
1

Ignite-UX with ServiceControl Manager Applications

Author: Scot Greenidge
Hewlett-Packard

3404 E. Harmony Road, M.S. 99
Ft. Collins, Colorado 80528-9599

970-898-3387 (office), 970-898-2838 (fax)
scot_greenidge@hp.com

Abstract

Since its introduction three years ago, Ignite-UX has enjoyed a high degree of success as a
viable and important tool for the HP-UX Systems Administrator. Due to both its flexibility
and targeted management domain, Ignite-UX can be employed to solve a variety of
problems that are common to many HP-UX computing environments. That said, a certain
amount of finesse and creativity is required to properly take advantage of the most
applicable part of Ignite-UX for a given management task.

This paper attempts to communicate information about Ignite-UX in three areas. First, a
brief description of Ignite-UX, its primary use models, and features. Second, a description
of how Ignite-UX is integrated with ServiceControl Manager and the specific benefits this
integration provides to the administrator. Lastly, a scenario based discussion on how to
apply Ignite-UX to solve a HP-UX management task using ServiceControl Manager.

Introduction to Ignite-UX

So what is Ignite-UX? Ignite-UX is a tool set (i.e. a collection of individual tools) that is
designed to work cooperatively towards a stated goal. What is the goal? The primary goal
of Ignite-UX is to boot a system from an independent device (i.e. the network, a CD-ROM,
or a tape) into a self-contained environment. From that self-contained environment, file
systems are configured and fresh copy of the HP-UX operating system is laid down along
with a configurable set of system customizations. While this definition is rather terse, it

2

describes the core capability of Ignite-UX. Each of the tools that are contained by Ignite-
UX, in one way or another, support this primary goal.

With this general definition in mind, let’s examine some of the primary use models
supported by Ignite-UX.

The most basic use model is the installation of a new system from some sort of media.
Typically, an administrator will boot system from a CD-ROM then control the entire
installation session via a terminal user interface running on the system’s console. Decisions
about the layout of the file systems and basic system configuration are made. Software is
loaded from one or more CD’s.

A second use model involves the use of something called an Ignite-UX server. An Ignite-
UX server is a system onto which the Ignite-UX product (i.e. B5724AA_APZ) is installed.
As an example, in our network you would install Ignite-UX with the following command:

swinstall –s iuxbld.fc.hp.com:/release/Ignite-UX B5724AA_APZ

Once the product is installed, you can execute “/opt/ignite/bin/ignite” which, in
turn, leads you through the additional steps required to use the Ignite-UX server for system
installations. Briefly, the two primary steps are to supply one or more temporary IP
addresses to be used by client systems when performing a network boot. Secondly, to
specify the location of a software depot (used to supply the desired version of the HP-UX
operating system).

Once the Ignite-UX server is configured, you are prepared to perform client installations
using the server. The installation process can be controlled from either the client’s console
or the Ignite-UX server.

When controlling the installation from the client console, the client is first re-booted and the
boot sequence interrupted using the escape key. At the prompt, you issue the command:

boot lan.172.34.5.6 install

The IP address that is supplied is that of your Ignite-UX server. The command itself
instructs the client’s primary loader to contact the Ignite-UX server and perform a network
boot. Part of the ensuing process includes copying over an installation kernel and an
installation file system. The install kernel is then executed and a RAM based file system is
constructed from which the remaining portion of the installation will be controlled.

Since the installation is being controlled from the client (referred to as a pull installation),
you will interact with the terminal based user interface in the same way you would during
the media based installation. The only difference is that the software source has shifted
from a CD-ROM or tape to a network connection with the Ignite-UX server.

3

If the installation is being controlled from the Ignite-UX server (referred to as a push
installation), you will invoke the command /opt/ignite/bin/ignite on the Ignite-
UX server.

This command brings up the Ignite-UX console, which in turn can be used to both control
and monitor a particular client or set of clients. The user interface is modeled on an
object/action paradigm. The clients (represented as system icons) are the “objects” and the
set of “actions” which may be performed on the clients are available through various menu
items.

Finally, Ignite-UX also provides the ability to initiate the installation process on a remote
client(s) with the bootsys(1M) command. This command allows the administrator to
reference a specific HP-UX configuration and then instruct a client or group of clients to
reboot and install using the desired configuration. The point here is the ability to craft a
“hands-off” HP-UX installation process, a process that is both reliable and repeatable.

A secondary, but very important component of the Ignite-UX tool set, is the ability to
construct a recovery archive for a system. In fact, for some customers, this represents the
primary use of Ignite-UX. A recovery archive is a snapshot of a system at a given point in
time. It can be used to fully recover the system in the case of failure (such as a failed
system disk, software problem etc..). The command, make_net_recovery(1M) (along
with its companion make_recovery(1M)) is the workhorse for this type of operation.
make_net_recovery(1M) can either be executed by hand on an individual system or
launched from the Ignite-UX console (i.e. the ignite(1M) command).

make_net_recovery(1M) involves two primary modes of operation. The first, which we
will call interactive mode, allows the administrator to view the file system configuration of
a given client. From this view, the administrator can then make decisions regarding what
should or should not be included in the archive. The decision points range from entire
volume groups down to individual files. Once the archive contents are defined,
construction of the recovery archive begins and a record of what is required to reconstruct
the archive is saved (/var/opt/ignite/clients/<lanic-id>/recovery/archive_content).

The second mode of operation utilizes the description of what the recovery archive contains
and allows the administrator to construct a new archive. This is effectively a refresh
operation. A configurable number of archives can be saved before the oldest one is
replaced by the next execution instance of make_net_recovery(1M). Once the archive is
complete, the administrator can also use additional Ignite-UX tools to construct a bootable
archive tape.

4

Here is a summary of the available Ignite-UX commands:

• add_new_client(1M) – Add a new client to an Ignite-UX server without requiring a
reboot of the client

• add_release(1M) – Add a new software release to an Ignite-UX server

• bootsys(1M) – Reboot and install systems using Ignite-UX

• check_recovery(1M) – Compare current system to recovery status file

• ignite(5) – Control/monitor clients remotely from the Ignite-UX graphical user
interface (GUI)

• instl_adm(1M),instl_adm(4) – Edit/maintain Ignite-UX configuration files

• instl_combine(1M) – Combine a LIF file and a file system such that it can be written
to a CD-ROM

• instl_bootd(1M) – Boot protocol daemon for Ignite-UX clients

• make_bundles(1M) – Construct a Software Distributor bundle from products and/or
filesets in an SD depot

• make_depots (1M) – Copy bundles from an SD source into a depot which can be used
by other Ignite-UX tools

• make_boot_tape(1M) – Construct a bootable tape which can be used to connect to an
Ignite-UX server

• make_recovery(1M) – Construct a bootable system recovery tape for a whole disk or
LVM system while the system itself is up and running

• make_net_recovery(4) – Construct recovery archives for a running system over the
network with flexibly defined content

• make_sys_image(1M) – Construct a compressed system archive of a running system

• manage_index(1M) – Manipulate/manage Ignite-UX INDEX files

• make_config(1M) – Construct Ignite-UX config files which correspond to an SD
depot

5

• pkg_rec_depot(1M) – Construct an SD depot containing the Ignite-UX recovery tools
filesets

• print_manifest(1M) – Print a system manifest containing information about hardware,
software, file system layout etc

• remove_release(1M) – Remove all the Ignite-UX files associated with a single release
of HP-UX

• setup_server(1M) – Perform administration tasks for an Ignite-UX server

• save_config(1M) – Extract disk and file system structures along with certain system
and networking parameters and write them to a configuration file. This effectively
builds a config file that describes the systems current disk and file system layout

Briefly then, this introduces some of the core concepts and capabilities of Ignite-UX.
Listed in the appendices of this paper are additional resources for learning about Ignite-UX.
In particular, we mention one here that contains under one cover many of the individual
sources. It is the: “Ignite-UX Administrator Guide” and can be downloaded from the
Ignite-UX web site at:

http://www.software.hp.com/software/HPsoftware/IUX

Alternatively, it can be ordered directly from Hewlett-Packard using part number: B2355-
90677.

In the next section, we will take a closer look at some of the new functionality that is being
introduced as a part of Ignite-UX’s integration of ServiceControl Manager.

Using Ignite-UX with ServiceControl Manager

To one degree or another many computing environments are forced to deal with the
problem of distributed systems management. ServiceControl Manager is an attempt to
address some of the common issues faced by a Systems Administrator in a distributed HP-
UX environment. One way of thinking about the relationship between ServiceControl
Manager and Ignite-UX is that Ignite-UX works well for initially configuring many similar
(or identical) systems. ServiceControl Manager enables you to maintain consistency on
those same systems over time. Several papers are being presented during INTERWORKS
2000 that look at ServiceControl Manager in detail. Our purpose here will be to discuss
some of the broad ServiceControl management concepts and then to look a bit more
carefully at the integration points that relate to Ignite-UX. Initially, then, let’s look at the
ServiceControl Manager Architecture.

http://www.software.hp.com/software/HPsoftware/IUX

6

ServiceControl Manager (SCM) increases system administration effectiveness by
distributing the execution of existing tools across a set of systems (referred to as “managed
nodes”). The ServiceControl Manager’s central operations are performed on the Central
Management Server (CMS). The CMS functionality can be accessed from the command
line (through eleven related commands) or through a Java based Graphical User Interface
(GUI). On HP-UX the GUI is displayed using X-Windows, locally, on the console or
remotely, on another system. The Java application can also display on a PC-compatible
system using web browser technology. Command line access is available through the
system console or through a telnet session.

Role based management, an organizational concept, is built into ServiceControl Manager.
Role based management increases both efficiency and security by allowing senior
administrators to delegate specific management activities to less experienced individuals
across one or more managed nodes. More specifically, ServiceControl Manager supports

Secure/Authorized Communication

Results/Status

Node 1

Agents

Node 2

Agents

Node 3

Agents

Node N

Agents

Run commands
Copy Files
Launch Applications

Repositories, Archives, and Depots

Tool Definitions, Role Definitions, Group Definitions, Authorizations

Ignite-UX Server, SD Depots, DHCP, NIS, etc..

Central Management Server (CMS)

Figure 1: Basic ServiceControl Manager Architecture

7

the concept of role definitions. A role definition is a collection of one more tools whose
grouping defines a particular management function. An example of a simplistic role from
an Ignite-UX perspective might be that of “Ignite-UX Operator”. In this case, you want to
allow the “Ignite-UX Operator” to only perform management activities which do not risk
actual changes to a managed node. Some of the tasks you might want the operator to
perform are:

1. Construct or Modify a Recovery Archive

2. Refresh a Recovery Archive

3. Monitor the status of a recovery archive

4. View or print system manifest information

Under ServiceControl Manager, each of these tasks are “implemented” by one or more
tools. The grouping of the tools defines our “Ignite-UX Operator” role. The initial release
of ServiceControl Manager includes the following tools in support the above tasks. They
are:

1. “Construct or Modify Recovery Archive”

2. “Refresh Recovery Archive”

3. “Ignite-UX Restricted Console”

Once a role has been defined, a Systems Administrator may now form a three-way
association of a role, a user, and a group of one or more managed nodes. Forming this
association is referred to as an “authorization”. In our example, the authorization would be
that of granting a user the role of “Ignite-UX Operator” on a set of managed nodes. Once
this authorization is established, ServiceControl Manager guarantees that the user cannot
perform activities outside of this role on the target set of managed nodes.

Extending our example one step further, we could construct another role, which we will call
“Ignite-UX Administrator”. This role will include those components of Ignite-UX which in
fact do make changes to a managed node. Some of these tasks are:

1. Install HP-UX onto system

2. Recover a system using a recovery archive

3. Modify the Ignite-UX Server default configuration

4. Setup an Ignite-UX Server

5. Reboot a system instructing it to connect to the Ignite-UX Server

8

As in the “Ignite-UX Operator” role, each of these tasks must be implemented by one or
more tools under ServiceControl Manager. In the initial release of ServiceControl
Manager, these tools are:

1. “Install or Recover System”

2. “Ignite-UX Console”

In our example, a user would need to be assigned both the “Ignite-UX Operator” role and
the “Ignite-UX Administrator” role for a set of managed nodes in order to have full use of
Ignite-UX under ServiceControl Manager.

The essential point here is that the user can be anyone in the standard passwd database.
Granting root access to either the Ignite-UX server or the managed nodes is no longer a
requirement to access Ignite-UX functionality.

At this point, is might be useful to examine the concept of a tool in more detail. A tool, as
it is defined by ServiceControl Manager, is the encapsulation of a HP-UX command line.
Included in this encapsulation are instructions regarding any required parameters to the
command line, as well as the ability to copy files from a source to a destination prior to
invoking the command line. With this as a basic definition, tools are divided into two main
types.

Single System Aware (SSA) Tools

Single system aware tools are designed to execute on a single node. Commands such as
bdf(1M), or sam(1M), or ps(1M) are candidates for a single system aware tool. One of the
Ignite-UX tools included in ServiceControl Manager, “Refresh Recovery Archive”, is
another example of a single system aware tool. The point here is that when the tool is run
against a group of systems, the effect is that of a secure remsh(1M). ServiceControl
Manager runs the tool on each of the destination nodes with results being routed back to the
Central Management Station (CMS). The ServiceControl Manager component that
accomplishes the remote execution is referred to as the Distributed Task Facility (or DTF).
One further note is that, under the first release of ServiceControl Manager, no more than
sixteen processes will be active at any given time. If you were to launch a tool like
“Refresh Recovery Archive” against twenty managed nodes, sixteen processes would start
with the remaining four queuing up waiting for one of the process slots to become
available. An obvious enhancement to this model is to make the number of processes a
configurable attribute.

Multiple System Aware (MSA) Tools

Multiple system aware tools are those that already know how to deal with multiple systems,
such as Software Distributor (with push capability) and Ignite-UX. In this case, managed
nodes are selected within ServiceControl Manager in the same manner as Single-system

9

aware tools, but the tool operates on the target nodes using its own internal mechanisms
rather than using the Distributed Task Facility. The following is a list of the Ignite-UX
tools that fall into the MSA category:

• “Create or Modify Recovery Archive”

• “Install or Recover System”

• “Ignite-UX Console”

• “Ignite-UX Restricted Console”

If the division of Ignite-UX functions into separate roles seems interesting or helpful, the
ability to limit interaction to a particular group of systems should also be compelling.
Environments which already have an established Ignite-UX server which in turn serves a
large number of systems (possibly including multiple management groups) are aware of the
fact that when using the ignite(1M) console, access (at least visually) is granted to all
systems contained in /var/opt/ignite/clients.

With ServiceControl Manager, management domains defined by groups of systems can be
established. Thus, when a user with the “Ignite-UX Administrator” role (to borrow from
the example above) launches the “Ignite-UX Console” tool, he sees only the systems within
his management domain (though many more may be using the Ignite-UX Server). This not
only simplifies what you are viewing, but it also helps prevent accidental interaction with
systems for which another Systems Administrator is responsible.

If breaking up systems along boundaries of responsibility is not a requirement, one could
envision other groupings along application type, system function etc.

Finally, the Ignite-UX tools that are provided with the initial release of ServiceControl
Manager are not exhaustive. They represent some of expected tasks that a Systems
Administrator would want to perform using Ignite-UX within ServiceControl Manager.
One of the additional benefits of the ServiceControl Manager environment is that a Systems
Administrator can build tools locally to fit his own process or needs. The initial tools that
are supplied provide both an entry point as well as an example from which other tools can
be built.

Additional sources of information on the topic of building ServiceControl Manager tools
can be found in the: ServiceControl Manager Technical Reference. The location of the
actual tool definitions supplied with ServiceControl Manager is: /var/opt/mx/tools. Also,
see the mxtool(4)/mxtool(1M) man pages.

We now move on to look at some of the recent enhancements to Ignite-UX as well as
examining a specific scenario that utilizes both ServiceControl Manager and Ignite-UX.

10

Ignite-UX in Practice

Recent Feature Review

make_net_recovery(1M)/make_net_recovery(1M)

Interacting with the recovery process no longer changes the behavior. The recovery_mode
flag remains active and any changes made using the user interface are now “intelligently”
merged into the original system files. In addition, two new options were added to the
make_recovery(1M) command. The first, -i, allows you to construct an interactive tape.
Normally, when booting a system from a recovery tape, you have ten seconds to interrupt
the boot process in order to make modifications. Specifying the –i option means, that the
interactive menus are always presented. In addition, this option can also be used to prevent
a system recovery when booting from the tape device by mistake. The –t option allows you
to supply a custom title/message which, in turn, will be displayed when booting from the
tape. This can be helpful in identifying the tape. The default message written to the tape is:
Recovery tape created from system: <system name> on <date>.

Both make_recovery(1M) and make_net_recovery(1M) now correctly re-import volume
groups that contain all raw (or unmounted) logical volumes. However, they still do not
backup any data from raw logical volumes that are re-constructed during the recovery
process.

With regard to MC/Service Guard, both make_recovery(1M) and
make_net_recovery(1M) will correctly archive and restore the shared volume group
configurations. Previously this had been a problem in that vgdisplay(1M) was used to
discover the volume group information. vgdisplay(1M) will fail if it is run against a shared
volume, which is locked by a peer node in the cluster.

The LVM commands that are run to re-import volume groups when using a
make_recovery(1M) tape are now done using the post_config_cmd keyword (instead of
the final_cmd keyword). This allows any output/errors from these commands to be logged
to the /var/opt/ignite/clients/<lanic-id>/install.log for later analysis.

The “A” version now supports system archives greater than 2GB using the NFS access
method. Both client and server must be running 10.20 (or for the “B” version, which
already had this feature, the server must be running 11.00 and the client either 11.00 or
10.20) and have the NFS PV3 software (networking ACE) loaded. See the Ignite-UX
release notes (/opt/ignite/share/doc/release_note) for more detail on required patches.

11

ignite(1M)

The ignite(1M) GUI now supports the ability to hand in a list of systems on the command
line which in turn will serve as a filter. Only systems in the filter list will be presented in
the Ignite-UX console although many more may exist in /var/opt/ignite/clients.

The ignite(1M) GUI also supports two new short cut options, which allow you to jump
directly to either the “Install” action or the “Create Recovery Archive” action directly from
command line invocation. For example, “ignite –install <client>” will automatically select
the client and take you directly into the configuration editor.

Miscellaneous

When using the bootsys(1M) command to reboot a client in order to install to a disk other
than the current root disk, the AUTO file in the boot area on the original root disk is now
restored to the original setting. Booting from the original boot disk will automatically
remove the INSTALL kernels left behind by the bootsys(1M) command.

The bootsys(1M) command may now be executed on the client as well as on the server (the
precondition is that the Ignite-UX.MGMT-TOOLS fileset has been loaded onto the client).

In order to better support NIS+, the bootsys(1M) command now uses nsquery(1) (if
possible) instead of nslookup(1) for hostname resolution.

The make_medialif(1M) command now has a “-a” option to construct media that contains
all INSTALL kernels (32 bit and 64 bit). This allows you to construct media that can be
used on all Hewlett-Packard 9000 systems (32 bit, N-class, V-class, etc..).

Automating Recovery Archives with ServiceControl

In the previous sections, we have noted a tool called make_net_recovery(1M), which can
be used to produce system recovery archives over the network. We have also examined
(briefly) a new management environment called ServiceControl Manager. In this section,
we will combine both the Ignite-UX tool and the management environment to construct a
process for automating the production of recovery archives.

To begin with, let’s assume that we will establish a ServiceControl management cluster that
consists of a CMS (Central Management Server) and twenty-five managed nodes. The
process of setting up the CMS is documented in the Installing ServiceControl Manager
manual (see the Appendices of this paper for reference information) The main tasks that
you would need to work through are:

1. swinstall the B8337BA product onto the CMS system

12

2. execute /opt/mx/bin/mxsetup

3. swinstall the B8338BA product onto each of the managed nodes

4. swinstall the AgentConfig fileset from <the CMS>:/var/opt/mx/depot11 onto each of
the managed nodes

5. add the managed nodes to the CMS using: mxnode –a <system name>

The next step involves the construction of a role that will accomplish the Ignite-UX tasks.
The scmgr(1M) GUI provides access to these steps, but for the purpose of illustration, we
will use the command line interface. The basic steps are:

1. Construct an Ignite-UX Operator role using mxrole(1M)

2. List the Ignite-UX tool definitions and save them to a file

3. Edit the file and add the Ignite-UX Operator role to the tool definition

4. Load the tool definitions back in with the updated role information

5. Add a user to ServiceControl who will be working under the Ignite-UX Operator role

6. Authorize the user on each of the managed nodes with the Ignite-UX Operator role

ServiceControl Manager ships with sixteen predefined roles. In the first release, a new role
cannot be constructed, but one of the existing roles can be renamed to represent its intended
use. For our example, we will use the mxrole(1M) command to “construct” the Ignite-UX
Operator role. First, we will list the roles that are currently defined on the CMS using:

mxrole –lt

This will produce the following listing:

NAME ENABLED? DESCRIPTION
role16 true For use by ServiceControl administrators
role15 true For use by ServiceControl administrators
role14 true For use by ServiceControl administrators
role13 true For use by ServiceControl administrators
role12 true For use by ServiceControl administrators
role11 true For use by ServiceControl administrators
role10 true For use by ServiceControl administrators
role9 true For use by ServiceControl administrators
role8 true For use by ServiceControl administrators
role7 true For use by ServiceControl administrators
role6 true For use by ServiceControl administrators
lvmadmin true A role for LVM Administrators

13

operator true A read-only role for operators
webadmin true A role for WEB Server Administrators
dbadmin true A role for Database Administrators
Master Role true The ServiceControl Master Role

Selecting “role6” as our target role, you will then execute the following command:

mxrole –m “role6” –N “IUX Operator”

We have now renamed “role6” to be “IUX Operator”. Next, we modify the description
field for the role using:

mxrole -m "IUX Operator" -d "Ignite-UX daily maintenance tasks"

Listing the roles a second time using mxrole –lt shows the following:

NAME ENABLED? DESCRIPTION
role16 true For use by ServiceControl administrators
role15 true For use by ServiceControl administrators
role14 true For use by ServiceControl administrators
role13 true For use by ServiceControl administrators
role12 true For use by ServiceControl administrators
role11 true For use by ServiceControl administrators
role10 true For use by ServiceControl administrators
role9 true For use by ServiceControl administrators
role8 true For use by ServiceControl administrators
role7 true For use by ServiceControl administrators
IUX Operator true Ignite-UX daily maintenance tasks
lvmadmin true A role for LVM Administrators
operator true A read-only role for operators
webadmin true A role for WEB Server Administrators
dbadmin true A role for Database Administrators
Master Role true The ServiceControl Master Role

Now that the role information is updated, we can assign the required tools to the role. Since
we are going to use an existing Ignite-UX tool definition, we will first need to make the
existing tool definition available for editing. One method of doing this is to use the
mxtool(1M) command to query the repository for all tools in the “Ignite and Recovery”
category. The following command performs just that:

mxtool -lf -c "Ignite and Recovery" >/tmp/foo

The “-lf” option instructs mxtool(1M) to list a formatted tool definition (suitable for editing
and then re-loading). The “-c” option acts as a filter against the domain of tool definitions
contained in the repository.

14

We now edit /tmp/foo using a text editor such as emacs or vi(1). For the purpose of our
example, we only want to enable the “Refresh Recovery Archive” tool for the “IUX
Operator” role. In actuality, you may want to include additional tools (either the built in
tools that shipped with ServiceControl Manager or tools that you develop locally). The
modified tool definition for “Refresh Recovery Archive” would now look as follows:

//
// This tool definition was automatically
// generated by the ServiceControl Manager
//
// Tool originally created on: Thursday, January 6, 2000 9:02:53 AM
// Tool last modified on: Thursday, January 6, 2000 9:02:53 AM MST
// File Generated: Tuesday, January 18, 2000 1:55:14 PM MST
//
SSA tool "Refresh Recovery Archive" {
 description "Refresh the managed node's recovery archive from
existing template"
 comment "The template file for the managed node is found in
/var/opt/ignite/clients/<client-name>/recovery on the Ignite-UX
server."
 category "Ignite and Recovery"
 owner root
 execute {
 command "/opt/ignite/bin/make_net_recovery -v -s $MX_CMS"
 nolaunch
 log
 user root
 }
 roles {
 “Master Role”,
 “IUX Operator”
 }
}

Note the addition of the “IUX Operator” role to the roles grammar construct. Saving this
change, you would then reload the tool definitions using mxtool(1M) and the modify flag.
The command to accomplish this is:

mxtool –m –f /tmp/foo

Now that the IUX Operator role is established, our remaining work lies in authorizing a
user with the IUX Operator role, generating the initial recovery archive definitions, and
setting up cron(1M) to perform the scheduled updates.

Recall that one of the benefits of using ServiceControl Manager is the fact that we avoid the
need of opening up “root” access (through something like /.rhosts) on the managed nodes.
With that in mind, let’s assume that we have the user “operator” already defined in our

15

NIS/NIS+ passwd database. We can then let ServiceControl Manager know about the user.
The command to accomplish this is:

mxuser –a –u operator

Once the user has been added on the CMS, a role authorization can be established. To
enable the user with the “IUX Operator” role, you must execute the following for each
managed node:

mxauth –a –u operator –M “IUX Operator” –n <managed node>

Now that the authorization has been established, the user “operator” can execute the tool
“Refresh Recovery Archive” on any of the managed nodes. The tool will actually run as
user “root”, but the user “operator” is not required to have “root” access to the managed
nodes themselves. From this point, we move on to the task of constructing the initial
archive definitions. As root on the CMS, you would execute the following:

mxexec –t “Ignite-UX Console”

This will bring up the ignite(1M) console with all of the managed nodes visible. For each
of the managed nodes, you will need to select the node and run the “Create Recovery
Archive” action. The action will lead you through a brief task wizard to define the
attributes and content of the archive. At the end of the wizard, the construction of the initial
archive will begin.

Once this process has been performed for each of the managed nodes, you are in a position
to initiate the scheduled update process for the archives. You will have noticed that task
wizard gives you an opportunity to keep a configurable number of archives per managed
node on the Ignite-UX server. This allows the cron(1M) task to perform a rolling
replacement of the oldest archive.

Prior to enabling the cron task for “Refresh Recovery Archive”, you must verify that the
user “operator” is authorized to run the crontab(1M) command. This can be handled by
two different mechanisms. The first is the file /usr/lib/cron/cron.allow. If this file exists,
the “operator” user name must appear in the file. If this file does not exist, “operator” is
permitted to use crontab(1M) as long as its name does not appear in the file
/usr/lib/cron/cron.deny. If neither file exists, only the user “root” can use crontab(1M).

After you have enabled crontab(1M) access for “operator”, you will need to edit a file to
contain an entry similar to the following:

0 0 * * 6 /opt/mx/bin/mxexec –t “Refresh Recovery Archive” –n
<node1> … <node25>

16

Saving the file to /tmp/operator.crontab and then running crontab /tmp/operator.crontab
will move the file in /var/spool/cron/crontabs thus preparing it to be executed by cron(1M).
The schedule as specified above is every Saturday night at midnight, the “Refresh
Recovery Archive” tool will be launched on the specified managed nodes.

One further note regarding network bandwidth is that the ServiceControl management
environment will not execute any more than sixteen tasks in parallel. If you are concerned
about the network utilization of sixteen simultaneous processes writing over NFS back to
the CMS, you may want to consider breaking up the crontab(1M) entry so that blocks of
systems will run at different times.

Conclusion

In this paper, we have attempted to introduce some of the main concepts and capabilities of
Ignite-UX both as a standalone tool set and as an integrated tool set within ServiceControl
Manager. The references listed in the Appendix will provide some help on where to go for
more information.

If, after reading the paper and/or experimenting with Ignite-UX, you discover deficiencies
(which of course you will) and areas where we could change the product to better support
your use of it, please do not hesitate let us know. While defects are usually reported
through your support contact, enhancement requests or comments can always be sent to:
iux_enhance@fc.hp.com

mailto:iux_enhance@fc.hp.com

17

Appendices

• Ignite-UX Administrator Guide

This guide describes installing, configuring and using Ignite-UX. It is written for
experienced HP-UX systems administrators who are responsible for setting up and
maintaining HP-UX workstations and servers. The administrator must be familiar
with installing HP 9000 hardware and software, upgrading software, applying
patches and troubleshooting system problems.

Further, it attempts to pull together under one cover much of the pertinent
information related to system administration with Ignite-UX.

Note: This guide was not available as at the time of writing of this paper. The link
above takes you to the Ignite-UX web site. Look in the documentation section for
a link to a PDF version of the guide. (also, HP Part Number: B2355-90677)

• Ignite-UX Cold Installations

This paper, presented at Interworks 97, introduces the basics of Ignite-UX.

• Ignite-UX Startup Guide for System Administrators

This is a cookbook approach to setting up and using an Ignite-UX server. The
focus is on handling large replicated sites.

• Customized Install Media

This paper, presented at Interworks 98, describes how you go about creating your
own customized install media with Ignite-UX.

• Ignite-UX and Mirrored Disks

This paper describes how to use Ignite-UX in mirrored disk situations.

• Ignite-UX System Recovery

This paper, presented at Interworks 98, describes the basics of make_recovery.

• Frequently Asked Questions About Ignite-UX

This is a list of frequently asked questions about Ignite-UX.

http://software.hp.com/software/HPsoftware/IUX
http://www.software.hp.com/software/HPsoftware/IUX/intro_doc.html
http://www.software.hp.com/software/HPsoftware/IUX/sysadm.html
http://www.software.hp.com/software/HPsoftware/IUX/Customized_Install_Media_Paper.pdf
http://www.software.hp.com/software/HPsoftware/IUX/diskmirror.pdf
http://www.software.hp.com/software/HPsoftware/IUX/system_recovery_Paper.pdf
http://www.software.hp.com/software/HPsoftware/IUX/iux_faq

18

• Installing ServiceControl Manager

This document contains all of the required information for both installing and
configuring ServiceControl Manager. The web site information listed below will
also contain links to access the ServiceControl Manager product.

To access this document over the Web, browse to: www.software.hp.com. From
this web site, you will want to look for the link taking you to ServiceControl or
simply search for “ServiceControl Manager”. There will be able to find PDF
versions of all of the ServiceControl Manager documentation. Unfortunately, at the
time of writing this paper the final link address was not established.

• ServiceControl Manager Technical Reference

This document contains detailed information on how to use ServiceControl
Manager.

To access this document over the Web, browse to: www.software.hp.com. From
this web site, you will want to look for the link taking you to ServiceControl or
simply search for “ServiceControl Manager”. There will be able to find PDF
versions of all of the ServiceControl Manager documentation. Unfortunately, at the
time of writing this paper the final link address was not established.

http://www.software.hp.com/
http://www.software.hp.com/

	Ignite-UX with ServiceControl Manager Applications
	Abstract
	Introduction to Ignite-UX
	Using Ignite-UX with ServiceControl Manager
	Ignite-UX in Practice
	Recent Feature Review
	make_net_recovery(1M)/make_net_recovery(1M)
	ignite(1M)
	Miscellaneous

	Automating Recovery Archives with ServiceControl

	Conclusion
	Appendices

