a tool for managing disk space with more
flexibility than was available. Prior to LVM disk were carved out into contiguous
partitions which made up file systems. Increasing the size of a partition meant
that space on the disk had be found. LVM allows a file system to be spread
across disks of different types. LVM - LVM is an additional layer of software
between the file system and the device drivers. At file system creation, newfs
parameters are read from /etc/disktab to obtain the best parameters for the new
file system, based on the disk type. LVM allows a file system to be spread
across disks of different types. The additional level needs to be processed so
there is a performance penalty to pay for using LVM. However the increased
flexibility in space usage and spreading out of I/O probably makes it well worth it.

These two products are from EAGLE Software, Inc.
Diskpak - DISK_PAK and DISK_PAK OnLine! are file/file system defragmenters.
They make each individual file contiguous, cluster directories together, and make
free space contiguous. They should be run periodically (weekly/monthly) when
the system is fairly idle.

With DISK_PAK, the file system had to be un-mounted during optimization.
DISK_PAK OnLine! replaced DISK_PAK, and runs with the file system mounted.
Both work ONLY on HFS file systems on HP-UX—not on JFS, and obviously
NOT on raw partitions.

Seekrite - SEEKRite works with any file system (HFS or JFS), AND with raw
partitions. It ISN'T a file defragmenter--it doesn't know anything about "files". It
includes a device driver that is put in the data path (similar to LVM) to monitor
how often each block of data is accessed. The disk can then be "optimized" by
clustering the most frequently accessed blocks together to create an "organ
pipe" distribution of accesses, to reduce average seek distance.

Here are actual histograms. First, before SEEKRite. It shows that accesses are
widely spread across the disk, resulting in a relatively high average "expected
average seek distance"--if the accesses occurred randomly, the heads would
have to seek, on average, 28.7% of the way across the disk.

 Access distribution without SEEKRite.
 Expected avg seek: 28.7%

Understanding and Optimizing Disk I/O Page: 15
Paper ID#-78

 6.1 | X |
 | X |
 5.5 | X |
% | X |
 4.9 | x X |
o | xx Xx X |
f 4.2 | x XX XX X |
 | X XX XXxX |
A 3.6 | X xXX XXXXx |
c |x X XXX XXXXXx |
c 3.0 |X X XXX XXXXXX |
e |X X XXXx XXXXXX |
s 2.4 |X X x XXXX XXXXXX |
s |X xx x X x x X XXXX XXXXXXxx |
e 1.8 |X XXx x x X Xx X XxxXxXXXXxXXXXXXXX |
s |X XXXxX x X Xx xXXxXxXXXXXXXXXXXXXXXXXX x|
 1.2 |XxXXXXX X Xx xxxXX XXXXXXXXXXXXXXXXXXXXXXXXxX|
 |XXXXXXXxxxxxXxXXxxXXXXXxXXXXXXXXXXXXXXXXXXXXXXXXXX|
 0.6 |XX|
 |XX|
 0 +--+
 0 10 20 30 40 50 60 70 80 90 100
 Disk Address (% of disk size)

After optimization with SEEKRite, the most heavily accessed blocks have
been clustered together, and the expected average seek distance has been
reduced dramatically.

 Access distribution with SEEKRite (optimized).
 Expected avg seek: 16.5% Improvement: 42.4%

 16.3 | X |
 | X |
 14.7 | X |
% | X |
 13.1 | Xx |
o | XX |
f 11.4 | XX |
 | XX |
A 9.8 | XX |
c | XX |
c 8.2 | XX |
e | XX |
s 6.5 | XX |
s | XX |
e 4.9 | xXXx |
s | xxXXXXxx |
 3.3 | xxXXXXXXXXx |
 | xxxXXXXXXXXXXXxxxx |
 1.6 | xxxxxxxXXXXXXXXXXXXXXXXXXxxxxxxx |
 | xxxxxxxXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXxxxxxxx |
 0 +--+

Understanding and Optimizing Disk I/O Page: 16
Paper ID#-78

 0 10 20 30 40 50 60 70 80 90 100
 Disk Address (% of disk size)

 Number of chunks to move: 419255/420922 (99.6%)

The right application can save you a great deal of money in hardware purchases.

Solutions

Do you have existing I/O bottlenecks? Most will find that they do, and that they
have been living with them for a long time. However, they tend to catch up with
you so my recommendation is to be proactive. Manage these now to avoid the
performance problems that will come your way as the disk I/O environment
degrades and users demands grow. Here are a number of ideas to use in the
process.

Optimize your databases and database access - Optimizing your database
access usually involves making sure that, first of all, there are indexes for the
most highly accessed inquiries. Optimizing databases means unloading the
table data, deleting the table and reloading. Once the table is reloaded, re-
indexing must also be performed. For each particular RDBMS in the environment
you will need to master the optimization tool that comes with the particular
database you utilize.

Spread out the I/O - For Unix this revolves around the creation of the file system.
You may need to backup the filesystem, rebuild it and tar the files back to disk.
What follows is a description of a method for spreading the I/O out on a system
by moving subdirectories to new disc devices. It is involves moving the
subdirectories to another disk and then using a symbolic link to point things to
the new location.

Upgrade to the latest technology disk drives - The Fast and Wide SCSI drives
will out perform the HPIB/HPFL disk drives for most types of I/O. While the
HPIB/HPFL drives have a disk service time of 30 to 35 milliseconds the Fast and
wide average 15 milliseconds doubly the speed of your I/O environment.

Avoid configuration problems - Don’t configure too many drives on one controller.
Give careful consideration to the type of I/O a file system will handle when
setting up the file system. If you know this at set up time I/O can be optimized.
When setting up file systems in UNIX set them up with the files they will hold in
mind and separate the related files.

Deal with fragmentation - Over time files and disk become fragmented. This
fragmentation results in longer disk seeks times, more overhead, more I/O,
longer disk queue lengths, and a slower response time. Use a reload of the
system to treat disk and file fragmentation. Disk Pak and Seekrite are
alternatives to a reload.

Understanding and Optimizing Disk I/O Page: 17
Paper ID#-78

Avoid disk space problems - Pay attention to the files the system uses. Purge or
Delete old or unused files, and archive little used files. Get enough disk space to
handle the workload.

Conclusion

In general you should follow strategies that lead to more balanced and faster I/O.
Databases need to optimized using the available means for each platform.
Placement of files which make up databases is an important step in good I/O.
Files that are related in usage should be kept on separate drives whenever
possible. Disk drives should be kept in the cleanest state possible. Unused files
should be purged in order to provide adequate disk space. Disk and file
fragmentation should be treated with either a reinstall of the files or the usage of
a product to defragment the files and the disk drives. Careful planning when disk
drives are configured, file systems are built, and volume sets are created should
help kept as many drives in service as possible. When many disks are involved
in the execution of I/O disk queue lengths and pause for disk (or wait for disk) is
kept to a minimum and per process disk performance is enhanced.

Finally, disk I/O should be minimized, optimize and scrutinized. Applications
which perform a large amount of I/O should be looked at for ways to decrease
the I/O. The size of memory should be maximized in order to ensure that
response times to users are and minimized. Disk I/O is the weakest and slowest
link in the resource chain so it pays to work on it.

	Introduction
	What is disk I/O?
	
	
	
	Anatomy of a Process

	General Measurements of Disk I/O
	Optimal Disk I/O
	Causes of Disk I/O Inefficiency
	Data Integrity VS Performance
	Fragmentation
	
	Disk Fragmentation
	File Fragmentation

	Disk I/O Imbalance
	Inadequate Disk Space
	File System Optimization
	Configuration issues
	Relational Database inefficiencies
	Strategies
	Tools
	Hardware
	Applications
	Solutions
	Conclusion

