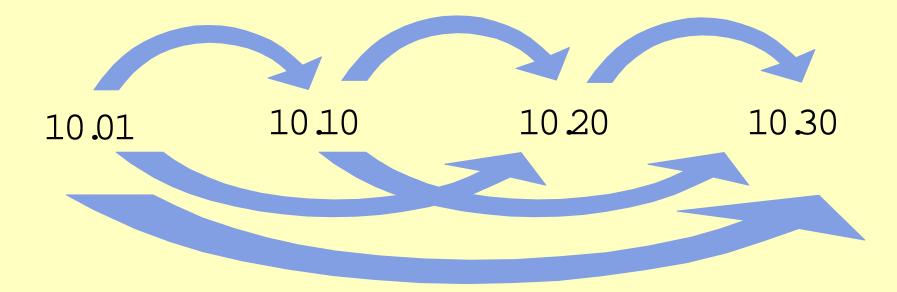
HP-UX 11X Technology and Beyond

DAL

1

John Fenwick Hewlett-Packard 19447 Pruneridge Avenue Cupertino, CA 95014 USA 408-447-4976 FAX 408-447-4364 John_Fenwick@hp.com

HP-UX 11 X Technology and Beyond **DAL** Program Outline _____


- Introductions and O verview
- "Largeness" Extensions to HP-UX:
 - Filesystem s, Files, UIDs, File Descriptors, Process Space
- 64-B 並H P-U X
- Developing for 64-bits
- KernelThreads
- Additional technologies:
 - DLKM , Large Pages, Ignite-UX , System Recovery , others
- Networking enhancem ents
- HP-UX 11 X and Extension Pack releases
- Review

HP-UX 11 X Technology Review DAL Program Outline

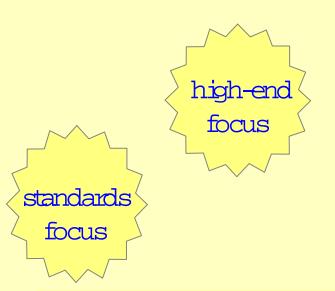
- Technical level of presentation
 - fam iliarity with System Adm inistration tools
 - fam iliarity with Software Development concepts
 - fam iliarity with O perating System fundam entals
- Form at of presentation
- R eferences for further study
- Questions

"Largeness" Features in HP-UX: **DAL** HP-UX 10 X Releases _____

- Each release is a superset of the previous
- HP-UX 10.01 is the "gatew ay" to the fam ily
- Upgrade when and if you need

HP-UX 10.10 :CQ11996 Main new features

- 128 G B file system
- 3.75 GB RAM (T500, 0.75 GB cards)
- 19GB process data space
- 60K File descriptors/process
- Shared LVM (SLVM) for OPS
- Spec 1170 (UN IX 95)
- CDE Common Desktop Environment
- 4 byte EUC commands
- DHCP server (including SAM management)
- SAM managementofNIS
- 48 LAN card support

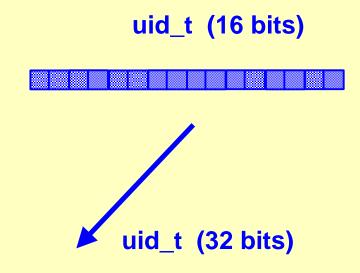


SIZE EXTENSIONS

HP-UX 10.20 : CQ 3 1996 Main new features

- Performance
 - PA-8000 optim ization, Fibre Channelnet/storage
 - M P tuning of transports, stacks, sockets, drivers
 - LVM tuning
 - Processor Affinity support
- Large files (local) 128 GB files
- >60K U ID s enable 4 billion user ID s
- 64-bit registerm ath (PA 8000)
- 2.75 GB Shared M em ory via patch
- Technical application perform ance
- DHCP client
- Distributed Print Services (Palladium)
 Full perform ance for PA -8000 based system s

DAL.


SIZE EXTENSIONS

6

HP-UX 11.X Technology and Beyond HP InterWorks 2000

LargeUDs

- Base type of uid increased from 16 to 32 bits
- Changes to kernel, filesystem s, libraries. commands, APIs
 - requires recom pile to use Large U ID s
- For large num ber of users -or- for sparsely m apped uids in a large range (e.g., telephone num bers)
- HFS: the HP-UX kernel detects and converts HFS filesystem s on the fly
- VxFS: supported in Version 3.0 (10.20)

DAL.

7

Using Large UIDs (continued)

DAL

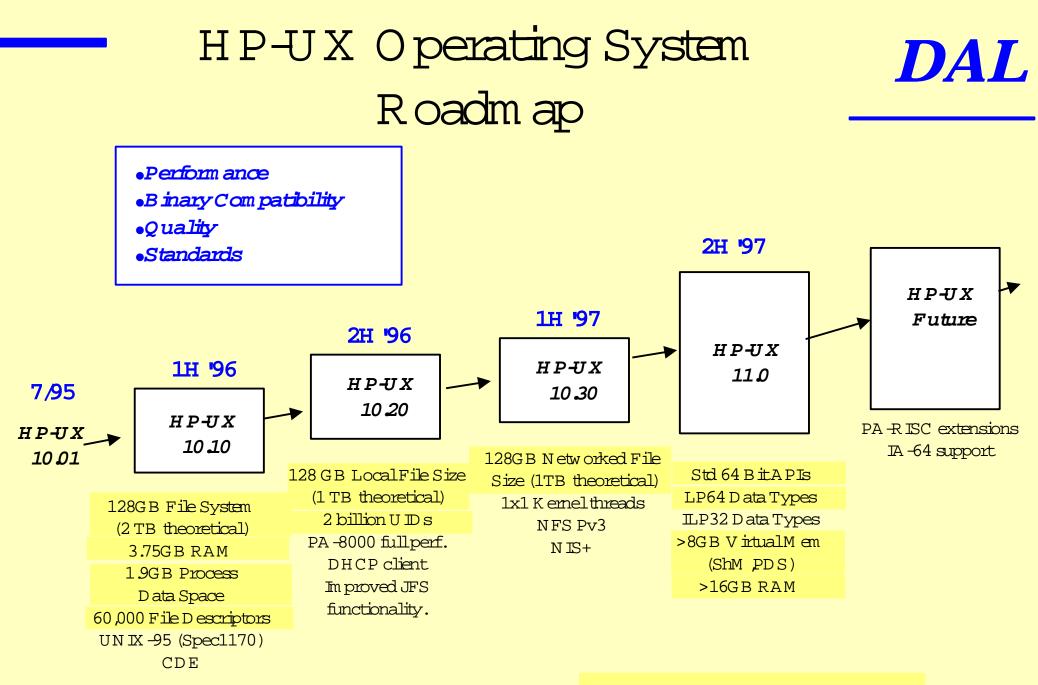
8

< /dev/vg00/lvol4 mounted on /tmp > % fsadm /dev/vg00/rlvol4				
	: /dev/vg00/rlvol4			
magic number	: 95014			
feature bits	: 1			
file system supports	: nolargefiles, longfilenames			
<pre>% touch lg_uid_file</pre>				
% chown 99999 lg uid	file			
% ls -l lg uid file				
	sys 0 Jan 21 15:09 lg uid file			
	575 0 0 an 21 13.03 1 <u>9</u> _414_1110			
% fsadm /dev/vg00/rlv	o] /			
-				
-	: /dev/vg00/rlvol4			
magic number	: 95014			
feature bits	: 5			
file system supports	: nolargefiles, largeuids, longfilenames			

<kernel has changed UID structures on the filesystem>

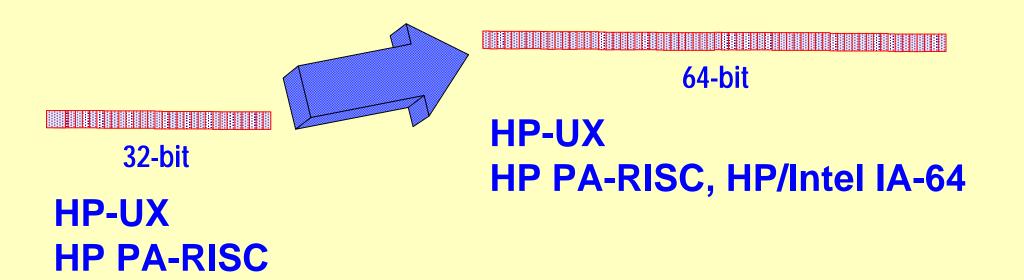
HP-UX 10.30 (lim ited release) Main new features

- Performance
 - PA-8000 (continued)
- 1x1 kernel threads
- 128 GB files (networked)
- NFS Pv3,NIS+
- libc versioning
- Native OpenGL
- Support for new system s & peripherals
- Stream s based TC P/IP
- BIND 493
- Year 2000 clean
- T600



SIZE EXTENSIONS

DAL.



Extend OS Size Capability

M arketdrivers to 64 bits

- Som e D atabase vendors and technical software developers are leading the movem ent to 64-bit computing.
- They developed databases and applications that handle very large m em ory and enable access by m any m ore users.

HP564-bit strategy: overview

Key theme:

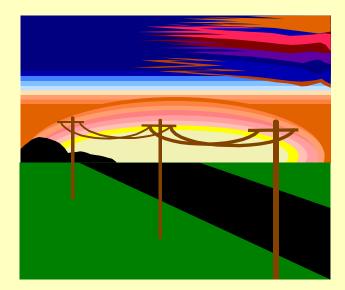
Implement <u>evolutionary</u> -- not revolutionary -product strategies to deliver key new features and protect customers' software investments.

DAL.

Elements of HPs evolutionary 64-bit strategy

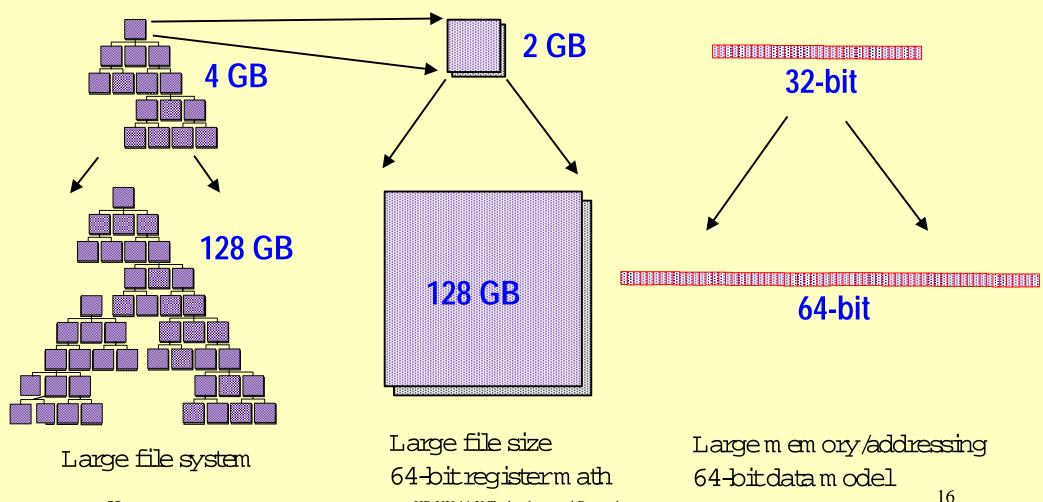
13

Objective	Why important	Strategy
Lead industry in hardware and software features and performance	Meets customers' increasing functionality and performance demands	Collaborate with partners in developing next-generation UNIX and chip technologies
Provide smooth upgrade path	Ensures investment protection; minimizes upgrade costs in time and money	Continue policy of forward binary compatibility; 32- and 64-bit apps to coexist and communicate
Continue HP's long- standing commitment to standards	Gives partners flexibility in platform selection	Lead standards development and adherence


Benefits of 64-bit com puting

- Scalability
 - Larger applications and data and m ore users
- Potential gains in perform ance
 - M uch larger am ounts of data can reside in RAM, resulting in perform ance gains due to m uch less (tim e-consum ing) sw apping to disk
- These attributes make 64 bits well suited for certain high-end applications
 - very large DB and Decision Support
 - OLTP with 10 s of thousands of users
 - com plex technical sim ulations

Sm ooth upgrade to 64-bit environm ent



- Investment protection through forward binary compatibility
 - 32-bitapplicationsmay run unm odified on
 64-bitHP-UX
- Nomigration; minimalend-user effort
 - No forced recompile
 - No forced recode
 - No data reload

Evolutionary introduction of 64 – **DAL** bit functionality into HP-UX

HP-UX 10.10,2/96 HP-UX 10.20,8/96 HP-UX 11.00,1997

Operating System Data Models: DAL ILP32 and LP64

	ILP32	LP64
Integer	32 bits 32 bits	32 bits 64 bits
Long Pointer	32 bits	64 bits

- HP-UX 10.0 is ILP32 as are many other UNIX es
- HP-UX 10.[10,20,30] extended the OS capabilities
- HP-UX 11.0 com es in two versions:
 - ILP32
 - LP64
- can cross-develop between 32-and
 64-bit0 S versions
- can execute both 32-and 64-bit applications on 64-bit kernel
- can execute only 32-bit applications on 32-bit kernel

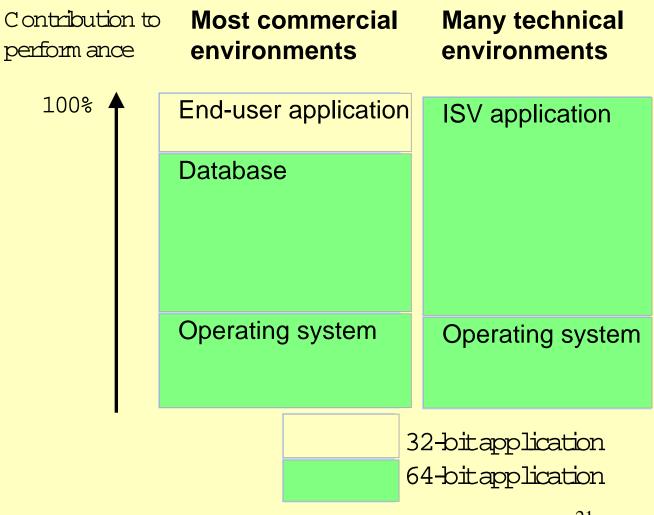
HP-UX Operating System: Specifications by Version

	HP-UX	HP-UX	HP-UX	HP-UX	HP-UX	HP-UX
Attribute	10.01	10.10	10.20	10.30	11.00/32	11.00/64
Introduced	Jun 95	Feb 96	Aug 96	Aug 97	Nov 97	Nov 97
File system	4 GB	128 GB	128 GB	128 GB	128 GB	128 GB
File size	2 GB	2 GB	128 GB	128 GB	128 GB	128 GB
			local,2GB	local and	local and	local and
			network	network	network	network
Physical RAM	2 GB	3.75 GB	3.75 GB	3.75 GB	3.75 GB	4 TB
Shared Mem	1.75 GB	1.75 GB	2.75 GB	2.75 GB	2.75 GB	8 TB
Process data	0.9 GB	1.9 GB	1.9 GB	1.9 GB	1.9 GB	4 TB
space						
# File	2,000	60,000	60,000	60,000	60,000	60,000+
Descriptors						
# User IDs	60,000	60,000	2	2	2 billion	2 billion
Threads	User	User	User	User and	User and	User and
model				Kernel	Kernel	Kernel
Y2K Ready	patch	patch	patch	yes	yes	yes

HP-UX 11.0 Specifications

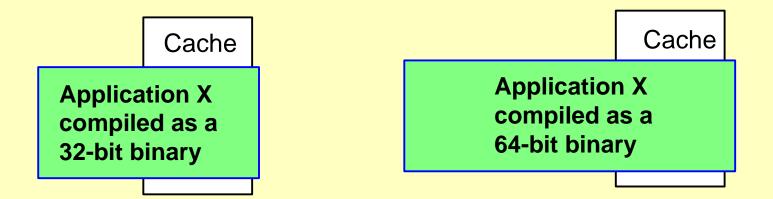
Attribute	32-bit version	64-bit version	
CPUs supported	16	32	
File system size	128 GB	128 GB	
File size (local and networked)	128 GB	128 GB	
Physical RAM	3.75 GB	4 TB	
Shared memory	2.75 GB	8 TB	
Process data space	1.9 GB	4 TB	
File descriptors	60,000 plus	60,000 plus	
User IDs	2 billion	2 billion	
Threads model	User and Kernel	User and Kernel	

HP-UX 11.0 - Supported Systems (Nov 1999 Extension Pack)


Series	Model	32-bit	64-bit
A-Class	A180, A180C	Χ	
D-Class	Dx10, Dx20, Dx30, Dx50, Dx60	Χ	
	Dx70, Dx80, Dx90	Χ	X
E-Class	E25, E35, E45, E55	X	
F-Class	F10, F20, F30	Χ	
G-Class	G30, G40, G50, G60, G70	X	
H-Class	H20, H30, H40, H50, H60, H70	Χ	
I-Class	130, 140 150, 160, 170	Χ	
K-Class	K100, K200, Kx10, Kx20	Χ	
	Kx50, Kx60, Kx60, Kx70, Kx80	X	X
L-Class	L1000, L2000		X
N-Class	N4000-[36,44]		X
R-Class	R380, R390	X	X
T-Class	T500, T520	Χ	
	T600	X	X
V-Class	V2200, V2250, V2500		X
EPS	EPS22, EPS23	X	X
	EPS40		X
700 Series	712, 715/[64,80,100,100XC], 725/100	Χ	
B-Class	B132L, B132L+, B160L, B180L	Χ	
	B1000		Χ
C-Class	C100, C110, C160L	Χ	
	C160, C180[XP], C200, C240, C360	Χ	Χ
	C3000		Χ
J-Class	J200, J210, J210XC	Χ	
	J280, J282, J2240	X	X
	J5000, J7000		X
J-Class	J280, J282, J2240	X	Χ

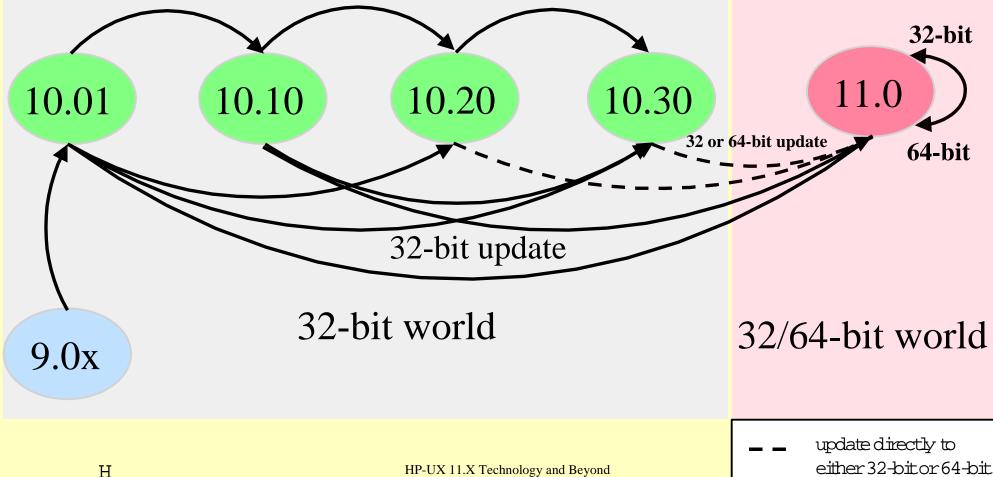
20

HP-UX users may gain perform ance increases without needing to recompile their application


- HP-UX willallow an existing 32-bitend-user application to interact with a 64-bit database
- M ost of the total perform ance gain will com e from recom piles of key D B and ISV applications
- Custom ers need not recom pile their applications

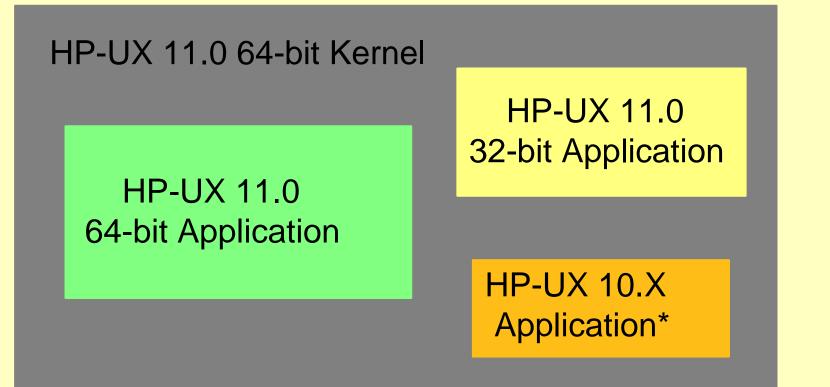
M ixing 32-and 64-bit applications

 32-bitapplications may run faster than recompiled 64bitversions, due to "cache-fit" effect



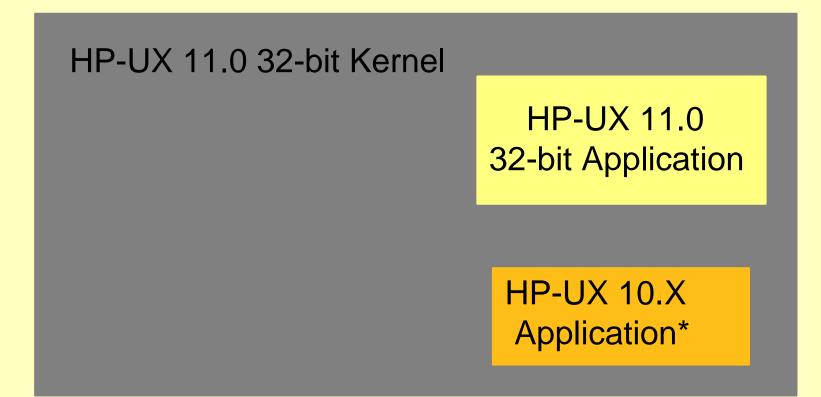
Best overall perform ance com es through 32and 64-bit coexistence, which HP-UX provides

Upgrade Paths to HP-UX 11.0


DAL

Software Distributor support updates from HP-UX 10 x to HP-UX 11.0 in one step

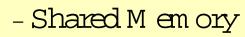
HP InterWorks 2000


Applications that run on 64-bit HP-UX 11.0

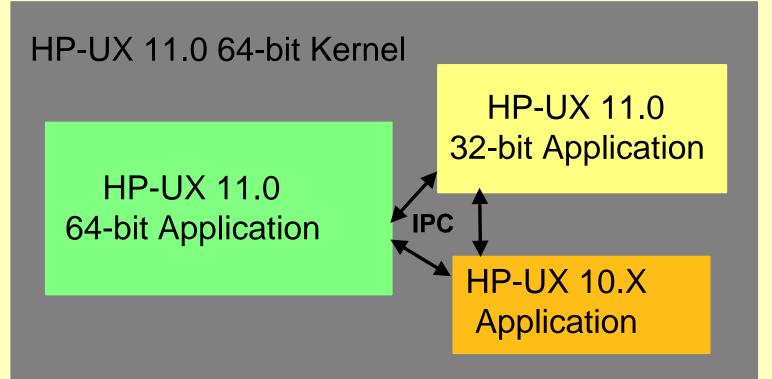
★ Well-behaved applications that run on HP-UX 10 X run on HP-UX 11.0. (See Compatibility Guidelines)

Applications that run on 32-bit HP-UX 11.0

DAL


★ Well-behaved applications that run on HP-UX 10 X run on HP-UX 11.0. (See Compatibility Guidelines)

Applications Interoperability on 64-bit HP-UX 11.0



26

• 32-and 64-bit applications can interoperate on 64-bit HP-UX using standard IPC mechanisms:

- -MappedFiles
- Sockets
- Signals
- M essage Q ueues
- Pipes
- RPC

HP-UX Compilers

- A vailable for both 32-and
 64-bitdevelopm ent
 - HPC
 - HPaC++
 - HPFORTRAN 90
 - HPAssembler
 - HPDDE
 - HP PAK
 - HPLinkertoolset

- A vailable only for 32-bit developm ent
 - HPFORTRAN 77
 - HP Pascal
 - HPM icroFocusCOBOL
 - HPC++ (cfront)

CompilerOption/HardwareArchitecture **DAL** Run-timeCompatibility

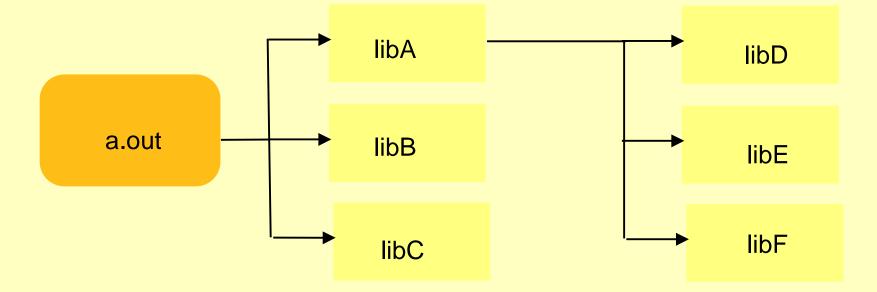
Compiler Option	PA-RISC 1.1 32-bit Systems	PA-RISC 2.0 64-bit Systems
+DA1.1	Х	Х
+DAportable	Х	Х
+DA2.0		Х
+DD64 or +DA2.0W		Х

+DD64 is a HPC option for compiling in 64-bitm ode.

+DA2.0W is the HP aC++, HP Fortran 90, and HP C option for compiling in 64-bitm ode.

CompilerOptions to Develop for 32-or 64-bit Applications

Compiler Option	What it Does
+DA1.1	Produce PA1.1 code
+DA2.0	Produce PA2.0 code (32 bit)
+DA2.0W	Produce PA2.0 code (64 bit)
+DD32	same as +DA1.1
+DD64	same as +DA2.0W


- all options are supported on both 32-and 64-bit system s
 - can cross-develop for either platform
- on 32-bit system smake sure you have installed the 64-bit library fileset (OS-CORE C-M IN -64A LIB)

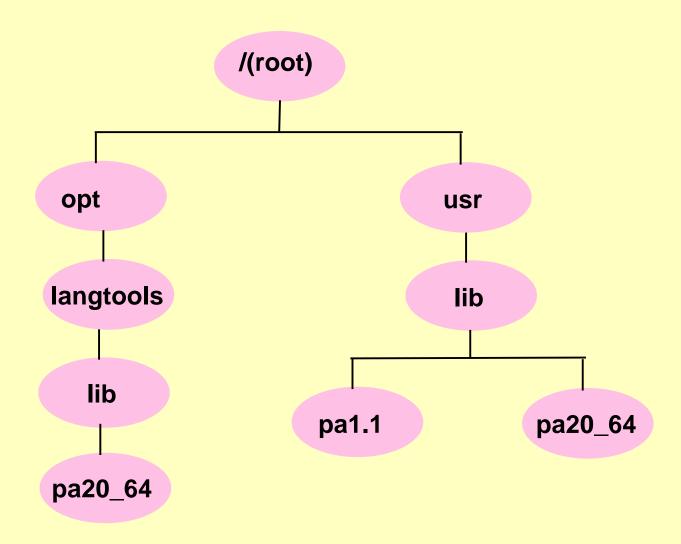
HP-UX LinkerChanges

- A number of new /changed options to HP-UX linker-try "ld +help" or review STK W hitepapers
- Apps compiled and linked in 32-bitm ode will see no change in behavior.
- Apps com piled and linked in 64-bitm ode use a runtim e startup m odel sim ilar to other SVR 4 system s.

New Linkersearch order for 64-bit applications

• 64-bitm ode: Breadth-first search:

 $a out \rightarrow libA \rightarrow libB \rightarrow libC \rightarrow libD \rightarrow libE > libF$


• 32-bitm ode: Depth-first search:

 $a out \rightarrow libA \rightarrow libD \rightarrow libE \rightarrow libFD \rightarrow libBE > libC$

New Library Paths

DAL

32

HP-UX Transition Tools

- HP-UX Software Transition K it (STK). Current: 131
 - tools and docum entation to discover changed A PIs
 - works on C and C++ source code, scripts, m akefiles
 - http://www.software.hp.com/STK/
- HPC compiler
 - both lint and the C com piler provide options to help transition to the 64-bit data m odel.
- HP-UX 11.0 Release Notes
 - docum ents system header file changes, system library changes, and lists 64-bit versions of system libraries.
- FlexeLint
 - identifies non-portable constructs in C and aC++ program s.

HP-UX 11.0 STK DAL FIP-UX 11.x Software Transition Kit - Microsoft Internet Explorer provided by Hewlett-Packard - 🗆 🛛 Elle Edit View Favorites Tools Help 4 4 23 Home a W -96 _ Mail Print RealGuide Refresh Edit Back. Forward Stop Search Favorites History ∂Go Links [№] Address F] D:\WINNT\Profiles\iferwick\Desktop\HP-UX11_x Software Transition Kit.htm . HP-UX 11.x PACKARD Software Transition Kit What You Need to Know Quick Reference How to Download Software Site Map Welcome to the HP-UX 11.x Software Transition Kit If you are an application or library developer who needs to transition software from HP-UX 10.x to HP-UX 11.x, the documents and tools in this Software Transition Kit will make your work faster and easier. Transitioning your software to HP-UX 11 x is beneficial for several reasons: to take advantage of new features such as 64-bit capability, to adhere to industry standards, and to reduce maintenance costs. This Software Transition Kit (STK) provides useful documents and tools to help you identify and resolve any transition impacts in your C, C++, Fortran, or COBOL software and scripts. Done Internet

Η

HP-UX 32-bit and 64-bit Base Data Types

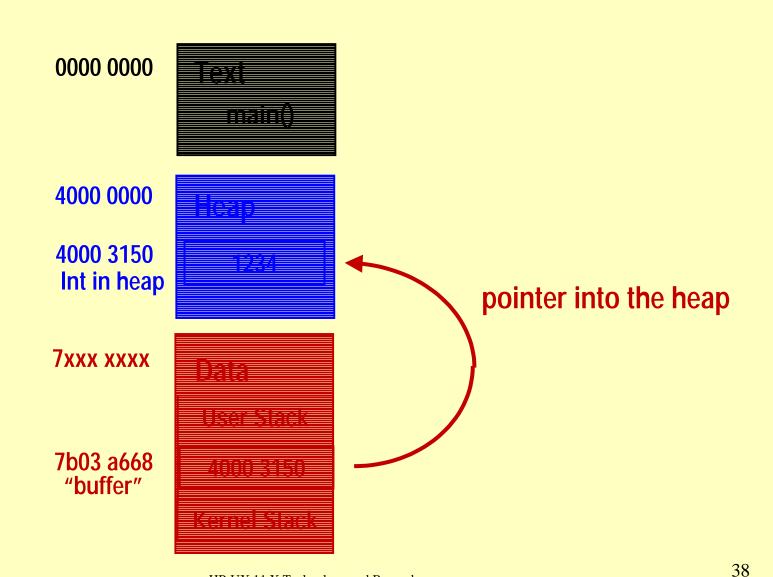
Data Type	ILP32 size(bits)	LP64 size(bits)
char	8	8
short	16	16
int	32	32
long	32	64
long long	64	64
pointer	32	64
float	32	32
double	64	64
long double	128	128
enum	32	32

ILP32 to LP64

DAL

Porting Concerns

- Fundam ental changes:
 - longs and ints are no longer the sam e size
 - pointers and ints are no longer the sam e size
 - pointers and longs are 64 bits and are 64-bit aligned
 - Predefined types size_tand ptrdiff_tare 64-bit integral types
- Potential im pact:
 - data truncation
 - data type promotion
 - constants
 - enum erated types
 - pointers
 - data alignm ent and data sharing
 - bitshifts and bitm asks
 - bitfields


```
int main ()
    int *buffer;
    buffer = malloc(sizeof(int));
                                        *buffer = 1234;
    printf("Buffer address: %p\n", &buffer);
    printf("Buffer contents: %p\n", buffer);
    printf("Dereferenced value: %d\n", *buffer);
    return 0;
  }
                                             HP-UX 10.20
                                               LP32
$ ./malloc return
Buffer address: 7b03a668
                        <-- address in data segment
Buffer contents: 40003150
                        <-- address in heap
```

```
Dereferenced value: 1234 <-- dereference ptr in heap
```

37

DAL

Example Program - Memory Map

Example: code works on 32-bit **DAL** and will fail on 64-bit **DAL**

```
int main ()
  int *buffer;
 buffer = malloc(sizeof(int));
  *buffer = 1234;
 printf("Buffer address: %p\n",
                                    &buffer);
 printf("Buffer contents: %p\n", buffer);
 printf("Dereferenced value: %d\n", *buffer);
 return 0;
}
 $ getconf KERNEL_BITS
 64
                                         HP-UX 11.0
 $ cc +DD64 -o malloc return
                                            LP64
 malloc return.c
 $ ./malloc return
 Memory fault(coredump)
```

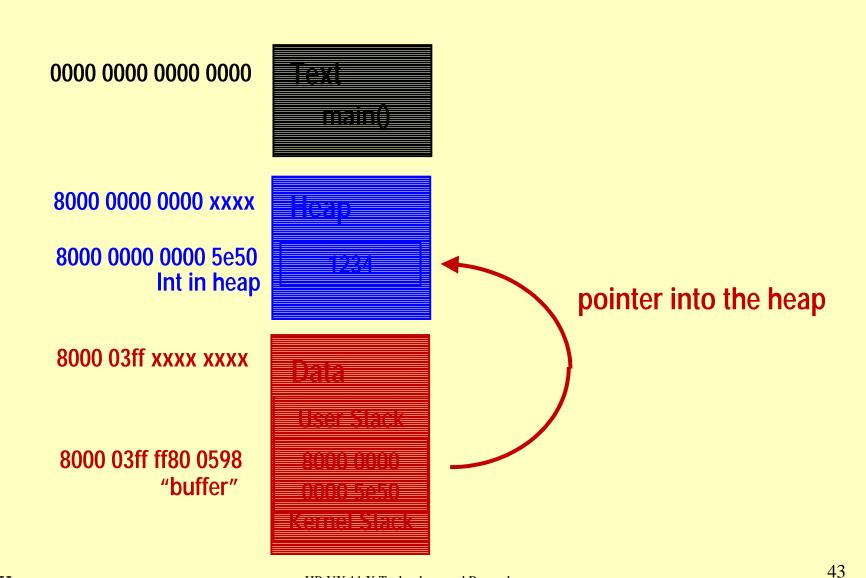


```
int main ()
{
    int *buffer;
    buffer = malloc(sizeof(int));
    *buffer = 1234;
    printf("Buffer address: %p\n", &buffer);
    printf("Buffer contents: %p\n", buffer);
    printf("Dereferenced value: %d\n", *buffer);
    return 0;
}
```

- In C an undefined function return value is integer type 32 bits
- malloc returns a pointer type which is now 64-bits
- pointer.64 to integer.32 data truncation -> invalid pointer value
- invalid pointer dereference -> core dum p

40

Example: code works on 32-bit **DAL** and will fail on 64-bit **DAL**


```
#include <stdlib.h>
int main ()
{
    int *buffer;
    buffer = malloc(sizeof(int));
    *buffer = 1234;
    printf("Buffer address: %p\n", &buffer);
    printf("Buffer contents: %p\n", buffer);
    printf("Dereferenced value: %d\n", *buffer);
    return 0;
}
```

- Correct this by including the appropriate function declaration from the include file < stdlib h>
- lintwould have detected thism issing function declaration

```
Example: code works on 32-bit
                                                        DAL.
            and will fail on 64-bit
        #include <stdlib.h>
        int main ()
          int *buffer;
          buffer = malloc(sizeof(int));
          *buffer = 1234;
          printf("Buffer address: %p\n",
                &buffer);
          printf("Buffer contents: %p\n",
                buffer);
          printf("Dereferenced value: %d\n",
                *buffer);
         return 0:
                                                HP-UX 110
        }
$ cc +DD64 -o malloc return2 malloc return2.c
                                                    LP64
$ ./malloc return2
Buffer address: 800003ffff800598 <-- data segment
Buffer contents: 800000000005e50 <-- ptr in heap
Dereferenced value: 1234
                             <-- dereference ptr.</pre>
```

DAL

Example Program - Memory Map

Example: compiling and running on 32-and 64-bit systems

/*

* test_basetypes: display maximum values of base data types
*/

#include <values.h>

```
main()
{
    printf("** Maximum values of base types on this system **\n");
    printf("Max int = %ld\n",MAXINT );
    printf("Max long = %ld\n",MAXLONG);
}
```

DAL.

Example: compiling and running on <u>32</u>-and 64-bit system s

DAL

\$ uname -a HP-UX te887-01 B.11.00 A 9000/887 312087281 two-user license

\$ getconf KERNEL_BITS
32

\$ cc -o test_basetypes test_basetypes.c

<-default compile: 32-bit

\$ file test_basetypes
test_basetypes: PA-RISC1.1 shared executable dynamically linked -not stripped

```
$ ./test_basetypes
** Maximum values of base types on this system **
Max int = 2147483647
Max long = 2147483647
```

\$ cc -o test_basetypes +DD64 test_basetypes.c

<- compile for 64-bit

```
$ file test_basetypes
test_basetypes: ELF-64 executable object file - PA-RISC 2.0 (LP64)
```

\$./test_basetypes
\$./test_basetypes: Execute permission denied.
<- cannot execute 64-bit application
on 32-bit system</pre>

Example: compiling and running on 32- DAL and 64-bit systems (continued)

\$ getconf KERNEL_BITS
64

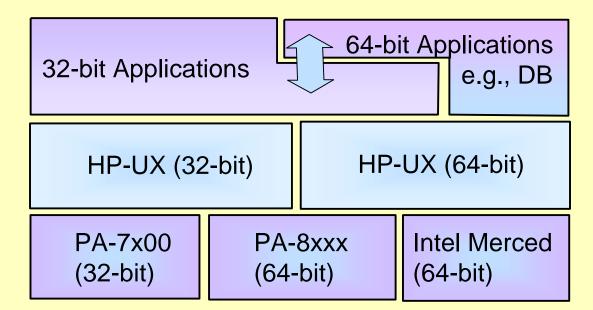
\$ cc -o test_basetypes test_basetypes.c <-default compile: PA 2.0 32-bit
/usr/ccs/bin/ld: (Warning) At least one PA 2.0 object file (test_basetypes.o)
was detected. The linked output may not run on a PA 1.x system.</pre>

\$./test_basetypes
** Maximum values of base types on this system **
Max int = 2147483647
Max long = 2147483647

\$ cc -o test_basetypes +DD64 test_basetypes.c

<-compile for PA 2.0 64-bit

<-compile for PA 1.1 64-bit


\$ file test_basetypes
test_basetypes: ELF-64 executable object file - PA-RISC 2.0 (LP64)

\$./test_basetypes ** Maximum values of base types on this system ** Max int = 2147483647 Max long = 9223372036854775807

\$ cc -o test_basetypes +DA1.1 test_basetypes.c

Sm ooth Upgrade to 64-bit Environment

- End-users m ay recode and/or recom pile their 32-bit applications at their leisure to access 64-bit functionality directly, or ...
- R un existing 32-bit applications unchanged and access 64-bit functionality of 64-bit databases or other ISV s

HP-UX willallow co-existence and interoperability of 32-and 64-bit applications

DAL.

HP-UX 11.0/10.30: MajorNew Functionality

DAL

48

- Merged binaries and merged installmedia
- Kernelthreads
- Perform ance optim ized page size
- Dynam ically badable kernelm odules
- Fast core dum p/recovery
- Fastpassword lookup
- Ignite U X
- New system recovery capability
- Year 2000 safety
- Othernew technologies

HP-UX 11.0 Feature Set New and Obsoleted

- For a complete reference and pointers to other docum entation, please brow se the HP-UXW eb Site:
 - http://www.enterprisecom.puting.hp.com/
 - http://www.unixsolutionshp.com/
- Other relevant web sites:
 - http://docshp.com (http://www.docshp.com)
 - http://software.hp.com (http://www.software.hp.com)

M erged binaries and install media

- Merged installmedia
 - Installmedianow common for both S800 and S700
 - only 1 set of CD-ROM s
- MostS800/S700 dependencies removed from core 0 S
 - optional products (e.g., graphics) m ay still vary
- Merged install kernels
 - cold install kernel is the sam e for both S800 and S700

DAL.

Merged binaries and install media (continued)

- Merged binaries in core 0 S for 32-and 64-bit system s
 - every comm and in the core OS is built in 32-bitm ode and can operate on either a 32-or 64-bit system
 - som e kennel-specific com m ands are both 32-and 64-bit capable (such as ps and dm esg)
- Machine ID s and specifiers
 - future m achine ID s are to be S700/S800 neutral
 - rem ove any dependency on S700/S800 m achine id
 - New V-classmachine types:

	uname -m	model
V2200	9000/800	9000/800/V2200
V2500	9000/800	9000/800/V2500

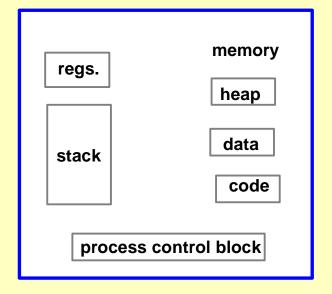
New ELF object file form at for 64-bit executables

DAL

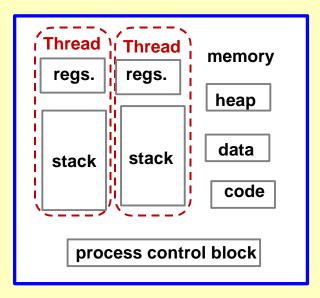
- For 32-bit applications, the object file form at rem ains SOM -32 (Spectrum Object Module).
- For 64-bit applications, the object file form at is now ELF-64 (Executable and Linking Form at)
 - ELF: a binary form at developed by UNIX System Laboratories, used on Solaris, Linux, others.
 - New executable file startup m echanism
 - M ore efficient executable file form at
- Why keep SOM for 32-bit and adopt ELF for 64-bit?
 - Maintain compatibility existing (32-bit) code
 - gain benefits for new ly developed (64-bit) code

52

HP-UX Threads in the 10 X Releases


- HP-UX 9 X and 10 X offered U ser Space threads
- All Thread APIs conform to POSIX standards
 - (Pthread standard)
- Threads libraries, include files, and docum entation delivered with the core DCE product
- Im plem entation based on 0 SF D C E Threads
- A ctual thread libraries are contained in libon a
 - CMA = ConcertMultithreaded Architecture

Thread D efinition

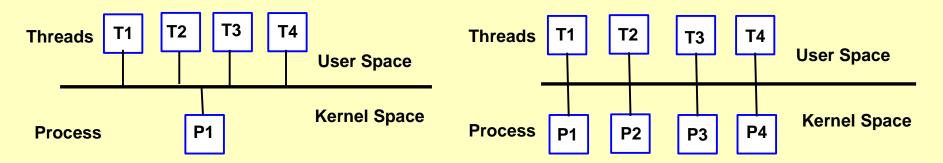

DAL

- A single sequential flow of control that can coexist with other threads in the same process.
- A thread is described by:
 - a unique identifier Thread ID (TID)
 - shared address space with other threads in process
 - scheduling priority and policy

Traditional Process

Multi-threaded Process

UserThreads and Kernel Threads


DAL

<u>UserThreads</u>

- handled in U ser Space and controlled using the threads
 A P Is provided in the threads
 libraries
- M x1: M any to O ne M odel. M Threads exist inside 1 Process that is visible to the K ernel

<u>KernelThreads</u>

- handled in U ser and K emel space and are kernel schedulable entities visible to the operating system
- 1x1:0 ne to 0 ne M odel.one
 Thread in one K emelprocess.HP-UX im plem ents with LW P (Light W eightProcess).

Η

UserThreadsvs.KernelThreads

<u>M xl U ser Threads</u>

- all threads mapped into one process
- notvisible to kernel
- fast creation/control
- no kernel overhead
- if one thread blocks, all threads are blocked

<u>1x1 K emelThreads</u>

- each user thread m apped to kernel thread
- each thread scheduled independently, so if one blocks others can still run
- som e overhead due to kernel calls

DAI.

Kernel Threads HP-UX Implementation

DAL

- K emel thread infrastructure delivered in the 10.20 Release:
 - thread structure in kernel
 - kernel scheduling done on thread objects
- Full implementation of Kernel Threads delivered in 10.30 and 11.0 Releases

Threads -

DAL

Concurrency and Parallelism

- Concurrency multiple threads may be in progress at the same time
- Parallelism multiple threads are executing at the same time
 - On a M P system , K emel Threads m ay execute in parallel on different C PU s
 - potentially a huge perform ance w in

POSIX Pthreads

DAL

- Pthreads can be implemented with M x1, 1x1, or M xN models
- POSIX Standard: P10031cPortable API for Threads Extensions to POSIX 10031(a,b)
- HP-UX UserSpace (DCE) threads comply with POSIX Draft4.
- HP-UX Kemelthreads (HP-UX 11.0) comply with POSIX Draft10.

Programming with Threads

- Write programs to create and execute simplemulti-threaded processes.
- Willdem onstrate the basics of thread program ming
- Willdem onstrate Multi-Processor scaling and concurrency issues
- Testprogram will be a multi-threaded: "Hello, World!", then will become a form of compute-bound application

Programming with Threads program pseudo-code

```
/*
   Create and execute 2 threads (pseudo-code)
 *
 */
main()
  pthread create(thread1);
                                 /* create first thread
                                                             */
  pthread_create(thread2);
                                  /* create second thread
                                                             */
  pthread join(thread1);
                                  /* wait for first thread */
  pthread join(thread2);
                                  /* wait for second thread */
}
thread1()
                                   /* Thread 1 will run here */
  printf("Hello, World!\n");
thread2()
                                   /* Thread 2 will run here */
  printf("Goodbye, World!\n");
```

DAL

Programming with Threads program code

```
/*
    Create and execute 2 threads (main program)
 *
 */
#include <pthread.h>
       thread1();
void
                                            /* forward declarations */
void
                                            /* for thread start addr */
        thread2():
main()
  pthread t tid1,tid2;
                                           /* Thread ID values */
  /* Create threads */
  pthread create(
                          &tid1,
                                           /* Thread ID (returned value) */
      (pthread_attr_t *)
                                           /* thread attributes */
                          NULL,
                                            /* thread executes this func */
          (void *(*)() ) thread1 ,
                          NULL );
                                           /* argument passed to thread */
               (void *)
                          &tid2,
  pthread create(
      (pthread attr t *)
                          NULL,
          (void *(*)() )
                          thread2,
               (void *)
                          NULL
                                 );
  /* wait for the threads to finish */
                                            /* wait on this thread */
  pthread join(
                          tid1.
                (void **) NULL );
                                            /* thread's exit value */
  pthread join(
                          tid2.
                (void **) NULL ) ;
}
```

DAL.

Programming with Threads program code (continued)

/*

* Functions where the two threads will start executing */

void thread1()

printf("Hello, World!\n");
pthread_exit((void *) NULL);

/* return a value and exit */

void thread2()
{ printf("Coodbuo_World!\n").
pthread exit((void *) NULL);
}

Programming with Threads compiling and executing

DAL

- com pile the program
 - % cc +DA1.1

-o 2threads 2threads.c

- com pile +DA11 so the binary will be portable and will run on any supported 11.0 system
- Pthreads library located at /usr/lib/libpthread.[a,sl]
 - (for DCE threads link against liborn a)
- default com pilation builds a shared-linked executable
- run the program
 - % ./2threads
 Hello, World!
 - Goodbye, World!

Programming with Threads order of execution

- run the program
 % ./2threads
 % ./2threads
 Hello, World! ... OR MAYBE ... Goodbye, Wor
 - Goodbye, World!

... Goodbye, World! Hello, World!

• Is the order of execution guaranteed?

It is not guaranteed unless one uses the thread scheduling and synchronization A PIs

Programming with Threads compute-bound example

- Each thread will now execute a basic example of a compute-bound application
- Threads will execute <u>concurrently</u> as the kernel schedules each thread
- Threads may execute <u>in parallel</u> on a multi-processor system
- Default thread scheduling policy on HP-UX is to schedule threads across different processors.

Programming with Threads compute-bound program code

```
#include <pthread.h>
void
       busywork();
                                        /* where the threads execute
                                                                       */
main()
  pthread t tid1,tid2;
  /* Create threads */
  pthread create(
                          &tid1,
                                        /* Thread ID (returned value) */
                                        /* thread attributes
      (pthread attr t *)
                         NULL
                                                                       */
                         busywork,
          (void *(*)() )
                                        /* thread executes busywork
                                                                       */
               (void *)
                          10000);
                                        /* argument passed to thread
                                                                       */
  pthread create(
                          &tid2,
      (pthread attr t *) NULL,
          (void *(*)() )
                         busywork,
                          10000);
               (void *)
  /* wait for the threads to finish */
  pthread_join( tid1, (void **) NULL); }
  pthread join( tid2, (void **) NULL);
void busywork(int maxcount)
                                                           busywork: bop for
  int count1, count2;
                                                           (count*count) tim es
  for (count1=0; count1<maxcount; count1++)</pre>
    for (count2=0; count2<maxcount; count2++);</pre>
 pthread exit( (void *) NULL);
```

DAL.

Programming with Threads compute-bound execution

- Program compiled the same as before
 - % cc +DA1.1 -lpthread -o 2busythreads 2busythreads.c
- execute the program on 1-way C-110:

% timex 2busythreads 17.10 real 16.79 user 0.03 SYS

execute the program on 2-way D-270: ۲

Real (wallclock) time

Compute time 2X real time!

% timex 2busythreads 5.06

10.05

real

user

Programming with Threads compute-bound example

- Realtime (wallclock time) is halved on the 2-way system
 - Each thread executes in parallel on a different processor
- This program M P-scales perfectly to a 2-way system, but would not scale any better on a system with more than 2 processors installed.
- This simple program example is not concerned with synchronization, global resources and contention, asynchronous events -m any of the interesting elements of real-world programming.

Threads R eferences

DAL

70

- <u>Thread Time</u>, ScottN orton and Mark DiPasquale, HP Press and Prentice Hall, ISBN 013-190067-6
- Multi-Threaded Programming under HP-UX, A.Jyothy Ready, HPW orld August 1996
- HP-UX W hitepaper in the docum entation directory /usr/share/doc/proc_mgt.[ps,txt]
- FAQ in comp program m ing threads

LargeVM PageSize

DAL

- Virtual Memory Page Size was fixed at 4 K Bytes for all HP-UX releases prior to 10.20
- HP-UX 10.20 introduced Large Pages -VM page size for an executable process could be explicitly setusing the chatr comm and to:

4K	1M	256	бM
16K	4M	L	(use largestavailablesize)
64K	16M	D	(use kernel default size)
256K	64M		

- Page size could be set for Text, Data, Stack, M em ory M apped Files, and otherm em ory objects.
- Only for PA -8000 processors

Virtual Memory Page Lookups and **DAL** Translation Lookaside Buffer (TLB)

PHYSICAL ADDRESS

72

VIRTUAL ADDRESS

PAGE OFFSET

TLB is a hardware lookup (extrem ely fast) of virtual page addresses. If page entry is not in TLB, a software search (slower) of all virtual page addresses must be done by the kernel to get the physical page address.

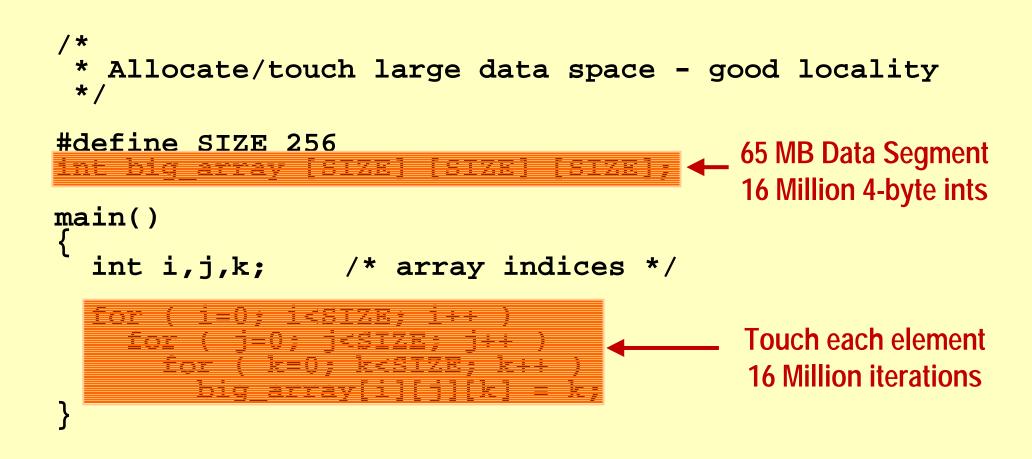
> HP-UX 11.X Technology and Beyond HP InterWorks 2000

Performance Optimized Page Size

- HP-UX 11.0 introduces variable page size (aka. Large Pages or Perform ance Optim ized Page Size).
- The Sys Adm in can request a page size using the chatr() command or the kernel can specify a page size.
- The kernel tries to honor the request but may use a smaller page size if there is competition form emory.
- Kernel tunable parameters to control operation:
 - vps_pagesize default page size used by kernel
 - vps_ceiling maximum page size used by kernel
 - vps_chatr_ceilingmaximum size a user can set

(probably don'tw antor need to change these tunables)

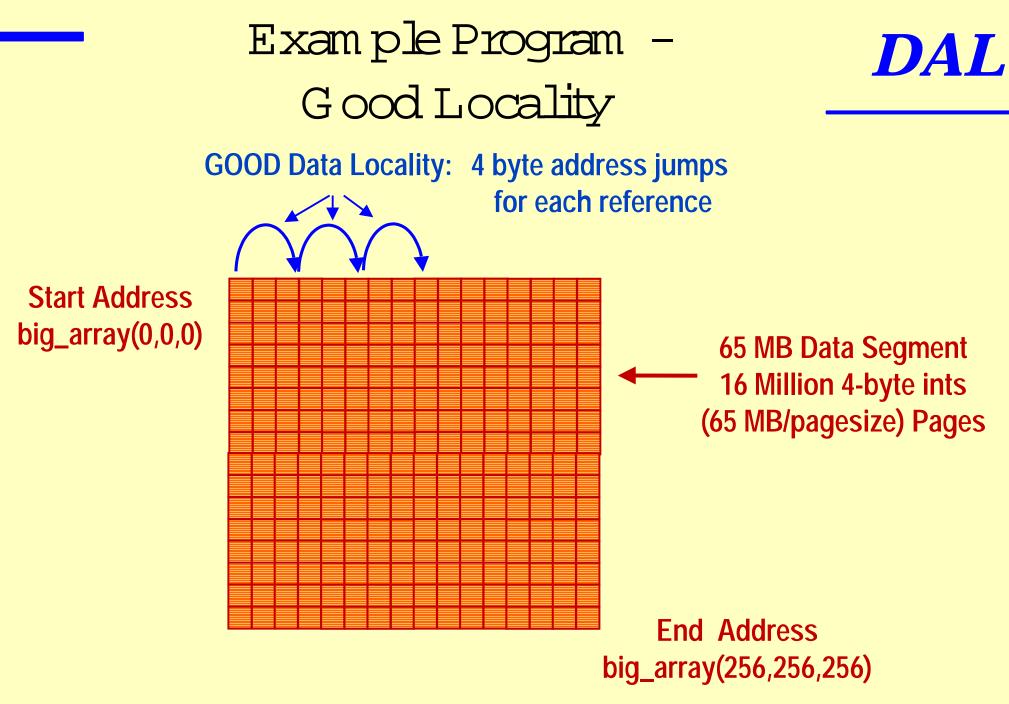
A dvantages to Perform ance Optimized Page Size


- Larger virtual address ranges can be mapped using few er TLB entries, so there will be few er TLB misses
- POPS will offer perform ance advantages for applications that:
 - are experiencing significant TLB m isses
 - have large R eference Sets (e.g. large D ata Segments or Text Segments)

Performance Optimized Page Size Tools and Documentation

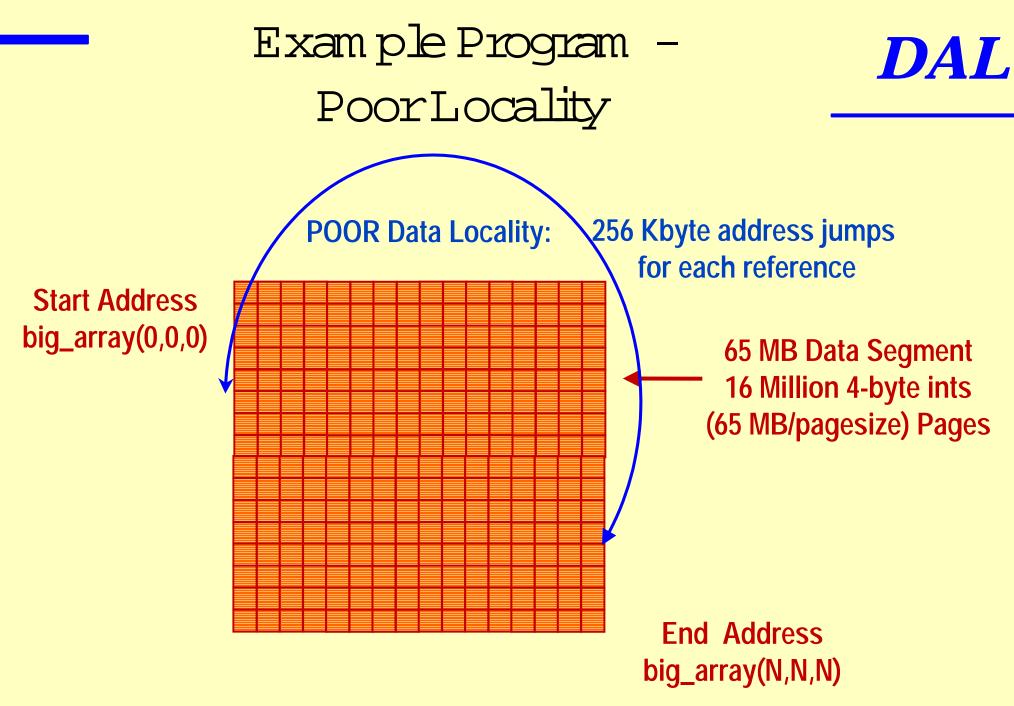
- chatr com m and (see chatr(1) m an page)
 - chatr+pi<size> textpage size chatr+pd < size> data page size size = 4K , 16K , 64K , 256K , 1M , 4M , 16M , 64M , 256M , L (largest), D (kernel default)
- kernel tunable param eters:
 - vps_pagesizedefaultpage size kernelwillusevps_ceilingm ax page size kernelwillselectvps_chatr_ceilingm ax page size a user can select
- /usr/contrib/bin/vps_stats
 - reportpage statistics
- W hitepaper: /usr/share/doc/m em _m gt.[ps,txt]

DAL.


Performance Optimized Page Size **DAL** Example Programs

76

Memory Map – Virtual Memory Pages


PoorLocality /*
 * Allocate/touch large data space - poor locality #define SIZE 256 65 MB Data Segment 16 Million 4-byte ints main() /* array indices */ int i,j,k; for (i=0; i<SIZE; i++)
 for (j=0; j<SIZE; j++)</pre> **Poor Locality** for (k=0; k<SIZE; k++</pre> 256K address jumps for each reference

DAL.

79

All we've done is reverse these indices!

Example Program

TestProgram DefaultCompile and Run

 the default com pile w ill set the page size to the kernel default page size:

- chatrshows "D" forpage size

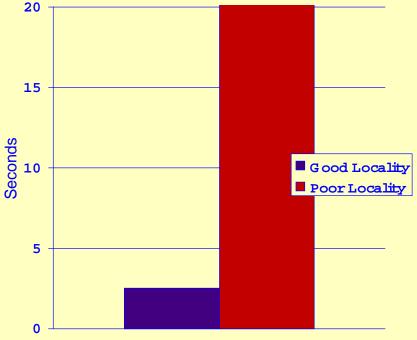
- the default kernel tune is for 16K page size
- the Program M emory M ap will consist of:
 - TextSegment: very small
 - Data Segment:

4096 entries of 16 K byte pages = 65 M Bytes

Test Program M em ory M ap: vps_stats -p <process_id>

DAL

REGION INFO


TYPE	HINT 	PHYSPAGES	Phys Page SIZE[Count]
NULL TEXT DATA	4K 4K 16K	1 3 16387	4K[3] Data Segment: 4K[3] 16K[4096] ← 16 KB pages
MMF MMF MMF MMF MMF MMF MMF	4K 4K 4K 4K 4K 4K	0 3 1 3 4 1 2	4K[3] 4K[1] 4K[3] 4K[4] 4K[1] 4K[1] 4K[2] 4096 entries = 65 Mbytes space
MMF STACK MMF MMF UAREA	4K 16K 4K 4K 4K 4K	2 3 15 206 1 7	4K[3] 4K[3] 4K[15] 4K[206] 4K[1] 4K[7]

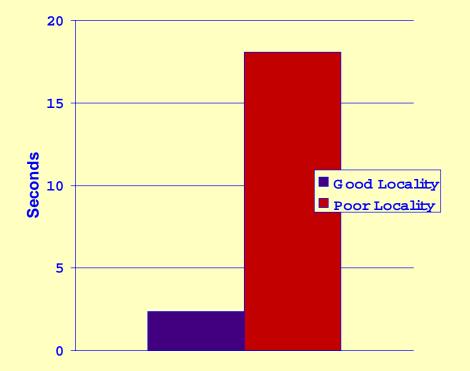
Execution Times Default (16 K B) pages

DAL

83

- Execution time:measure with "timex big_anay"
- TLB m isses: m easure with "cyclem eter" (contributed tool) (PerfUX or G lance UX also work)
- G ood Locality program : Runtime 2.52 sec.
 Data TLB m isses` 51,535
- PoorLocality program : Runtime 20.49 sec. Data TLB misses 17,062,436

Memory Map: chatr to 256K Data Pages

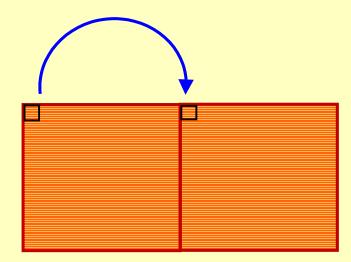


REGION INFO

TYPE 	HINT	PHYSPAGES	Phys Page SIZE[Count]
NULL TEXT DATA	4K 4K 256K	1 3 16387	4K[3] 4K[3] 16K[4] 64K[3] 256K[255] 4K[3] 256K[255] 255 entries +
MMF MMF MMF MMF MMF MMF STACK MMF MMF MMF UAREA	256K 256K 4K 256K 4K 256K 4K 256K 4K 4K 4K 4K 4K	0 3 1 3 4 1 2 3 3 15 206 1 7	250K[255] 255 entries + 4K[3] 4K[1] 4K[3] 4K[1] 4K[2] 4K[3] 4K[3] 4K[3] 4K[15] 4K[15] 4K[1] 4K[1] 4K[7] 255 entries + 1 fragmented entry = 65 Mbytes space

Execution Times chatr to 256 K Byte pages

- Change D ata Page size:
 "chatr+pd 256K big_anay"
- Good Locality program :
 Runtime 2.35 sec.
 Data TLB m isses 34,562
- Poor Locality program : Runtim e 18.06 sec.
 Data TLB m isses 16,906,509


Change to 256 K byte Pages why little perform ance change?

- Data Page Size is 256 K bytes
- "Poor Locality" C program references 4 byte integers from address (A B C) to (A + 65536 B C),...
- CurrentAddress + (4 bytes * 65536) =

CurrentAddress + 256K

this is **justover** the next page boundary

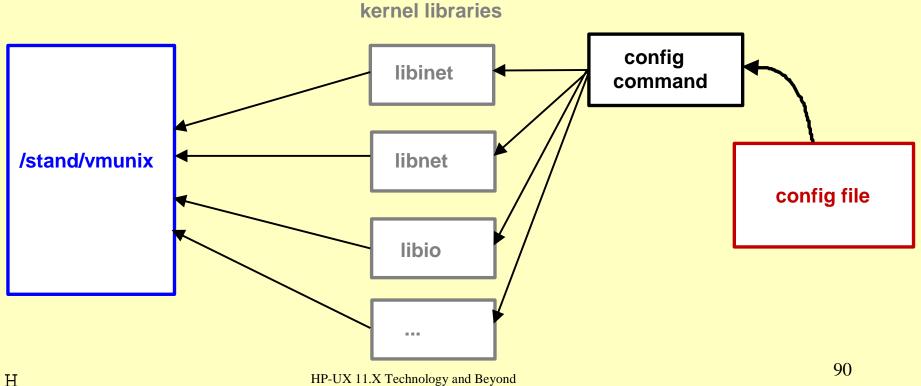
DEGION		Memory atr to 4M 1	∕Map: Data Pages	DAL
REGION TYPE	INFO HINT	PHYSPAGES	Phys Page SIZE[C	!ount]
NULL TEXT DATA MMF MMF MMF	4K 4K 4M 4M 4M 4M 4K	1 3 16387 0 3	4K[3] 4K[3] 16K[4] 64K[3] 256K[3] 1M[3] 4M[15] 4K[3] 4K[3] 4K[1]	Data Segment: 4 MB pages 15 entries + 1 fragmented entry = 65 Mbytes space
MMF MMF MMF MMF STACK MMF MMF MMF UAREA	4M 4K 4M 4M 4K 4K 4K 4K 4K 4K	0 3 1 3 4 1 2 3 3 15 206 1 7	4K[3] 4K[4] 4K[1] 4K[2] 4K[3] 4K[3] 4K[15] 4K[15] 4K[1] 4K[1] 4K[7]	

Execution Times chatr to 4 M Byte pages

DAL

88

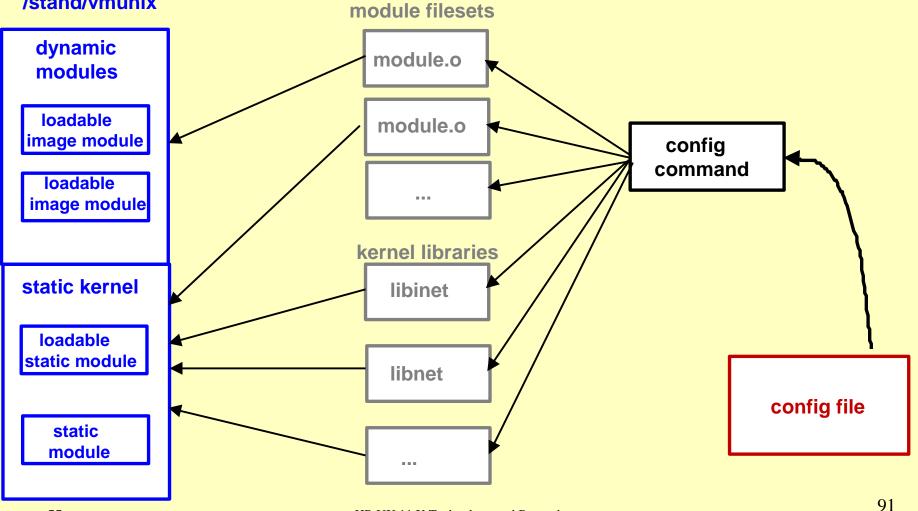
- Change D ata Page size:
 "chatr+pd 4M big_anay"
- Good Locality program : Runtime 2.99 sec. Data TLB misses` 33672
 Poor Locality program : Runtime 7.75 sec.
 - Data TLB m isses 30,227



Variable Pages -OtherConsiderations

- O ther factors affecting perform ance:
- other ongoing system activity
- m em ory page contention/thrashing/locking issues
- cache sizes and cache fits
- Bestperform ance is a com bination of:
- ✓ fastand efficienthardware (PA-8000)
- correct system and kernel tunes
- ✓ well-written software

Static K emel Configuration


- Prior to 11.0 R elease, H P-U X kernels have been statically configured and built
- config com m and to build kernel

Dynamic KernelConfiguration

DAL

Dynam ically Loadable K emel M odules allow one to load, unload, and configure kernel m odules w ithout rebooting /stand/ymunix

DLKM in 11.0

- DLKM Phase 1 delivered in 11.0:
 - DLKM infrastructure in kerneland commands
 - Major subsystem smade DLKM -aw are
 - no modules configured as dynam ically loadable (yet)

Configuring Kernels

- Static kernel configuration rem ains exactly the sam e
 - config com m and and kernel config files
- To build a new kernelm odule:
 - config -M <m odule>
- To update the kernel with the new module:
 - config -u /stand/system -or-
 - km update (new com m and)

New Commands for configuring Kernels

kmsystem	set control flags in system files
kmtune	interface to set tunable parameters
kmupdate	update system with new kernel or loadable modules
kminstall	install/remove/update a module in a system
kmmodreg	register/unregister a module with the system

DLKM - Future Capabilities

- On-Line Module Replacement
- M odule support form ore subsystem s:
 - File system s
 - System calls
 - Otherdrivers

FastCore Dum p/Recovery

- Support of Large M em ory (to 16 G B ytes) m eans system im age dum p/recovery could take a long tim e
 - from severalm inutes to several hours
- Long dum p/recovery tim es would not allow the High Uptim e goals for HP-UX
 - one cannot afford to take several hours to dum p/recover a system in age
- Size of the dum p in age could be very large, and there m ay not be enough space to store the in age

FastCore Dum p/Recovery

DAL

New /renamed commands:

crashconf A dd/rem ove/redefine dum p devices at runtim e.D evices can also be statically declared with a new field in /etc/fstab. This can override the dum p device that has been configured in the kernel.

savecrash Save system in age during the next reboot. (savecore) C an select full/partial, or com press/nocom press

crashutil Form ats the crash dum p in age for further analysis

FastCore Dum p/Recovery

- Background mode operation of savecrash service at system startup
- There is a new mode flag to allow Background Operation available to startup scripts
 - A llow s system startup to proceed while a lengthy process continues in background
 - Don tuse thism ode if other services depend on the immediate result of the startup of your service, or else the results may be confusing
- Background M ode startup willdisplay "OK" in the startup screen if the service begins successfully

Fastpassword/uid/gid Lookup

- Extension to uid/gid/password bokup for local files.
 - applies partially to N IS system s
 - does not apply to Secure system s
- Large num bers of uids (to 4 G .) m eans potentially large num ber of entries in /etc/passwd file.
- Existing A PIs (getpw ent(3c), getgrent(3c)) do a linear search through /etc/passw d -potentially long tim es required for sim ple login or lookup

FastPasswords

- Solution to lengthy searches of password files
 - a helperprocess to speed the lookup
- New system process: **pw grd** a user space daem on
- All supported A PIs such as getpw ent(3C) and getgrent(3C)
 communicate to pw grd
- pw grd hashes and caches passw ord entries to avoid potentially lengthy searches of /etc/passwd

FastPasswords

- pwgrd fast bokup
 - hashing of all entries in /etc/passwd done at startup of the daem on or if the daem on is signaled
 - caching of recent lookups into /etc/passwd
- pw grd caches recent retrievals from NIS entries
- Documentation:
 - **pw grd** (1M) m an page on 11.0 system

Ignite-UX

- A new Cold Installation m ethod
 - not an Update in Place method
- Available on 10 X (starting with DART 34) and 11.0

Ignite-UX Capabilities

	Cold Install	Ignite-UX
Installm ethods	From localmedia Pullfrom networkserver	From localmedia Pullfrom network server Pushfrom network server Reinstallexistingmachines
Server capability	Single Release	Multiple Releases
U ser Interface	TU I on target	TU Ion target GU Ion server
Software Formats	Software Distributor	Software Distributor,cpio,tar can use multiple formats

Ignite-UX

- Installm ethods:
 - Bootfrom localmedia
 - Pullfrom network server
 - Push from network server
- uses rem sh to target system console
 - can easily add new clients

Ignite-UX

Creating Custom Install Packages

- Custom ize an install configuration and save the configuration for replication
 - "Save A s" option to Ignite-U X
- Ignite-UX tools allow one to create a custom archive (Golden Im age) and choose the install form at

System Recovery

- Use to recover Root Filesystem with all your installation and custom ization
- Root recovery might ordinarily require these steps:
 - cold install
 - configure
 - reinstallpatches
 - reinstallapplications
 - reinstalluserdata and files

System Recovery – otheruses

- Modify Root Filesystem size
- Modify primary swap size
- ConvertRootFilesystem from HFS to VxFS
- Clone a system

System Recovery

- Supported on 11.0 and 10 X
- Installed with Ignite-UX
- Install from DART releases or HPW eb site:
 - http://www.software.hp.com/
 - Link to: "Network and System Administration Tools"

System Recovery

make_recovery	make a system recovery tape ("make_recovery -A" - entire core VG)
save_config	create a configuration file that details the current system hardware and software configuration
check_recovery	compare current system configuration to last configuration file
print_manifest	print hardware configuration (CPUs, LVM and disks, I/O), OS configuration, installed products)

System Recovery

- Currently supports:
 - HFS/VxFS
 - SAM interface
 - LVM
 - DDS tape recovery im age
- Notyetsupported:
 - Striped orm incored disks
 - Shared LVM

System Recovery -

DAL

print manifestutility

System Information

Your Hewlett-Packard 9000 computer has software installed and configured as follows.

NOTE: You should retain this information for future reference.

System Hardware

Model:	9000/777/C110
Main Memory:	128 MB
Processors:	1
OS mode:	32 bit
HW capability:	32 bit
LAN hardware ID:	0x0060B001BA5B
Software ID:	2011905808
Keyboard Language:	PS2 DIN US English
1	
	Main Memory: Processors: OS mode: HW capability: LAN hardware ID:

 Storage devices
 HW Path

 SEAGATE ST15150W 4095 Mb
 8/12.6.0

 SEAGATE ST32430N 2048 Mb
 8/16/5.4.0

 HP C1533A
 8/16/5.3.0

Interface GSC built-in Fast/Wide SCSI Interface Built-in SCSI Built-in SCSI

I/O Interfaces

Class	H/W Path	Driver	Description
ext bus	8/12	c720	GSC built-in Fast/Wide SCSI Interface
ext_bus	8/16/0	CentIf	Built-in Parallel Interface
audio	8/16/1	audio	Built-in Audio
tty	8/16/4	asio0	Built-in RS-232C
ext bus	8/16/5	c720	Built-in SCSI
lan	8/16/6	lan2	Built-in LAN
ps2	8/16/7	ps2	Built-in Keyboard/Mouse
	8/16/10	fdc	Built-in Floppy Drive
pc hil	8/20/1	hil	Built-in HIL
tty	8/20/2	asio0	Built-in RS-232C
graphics	10/16	graph3	Graphics

Installed Software

Your system was installed with HP-UX version B.11.00.

Your system has the following software products installed and configured on the system disk drive(s).

Product B3782EA	Revision B.10.20	Description HP-UX Media Kit (Reference Only. See Description)	
B3884EA_AGN	B.10.20	HP-UX 32-User License	
B3899BA B3911DB	B.11.01.01 B.11.01.01	HP C/ANSI C Developer's Bundle for HP-UX 11.00 (S700) HP aC++ Compiler (S700)	INSTA
B3919EA AGS	B.11.00	HP-UX Unlimited-User License	INDIA
B4580AA	B.11.00.01	HP-UX 11.00 Software Transition Kit	
B5455CA	C.01.16.00	HP-UX Development Kit for Java*	
B5724AA_APZ	A.1.45	HP-UX Installation Utilities (Ignite-UX - S700 - 10.20)	
DCEProg	B.10.20	DCE Programming and Archive Libraries	
HPUXEngCR700	B.10.20	English HP-UX CDE Runtime Environment	
J2559C	D.06.15	Hewlett-Packard JetAdmin for Unix Utility	
UXCoreMedia-J	B.11.00	HP-UX Japanese Media Kit (Reference Only. See Description)	
XSWGR1100	B.11.00.39	HP-UX Extension Pack, June 1998	

INSTALLED SOFTWARE

HARDWARE CONFIGURATION

HP-UX 11.X Technology and Beyond HP InterWorks 2000

System Recovery -

DAL

print manifest (continued)

LVM File System Configuration This system is configured with Logical Volume Manager (LVM) file systems. Refer to the File System layout section for information on the LVM layout.

Disk layout LVM disk SEAGATE ST15150W non-LVM disk SEAGATE ST32430N	Device file /dev/dsk/c0t6d0 Device file /dev/dsk/c1t4d0		size vol.grp 4095 /dev/vg0 size swap 2003 0		
<pre>File System layout LVM Device file /dev/vg00: /dev/vg00/lvol3 /dev/vg00/lvol2 /dev/vg00/lvol1 /dev/vg00/lvol5 /dev/vg00/lvol6 /dev/vg00/lvol6 /dev/vg00/lvol4 /dev/vg00 Device file /dev/dsk/clt4d0</pre>	/ 84 swap 256 /stand 48 /usr 700 /opt 100 /var 166 /tmp 32	5 hfs 0 hfs 00 hfs 0 hfs hfs 00 hfs size f	s type fs		
Swap configuration type size priorit dev 256 1	y device/location /dev/vg00/lvol2				
Kernel Configuration The following drivers or parameters are configured into your system's kernel. After installing HP-UX, use the sam(lm) command to configure the following items into the kernel: STRMSGSZ 65535 default_disk_ir 1 maxdsiz 0X10000000 maxtsiz 0X10000000 maxtsiz 0X10000000 nstrpty 60					
IP address: 15. subnet mask: 255 gateway IP address: 15. time zone: PST DNS domain name: cup DNS IP address: 15.	6t250 14.120.250 .255.248.0 14.120.250 8PDT	Eigured target	:		

DISK AND LVM LAYOUT

KERNEL CONFIGURATION

NETWORK CONFIGURATION

HP-UX 11.0 Networking

- Stream s-based TCP/IP
- NFS PV 3
- N IS+
- IP A liasing // intual H osting
- WebServerSupport
- Java Support

Stream s-based TCP/IP

- At 10.30 the TCP/IP stack was changed to stream s-based technology, replacing the BSD-UNIX base
- Very few changes to users or A PIs
- A dvantages in M P and supportability
- Visible to user as str* kernel daem ons

NFS ProtocolVersion 3 Advantages

- Added Support for Large Files
- Improved Performance
- Enhanced File A ccess control
- New APIs
- Delivered in 10.30 and 11.0 Releases
- Workstation ACE2 Release for 10.200S

DAL.

NFS 3 Support for Large Files

	NFS Version 2	NFS Version 3
File Size and Offsets	32 bits	64 bits
Maximum File Size Supported	2 GBytes	128 GBytes

NFS PV3

DAL

Perform ance Im provem ents

- Function calls now return attributes to reduce subsequent getattr() function calls
- Read/write blocks can be larger than the previous 8 K byte limit
- Perform ance of asynchronous write operations much improved:write request from client returns immediately, commit request (NEW) from client causes update to disk on server
- W eak cache consistency: if clientm odification timem atches serverm odification time the client cache is assumed to be valid
- Remains fully interoperational with NFS V 2

NIS+

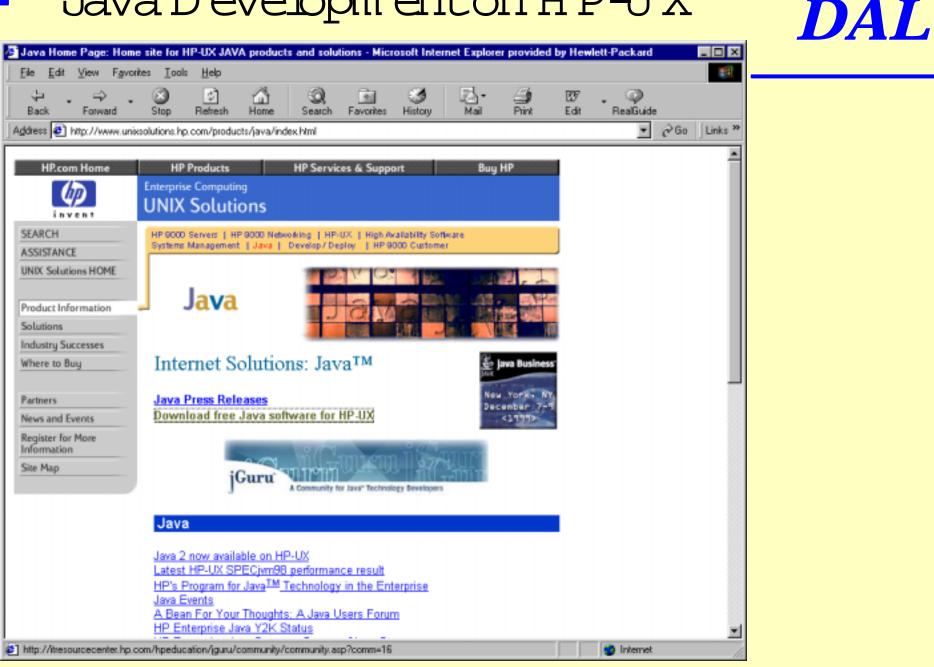
- Im proved perform ance and security over N IS
- Continues to support N IS and local file access
- Capability to add future services online without rebooting or reconfiguring
- Delivered in the 10.30 and 11.0 Releases

N IS+ vs.N IS Comparison of Features

	NIS	NIS+
Map updates (Master to Slaves)	Entire map updated	Incremental changes updated
Update propagation	Manual	Automatic
Data Access Restrictions	None	Access controlled on per-entry basis
Authentication	None	Secure RPC
Administration	Must be done on single Master Server	May be made within hierarchical namespace
Namespace	Flat	Hierarchical
Contacting Servers	UDP broadcast	coldstart config file and directory cache

IP Address A liasing and V intual H osting

- ifalias com m and on 10.20
 - allow smultiple IP addresses on sam e interface
 - (IP Address A liasing)
 - (install appropriate kernel and com m ands patches)
- For 10.30 and 11.0, new options to the ifconfig command supply the same functionality
- ifalias is obsoleted at 10.30 and 11.0


HP-UX Internet Products

- Netscape FastTrack Server 3.01 bundled with HP-UX
- Netscape SuiteSpotavailable as separate product:
 - Enterprise Server 3.6 (web server)
 - Messaging Server 3.5 (mail)
 - Directory Server 4.0 (LDAP services)
 - Certificate Server
 - Calendar Server
 - Proxy Server
 - Adm in Server 35
- Zeus Web Server 33
- New HP-UX /I Internet Bundle of products

Java Support on HP-UX

- Currentreleases: JDK 11.8 and 12
 - contains JIT com piler, JVM , class libraries
 - 10.20: uses Java internal (Green) threads
 - 11.0: uses HP-UX kernel threads or Java threads
- JVM 12 available in both HotSpot and Classic versions

Java D evelopm enton H P-U X

Java on HP-UX

- Java W eb Page for H P-U X
 - http://www.hp.com/go/java
- Can download the Java DevelopmentK it
- Additional docum entation available
- Pointers to Java R eference D ocum ents

AdditionalNetworking Enhancements

- New FTP (June 1998 Patch PHNE_14479)
 - improved logging, security, on the fly compression
- Kerberosv51.0
 - Provides encryption and authentication; sim plified installation
- DNS 49.6
 - Eases load balancing through round robin
- Sendmail 8.8.6
 - Prevents system overload with anti-spamming feature
- BIND 49
 - Im proves response times and enhances security
- Gateway Daemon 3.5.1 (gated)
 - Guaranteed connectivity

HP-UX 11.0 Extension Software

Extension Software/Support Plus releases are patch bundles consisting of a set of recommended HP-UX OS patches:

Release	e D ate	0 S 5 R efreshed	PartN um ber
SP47	December99	10.20 11.00	в 3782–10453
SP46	September 99	10.20 11.00	в3782-10438
XR45	June 99	10 10 10 20 11 .00	в3782-10418
XR44	April99	10 10 10 20 11 .00	в 3782–10386
XR43	February 99	10 10 10 20 11 .00	в3782-10371
XR41	0 ctober 98	10 10 10 20 11 .00	в 3782–10356
XR40	August 98	10 10 10 20 11 .00	в 3782–10340
XR39	June 98	10 10 10 20 11 .00	в 3782–10346
XR38	April98	10 10 10 20 11 .00	в 3782-10300
XR37	February 98	10.01 10.10 11.00	в 3782–10293

HP-UX i11 Instant Ignition Bundle

DAL

Core Products:

- Netscape Fasttrack Server
- WebQoSPeakService
- JAVA (JRE, JDK, currently instantly ignitable)
- CDSA Framework
- Network Drivers (all currently instantly ignitable)
- Ignite/UX
- EM S
- K emeloptim izations for w eb perform ance

HP-UXill ProductBundle

Optional Products:

- Manageability
- WebServers
- A vailability
- Security
- App.Dev.
- Services

OpenView, Service Control WebQoS Premium

- Netscape,Zeus,Apache
- M C /ServiceG uard
 - Praesidium
 - BEA
 - Pre and Postsales