

By: Jeff Kubler Kubler Consulting jrkubler@proaxis.com www.proaxis.com/~jrkubler Phone: 541-745-7457

What is Performance?

- The execution of an action, something accomplished, the fulfillment of a request,
- Good performance -- when requested actions complete within expectations. Bad is when they don't!
- Performance is important because users have expectations!

Introduction

- Four basic macro areas: CPU, Memory, disk, network. Several micro areas: database, application.
- Performance Management: keeping resources adequate
- Resource restrictions are often called "bottlenecks"
- Bottlenecks are first encountered at the "Knee in the Resource Curve"

Basics

- Importance of response times.
- Avoid resource overuse or bottleneck
- Bottlenecks often called "Knee in Curve"

Performance -- General Terms

- Resources often measured as a percentage of a whole
- Sometimes a count is the important measurement (example: the count of processes waiting in a queue)
- Averages are often the important indicator
- Performance may be acceptable until one more "straw" is added.

Macro Area: CPU

- CPU Activity
- CPU Activity States
 - Busy
 - Useful Work
 - Idle
 - CPU in the "Bank"
 - Paused for I/O
 - Wait for Disk

CPU Run/Ready Queue

Macro Area: CPU

- Process activity handled by the scheduler
- Scheduler has set time slice of 1/10 of a second
- Processes assigned either Real Time or Time Share
- Priorities calculate dynamically

CPU: Measurement Metrics

CPU:

- Total Busy: the resource as 0 to 100 percent utilized.
- Run Queue: the number of processes awaiting the CPU.
- Total Busy makeup: User, Real, Nice, Nnice, System, Interrupt, Context
 Switching, Trap, Mem, and Idle. Capture
 Ratio helps understand CPU usage.

CPU: Measurement Metrics -Scheduler's Rules

- (R)Real Time xecute at highest priority.
 - Import system proc
 - preempt low priority
 - runs until sleeps
- Time Share are time sliced 1/10 sec.
 - Made up of sys&user
 - higher pri proc can preempt

- Round Robin scheduling
- Priorities are recalculated dynamically
- Nice value can be used to adjust priority calculations
- statdeamon
 recalculates process
 priorities

CPU: HP-UX Process Priority Calculation

newpri=("recent CPU"/const) + basepri + nice)

Macro Area: Memory

Virtual Memory/Swap

- Inexpensive means to make Main Memory look big!
- Paging handled by the vhand process
- Swap (<=9.04) versus = Deactivation (>=10.0)
- 11.0 Supports Variable-Sized Pages (Better Performance)

Memory: Allocation and Use

Memory: buffering and virtual

Memory: VHAND Processes

- paging a technique which takes the pages (virtual memory address) from memory and moves them to virtual memory (on disk). This is called by the VHAND process.
- page fault and invalid address. This occurs when the CPU requests a page from memory and it does not find the page.
- Deactivation moving a process from the swap space on disk to main memory and from main memory to disk. This is done by the swapdaemon.
 - thrashing when a process spends more time paging than processing. A high number of page faults.

Memory: Paging and Deactivation Thresholds

- Lotsfree Upper threshold at which paging daemon vhand will begin stealing pages
- desfree "Desired Free" Panic button for Swapper- lower threshold for vhand
- minfree Least amount of memory that is tolerable before the system begins process deactivation (sys proc sched)

Memory: Measurement Metrics

Memory Analysis (scratch pad for work):
 – Memory Used %, Virtual Memory %.

- Paging (in and out), Deactivations
- Read and write buffer cache hits.

Macro Area: Disk

- Disk I/O (long term storage):
- Virtual Memory:allows programs with memory requirements > than memory to load.
- Swap Space:function that moves pages to disk and back.

Disk: Measurement Metrics

Metrics:

- Disk I/O Queue Length requests waiting for service.
- Total I/O total reads and writes.
- Disk service time % of time a device is used.
- Read/Write hit buffer cache efficiency how many I/O's eliminated due to buffer

Disk: Data Locality

Describes the location of data on disk (it is sometimes referred to as locality of reference)

Data Locality encompasses both the issue of the placement of files on disk or on multiple disks and the issue of records within the files placed on disk.

Disk: What is Disk I/O?

Act of retrieving and/or updating information stored on a disk drive or in a disk environment.

Overhead - Negotiating the controller. Seek Time - find data Latency - wait for data spin. Xfr (transfer of data) -

bring data over. HP INTERWORKS 2000 UNIX Performance Training -- Kubler Consulting, Inc #81

Disk: Anatomy of a Process

All activity exists a process.

- Processes usually rely on data. Data in one of two places, in memory or on disk.
- If on disk then if updated it must be posted back to disk.
- Disk access is the slowest link.

Disk: Problem I/O Issues

- Disk I/O Imbalance
- Hardware
- Configuration issues
- Disk and File Fragmentation
- File system choices and configuration (default values in JFS favor data integrity).

- Buffer cache configuration and use
 - not enough causes additional I/O
 - too much and users memory storage suffers
- Stripping can become fragmentation.
- Database inefficiencies

General Measurements of Disk I/O

- Disk I/O Queue Length
- Pause or Wait for I/O
- Disk Service time
- Disk Utilization
- Total I/O count
- Buffer Cache efficiency
- Response times

Macro Area: Network

- Network (data transfer, NFS activity):
 Network traffic in packets.
- Problems:
 - Poorly planned and overtaxed networks
 - shared files on network file systems
 - inadequate hardware

Network: Measurement Metrics

- Packets in/Packets out
- Errors in/Errors out
- % of Collisions
- Count of errors

Micro: Application Analysis

Use workload groupings when possible. Glance, SOS, etc. provide these.

Look at individual processes. What files do they open? What wait states do they encounter?

Relational Database inefficiencies

- Example: ORACLE, INGRESS, INFORMIX, PROGRESS
- Consist of: Tables, Indexes, Rollback logs, and Before Image Logs
 - Suggestions:
 - Optimize placement of Tables and Indexes.Place table files, indexes, and logs on separate disk drives.
 - Use supplied optimization tools

Strategies

Memory

- Buffer Cache
- JBOD
 - balance I/O, work on fragmentation,
- Stripping
- Raw I/O Vs. File System I/O

HP-UX Memory - How Much is Enough?

Kernel minimum - 7 MB

Basic OS Utilities - 10 MB

Minimum total for a few light users - 16 MB

MB per heavy users - 2 to 5 MB

X users (per user) - 10 MB

RDBMS app (server) - 10 to 25 MB

Each RDBMS user (clients) - 1 to 3 MB

Configuration issues in the Disk Environment

make sure you have enough -- use bdf
avoid too many devices per channel

- How many is too many? General rule: avoid more than 10 fast & wide per card
- Look to any third party providers for additional info
- Too small or inappropriately placed swap space or buffer size.

Configuration Issues -CPU

- CPU's delivered in "Families", relative performance rates them in respect to members of the family and others.
- Multi-processors allow easy scalability
- The MP effect means that additional CPU's do not give the same impact as you increase

Unix Onboard commands

CPU

- Top displays top 10 CPU users
- sar gathers info on system use
- -ps (-ef) displays process info
- uptime gives load averages

Memory

- vmstat (-n -s) reports virtual memory info
- iostat (-t) displays I/O rate for disks

Unix Onboard commands Disk

- ioscan displays I/O devices
- bdf report free disk blocks
- swapinfo system paging info
- LVM commands: vgscan, vgdisplay, etc.

Network

- netstat (-s) display network status
- lanscan lan device config and status
- lanadmin lan administrator

			\mathbf{C}				1					
	0	\mathbf{D}	(0)	m	m	anc	1					
Tood a			2 21	1 7	1 1	E A						
102 pr	rocess	ses:	∠.3⊥, 100 s	⊥./' leep ⁻	ina.	. 2 runi	nina					
Cpu st	ates:		±00 D.	reep		2 1 4111	9					
LOAD	USE	IR	NICE	S	ΖS	IDLE	BLOCK	SWAIT	INTR	SSYS	5	
2.31	90.8	38	0.0%	9.2	28	0.0%	0.0%	0.0%	0.0%	0.0%	5	
Momora	005	1012	(E 0 0 0 77		. 1	1010072	/1/5001					a a d t 1 / 0
Memory	/• 02/	ZR	10066)) rea	ά⊥,	TATOOK	(145201	() VIL	ual, Z	LO4N LI	ee Pa	age# 1/o
TTY	PID	USE	RNAME	PRI	NI	SIZE	RES	STATE	TIME	%WCPU	%CPU	COMMAND
?	1730	roo	t	235	20	448K	184K	run	420:18	65.89	65.78	_mprosrv
?	4615	roo	t	168	20	1272K	520K	sleep	245:01	25.25	25.20	_progres
?	1563	roo	t	128	20	480K	216K	sleep	432 : 17	2.04	2.04	_mprosrv
?	6187	roo	t	48	0	1732K	1788K	sleep	2:30	1.01	1.01	lpsmid
?	961	roo	t	154	20	8K	16K	sleep	188:53	0.93	0.93	nfsd
This p	proces	ss s	ervices	s NFS	S re	equests	from re	emote s	systems.	•		
?	962	roo	t	154	20	8K	16K	sleep	185:05	0.91	0.91	nfsd
?	956	roo	t	154	20	32K	40K	sleep	185:28	0.91	0.90	nfsd
?	957	roo	t	154	20	8K	16K	sleep	187 : 26	0.90	0.90	nfsd
?	7	roo	t	-32	20	0K	0K	sleep	67:26	0.32	0.32	ttisr
d1p0	6309	roo	t	178	20	208K	308K	run	0:00	0.33	0.29	_mprosrv
?	0	roo	t	127	20	0K	0K	sleep	71:35	0.21	0.21	swapper
?	1407	roo	t	154	20	180K	0K	sleep	71:35	0.22	0.22	swapper
?	2	roo	t	128	20	0K	0K	sleep	18:55	0.21	0.21	vhand
?	1411	roo	t	156	20	180K	68K	sleep	6:32	0.15	0.15	_mprshut

Sar (- u CPU, -b buffer, -d device, etc.)

sar -u 1 10

HP-UX pointman B.10.20 E 9000/831 03/01/99

21:09:44	%usr	%sys	%wio	%idle
21:09:45	1	0	0	99
21:09:46	0	0	0	100
21:09:47	0	0	0	100
21:09:48	18	0	0	82
21:09:49	0	3	0	97
21:09:50	0	0	0	100
21:09:51	0	0	1	99
21:09:52	0	0	0	100
21:09:53	0	0	0	100
21:09:54	0	4	0	96
Average	2	1	0	97

Measurement of Disk I/O - vmstat

-cpu		
sy id		
2 95		
1 97		

- Procs: Running, Blocked, Swapped
- Memory: Active Virtual Pages; size of memory free
- re: Re-claims; Page Freed but Referenced Again
- pi/po: Page In/ Out Rates (per second)
- fr: pages freed rate

iostat

Tin and tout-show char read and written
CPU metrics - us, ni, sy, id

bps - kilobytes per second, sps - seeks per second, msps - milliseconds per

	tir	tout								
	1	219		us 2	ni O	sy 2	id 96			
evice bj	ps	sps	msps							
2t6d0	0	0.0	1.0							
2t5d0	0	0.0	1.0							
1t0d2	0	0.0	1.0							
t10d0	0	0.0	1.0							
t11d0	0	0.0	1.0							
2211	t6d0 t5d0 t0d2 10d0 11d0	t6d0 0 t5d0 0 t0d2 0 10d0 0 11d0 0	t6d0 0 0.0 t5d0 0 0.0 t0d2 0 0.0 10d0 0 0.0 11d0 0 0.0	t6d000.01.0t5d000.01.0t0d200.01.010d000.01.011d000.01.0	t6d0 0 0.0 1.0 t5d0 0 0.0 1.0 t0d2 0 0.0 1.0 10d0 0 0.0 1.0 11d0 0 0.0 1.0	t6d0 0 0.0 1.0 t5d0 0 0.0 1.0 t0d2 0 0.0 1.0 10d0 0 0.0 1.0 11d0 0 0.0 1.0	t6d0 0 0.0 1.0 t5d0 0 0.0 1.0 t0d2 0 0.0 1.0 10d0 0 0.0 1.0 11d0 0 0.0 1.0	t6d0 0 0.0 1.0 t5d0 0 0.0 1.0 t0d2 0 0.0 1.0 10d0 0 0.0 1.0 11d0 0 0.0 1.0	t6d0 0 0.0 1.0 t5d0 0 0.0 1.0 t0d2 0 0.0 1.0 10d0 0 0.0 1.0 11d0 0 0.0 1.0	t6d0 0 0.0 1.0 t5d0 0 0.0 1.0 t0d2 0 0.0 1.0 10d0 0 0.0 1.0 11d0 0 0.0 1.0

Performance Monitoring tools

Third party tools

- HP products; Glance, GlancePlus, GPM, PerfRx, Perfview, Measureware.
- Lund Tools: SOS Performance Advisor, Performance Gallery
- TeamQuest, Sarcheck from Aurora Software.
- BEST1 from BGS, EcoTools, BMC's Patrol, Athene, Viewpoint, Platinum.

<u>File Edit Terminal Connection Options Window Help</u>

SOS/9000 1.12.4(c)	LPS MON, MAR 15	, 1999, 9:57 PM	E: 00:12:44 I: 0	1:00
	Glob	al Statistics —		
2 10 20	30 40 50	60 70 80 90	100 2	10 20
CPU% USI			RunQ Len	S. T. State
RHit%			Pg Out/s	COLOR NO.
WHit%		13	Deact b/s	11.5.3.2 118
IO/s U	US		I/O QLen	NOW OF STREET
	PROC	ESS STATISTICS —		
PID Name	User Name TTY	CPU% Nic Pri	RSS/Size #Rd #Wr Wa	it Resp
979 diagmond	root	0.2 20 154	1196/2376 0 0 SL	EP -
17563 uagentd	root	0.1 20 168	16/2724 0 0 DE	AU 1.3
1123 uagentd	root	0.1 20 154	1464/2200 4 0 SL	EP -
314 syncer	root	U.1 2U 154 1	1092/1720 0 6 SL	ΕP -
**************	***** Workload:A	ITTHCH Processes >		*******
1/55/ SOS	root ttypz	U.1 U 138 4	1424/5/36 V V PK	E U
7/l potion	WULKINGO	A D D 100		<u>*******</u>
74 Hetisr	root			HK - U
2 ctotdoomon	root	0.1 0-32	10/ 10 0 11	r - cn
5 Statuaemon		DEBENRMONCE ONVICE	10/ 10 0 0 3L	EP -
The CPU was used a	total of 6 1 of	its canacitu durin	na this internal	CETUIN
This interval's 'h	nn' nrocess is (P	TTN 8896) with 1 12	k of the CPII	(PIN1)
This interval's hi	nhest disk T/A us	er was (PID 17564)) with 1025 T/0's	(PT02)
Enter Command:	9100			
UPDATE RESET	SCREEN HELP	MORE	FREEZE PRIN	EXIT
INTERVAL TOTALS	MENU	KEYS	S SCREEN SCREE	4
32, 15 HP70092 T	ELNET(10.100.10.3)		? Enter Insert I	Num Caps S
Start 🞯 Pri 🕎 Mi 🔊	My 😰 Di 🖗 Eu 🔯	AC 🔍 Ex 🙎 PK 🔥 B	Baco LV	📢 🔡 🐷 9:5

- 8 ×

B3692A G	lancePlus B	8.11.01	15:3	29:20	hp	ok460	9000/80	0 1	Curre	ent Avg	High
CPU Uti	I <u>SRU</u>								I 6	5% 6%	11%
Disk Uti	I <mark>5</mark>								1 2	2% 4%	25%
Mem Uti	I S SU		75	UE	}			В	1 99	9% 99%	99%
Swap Uti		UR	R	10,10					1 42	2% 41%	42%
			 Р	ROCESS	LIS	ST ST				Users=	46
			User	(PU L	Itil	Cum	D	isk		Block
Process I	Name PID	PPID Pr	i Name	(3	800%	max)	CPU	IO I	Rate	RSS	On
udt	9191	9190 16	3 ixo3		3.4/	6.0	42.4	0.2/	0.2	4.4mb	SLEEP
udt	4002	4001 150	5 fcs2	1	.5/	1.1	7.5	0.0/	0.2	10.1mb	TERM
netisr	19	0 10) root	1	.5/	0.8	5.8	0.0/	0.0	па	SLEEP
ttisr	7	0 -33	2 root	(1.7/	0.7	4.8	0.0/	0.0	па	TERM
glance	10791	24789 150	5 jrk	(1.7/	1.0	6.8	0.0/	0.0	4.8mb	TERM
ūdt	24573	24571 150	5 jxo3	(). 0/	0.0	0.0	0.0/	0.0	21.5mb	OTHER
udt	26329	26328 150	6 gep	().0/	0.0	0.0	0.0/	0.0	27.3mb	OTHER
udt	16197	16196 150	6 rmb	().0/	0.0	0.0	0.0/	0.0	13.1mb	TERM
udt	29643	29637 150	5 gcn	().0/	0.0	0.0	0.0/	0.0	30.9mb	OTHER
sbcs	1664	1 15	5 root	().0/	0.0	0.0	0.0/	0.0	12.1mb	OTHER
udt	5371	5370 150	6 rji	().0/	0.0	0.0	0.0/	0.0	18.1mb	OTHER
udt	25002	25001 150	5 tmj	().0/	0.0	0.0	0.0/	0.0	26.8mb	OTHER
										1 aneq	of 3

Third Party Tools -- Advantages

Integrated

- Many useful screens
- User friendly
- Function key or letter command driven
- Contain help entries, interpretations & alarms
- Easier to use for reports and trends

Analysis Points

- Best with long-term evaluation
- Require "rules of Thumb"
- Move step-by-step

Change one thing at a time to find out what is most effective

Rules of Thumb

- Commonly held theorems about levels of acceptable usage.
 - CPU total busy above 85 % is not good
 - CPU Queue Length of 5 is going to begin to show poor performance, 15 and above is very bad.
 - Memory buffer cache read hit rate and write hit of less than 90 % is not good.

Rules of Thumb (continued)

- Capture Ratio (this is a ratio of the user processing / by system activity or (User + Real + Nice)/(System + Interrupt + Context Switch) = Capture ratio)). Should be greater than 3 and will definitely reflect a problem when 1.0.
- Real processing, System, Interrupt, Context Switching should not exceed 10 % as individual measures.

Rules of Thumb (continued)

- Memory % used should not exceed 80 to 90 %.
- Virtual % used should not exceed 50 to 80
 %.
- Disk I/O Queue length should not exceed
 1.0.
- Total reads & writes per drive should not exceed 50 to 60.

Rules of Thumb (continued)

- Page out rate of 10 per second is not good and an indicator of memory shortage.
- Deactivation rate of 5 processes is an indicator of memory issues.
- Network watch errors and collisions

Step-by-step Analysis

Begin Macro to Micro (CPU, Memory, disk to database engine and application)

•Remember - It is not a once and you are done! It is more of a cycle.

Step by Step

- Examine CPU, than memory, than disk, network, program and database.
- Realize the prevalance of disk issues.
- Collect data.
- Get training, books, etc.
- Check system configuration.
- Kernel parameters

Kernel Tuning

Larger issue, here are some recommendations:

- bufpages 0
- create_fastlinks 1
- dbc_max_pct 25
- -fs_async 0
- nflocks = (nfile/4)

Database Engine issues

- Very significant area.
- Data loads and unloads, re-indexing, etc.
- Be sure you have the appropriate indexes.
- Understand your I/O.
- Look at vendor recommendations

Performance Baseline

A picture or an understanding of what performance was like when response time was defined as "good" or acceptable.

Helpful in the identification of performance problems.

Conclusion

Maximize investment

- Avoid rushed "bad" decisions
- Avoid the unforeseen
- Importance of performance, this area needs attention!

Performance Problems

- Past, Present, and Future
- Crises, problem solving, learning & planning
- Do the following:
 - observe system usage
 - understand their meaning.
 - "rules of thumb"
 - Outline a plan
 - Make changes
 HP INTERWORKS 2000 UNIX Performance Training -- Kubler Consulting,Inc #81

Thanks for coming! Signup with HP-UX performance email group: hpuxperform@interex.org Informative URL://http://docs.hp.com/hpux/content/KCparams.OverviewAll.html