
Paper # 126 Page 1 of 19

NFS over TCP/IP

NFS across TCP/IP Transport in HP-UX Release 11.0
Thomas McNeal and Lisa Liu

Hewlett-Packard
19420 Homestead Road
Cupertino, CA 95014

(408) 447-2300
FAX: (408) 447-3660

tom_mcneal@hp.com, lisa_liu@hp.com

When NFS was first developed in the 1980’s, the User Datagram Protocol, or UDP, was chosen
as the simplest, most efficient, and most reliable transport protocol for client/server file system
transactions in a local area network. At the time, the remote procedure call protocol (RFC 1050,
later updated by RFC 1057) implemented for NFS specifically assumed that the transport
protocol would be UDP. In the early 1990’s, when developing the newer NFS protocol know as
Protocol Version 3 (RFC 1813), a “transport independent” version of RPC was developed, in
order to support the eventual use of connection oriented protocols, such as TCP/IP.

The TCP protocol is now supported by many implementations of NFS, and is considered a
desirable component of the increasingly distributed applications now available on Solaris, AIX,
and other UNIX platforms, as well as HP-UX. Since development environments are expanding
into widely dispersed locations, particularly with 3rd party applications, the guaranteed
connectivity offered by the TCP protocol is becoming a virtually mandatory component of NFS.

This paper will discuss the modifications required to support NFS over the TCP/IP transport
protocol, as well as our implementation of “NFS/TCP” within the context of HP-UX Release
11.0. We will show that this implementation allows us to maintain binary compatibility, even in
the face of kernel-intrusive applications, while preserving the excellent UDP performance results
released on 11.0 in December, 1998. We will show the modifications necessary to a few
commands and daemons in order to support TCP, and will discuss the internal system behavior
imposed upon NFS and RPC by the differences between connectionless and connection oriented
protocols such as UDP and TCP.

Finally, we will review the additional HP-UX user space modifications in release 11.0 which are
necessary in order to support the delivery of NFS/ TCP via a general release HP-UX patch
without affecting those customers who have no desire alter their transport environment utilized by
NFS.

Impact of UDP on NFS behavior

The connectionless behavior of UDP has required RPC to manage individual messages, requiring
confirmation of message receipt, in addition to error recovery from delivery problems. On the
client, this is particularly evident in the complex timeout and message retransmission algorithms
necessary to handle network traffic across a connectionless protocol. An equivalent situation
exists on the server, with its requirements to keep track of and reply to incoming messages - it

Paper # 126 Page 2 of 19

must reassemble messages correctly if message fragmentation occurs across the wire, and must
manage duplicate requests which inevitably occur when the client is unaware that the server has
successfully received its messages.

The timeout and retransmission mechanism on the NFS client is particularly complex, involving
timeout and error handling loops in both the NFS and RPC layers. The general behavior is that a
specific timeout length may be specified during mount time, with a default that may differ from
one vendor to another. (In the case of HP-UX release 11.0, and conforming to the Solaris
releases, the timout defaults are given in table 1-1). In addition, the number of attempts made to
reach the server can be defined at mount time (again, in conformance with SUN, the default
number of retransmissions after the first attempt is 5). If the first attempt fails, the length of the
timeout doubles, up to a maximum of 20 seconds, until the defined number of retransmissions has
been made. If all of these attempts have been unsuccessful, the client will mark the kernel data
structures to show that the server is “down”, and a message (“NFS failed for server xyz”, on HP-
UX release 11.0, or the more familiar “NFS Server not responding” on earlier releases) is
displayed at the console and sent to the system log.

Call Type Minimum timeout
in seconds

Calls

Lookup .75 null, getattr, lookup, access,
readlink, fsstat, fsinfo, pathconf

Read .85 setattr, read, readdir

Write 1.25 write, create, mkdir, symlink,
mknod, remove, rmdir, rename,
link, readdirplus, and commit

Table 1.1 – Minimum UDP Timeout Values

With soft mounts, once a server has been marked “down”, any further NFS requests to that server
will be attempted only once, if at all, and a failure will generate another error message at the
console. Hard mounts will continue to try the defined number of times before posting the error
message. If the maximum timeout length had not previously been reached, the length of the
timeout will continue to double with each attempt until it hits maximum value of 20 seconds.
Once the client succeeds in reaching the server, the “down” flag is removed, and the “NFS Server
OK” message is displayed at the console. Starting from that point, all timeout parameters float
back to their original value, using a Van Jacobsen algorithm to continually adjust the operational
timeout values down until they once again reach the minimum value given above.

On the server, the fundamental problem with a connectionless protocol is that the client may
never receive the reply from the server that a request was successfully received and acted upon.
The client will then continue to send the same request, as long as no reply is received. In this
case, the server handles these duplicate requests differently depending upon whether or not they
are “idempotent”. An idempotent request, such as the “getattr” attribute query, may be executed
any number of times without changing the state of the server; in that case, depending upon the
implementation, the server may simply execute the request again. For the requests which are not
idempotent, or which are more expensive to execute than to throw away, a duplicate request
cache is consulted in order to determine if the request had been received and executed previously.

Paper # 126 Page 3 of 19

In contrast to UDP, the guaranteed connectivity of TCP removes the need to manage individual
messages within the client, but the server continues to utilize the duplicate request cache, in order
to allow requests encountering permission denials to be reattempted once the client’s credential
caches are updated. This is highly dependent upon the security flavors implemented on the
platform in question, and is not generally used in HP-UX.

Managing TCP connections

Instead of managing messages in the UDP environment, NFS must be able to manage TCP
connections. In an abstract way, this provides some stateful knowledge to the server, since the
server then knows which clients are attached to it, but this is invisible at the NFS layer, and so
NFS retains its stateless nature regardless of the transport type.

Within the STREAMS environment, a new module, RPCMOD, will provide much of the
connection management. In both the client and the server environment, this module is pushed
onto the Streams stack, and will, on the server, communicate directly with kernel components of
the NFS Daemon. Since this is a configured STREAMS module, you will see its name (rpcmod)
- along with the STREAMS UDP module used by the NFS Server Daemon (nfsm) – in the system
configuration file used to build the HP-UX kernel (/stand/system).

On the client, an RPC request to the server will result in a connection request to the server, using
a client structure to manage the client’s requests and responses through the STREAMS stack.
Each client can have maximum CLNT_MAX_CONNS number of connections to each server.
The default value of CLNT_MAX_CONNS is 1. The total maximum number of connections on
the client is the number of NFS servers multiplied by CLNT_MAX_CONNS. For example, if
CLNT_MAX_CONNS is 5 and there are 10 NFS mount across 3 servers, this client may have up
to 15 connections.

Figure 1.1 shows the sequence of events occuring when a connection is established. All types of
events noted are defined in the transport header file, /usr/include/sys/tihdr.h, and simply consist
of external and internal STREAMS requests, along with the acknowledgements of each.

A connection remains in the client until it becomes inactive. "Inactive" is defined as either
"idle"or "disconnected". By default, the idle time is defined to be 5 minutes, meaning that if there
is no outbound request on this channel for more than 5 minutes, the system tears down this
connection by sending a close request to the stream head. The stream subsystem performs all the
close functions defined for each downstream module, and eventually tears down the whole stream
stack.

Paper # 126 Page 4 of 19

Figure 1.1 – Establishing a TCP connection on a NFS client

On the server, a request for a TCP connection will be identified correctly if the service has been
advertised in the /etc/services file, with the entry “nfsd 2049/tcp”. When a request for a TCP
connection comes from a client, the NFS Daemon listening for TCP requests (by polling the
entries in a poll array) will open a connection to the client, using the STREAM stack devoted to
TCP.

The NFS TCP server can support up to the maximum number of connections specified in the nfsd
command line with the -c option. The default number of connections is unlimited. Each of the
connections has an entry in a poll array. The nfsd daemon polls on the entires in the poll array for
events and errors.

T_CONN_REQ T_CONN_REQ

 CLIENT THREAD RPCMOD TCP TRANSPORT

T_CONN_CON

T_INFO_REQ

T_INFO_ACK

(returns tidu_size)

Wakeup the client thread

T_OPTMGMT_REQT_OPTMGMT_REQ

(setup tcp protocol with nodelay)

T_OPTMGMT_ACKWakeup the client thread

Paper # 126 Page 5 of 19

The poll array has an initial size of 64 entries. When the total number of connection grows, the
system re-allocates a larger array to accommodate more connections. When the nfsd user thread
receives a T_LISTEN event, it opens a new connection. If the system has already opened the
maximum number of connections specified on the command line, it drops the oldest connection
before accepting the new connection

A Server’s connection is torn down by the NFS daemon, nfsd, when one of the following events
happens:

! When the RPCMOD detects an idle connection, it sends a signal to the NFS daemon. The
NFS daemon closes this connection accordingly.

! The NFS daemon receives a connection request after it has reached the maximum
number of connections allowed. It finds the oldest one from the polling list and closes
this connection.

! The NFS daemon receives a disconnecting event or unrecoverable error event. Its
response to such events is to close the connection.

NFS Performance modifications in HP-UX 11.0

Preserving the SPECsfs93 (also known as SPECsfs 1.1) benchmark results was more difficult
than preserving compatibility, since the NFS layer UDP pathways needed to continue using the
current RPC pathways which contained the benchmark modifications. This was important on the
server, where the benchmark results are measured, but not so important on the client, which had
no real modifications related to SPECsfs93.

In the HP-UX 11.0 server (as patched with the performance modifications available in December
1998), the kernel structures handling incoming traffic on port 2049, the standard NFS server port,
were cloned and distributed per processor, as seen in figure 1.2. This called for replicating the
STREAMS stack which handled UDP transport traffic, in addition to assuring that enough NFS
daemons existed to service each stack.

Several other enhancements were important in achieving the outstanding benchmark numbers
first published in June 1998, just prior to the closure of the benchmark by the SPEC consortium,
in favor of the SPECsfs97 benchmark. These enhancements included:

! Task stealing by the kernel component of the NFS daemons, in order to prevent
contention at a single processor if all daemons assigned to that processor are already
busy.

! Avoidance of some buffer copies in the NFS Server’s read pathways by taking
advantage of the ability to modify a buffer created at the driver level into a
STREAMS transport buffer.

! Enhanced hashing functions for several internal tables.
! Enhanced vnode synchronization within the underlying file systems (both HFS and

VxFS).
! Efficient performance based optimization, allowing the HP-UX compilers to create

more efficient code paths by providing previous code path analysis at compile time.

Paper # 126 Page 6 of 19

Figure 1.2 – NFS Server UDP Transport Stream Stack

HP has now begun analyzing and measuring the latest NFS benchmark, SPECsfs97. This
benchmark exercises the Protocol Version 3 (PV3) of NFS, as well as the older PV2 protocol
used in SPECsfs93. The newer benchmark will also change the mix of operations executed by
the load generating clients, so the absolute numbers of operations per second (IOPS) and the
response time of the server should only be compared with other SPECsfs97 results, and not with
the SPECsfs93 results. In addition, the mix of operations will differ between the PV2 component
and the PV3 component of SPECsfs97, so the IOPS of the two protocols should also not be
compared with one another. The only valid comparisons should be between various NFS
vendor's platforms using the same protocol - PV2 or PV3. HP's SPECsfs97 benchmark values
on the L-class and the N-class platforms, running PV2 and PV3 across both UDP and TCP
transport will be available at conference time (April 2000).

NFSD
NFSD

Stream Head

NFSD

NFSD
NFSD

Stream Head

NFSD

NFSD
NFSD

Stream Head

NFSD

NFSM Module NFSM ModuleNFSM Module

UDP Module UDP Module UDP Module

IP Module IP Module IP Module

DLPI Module DLPI Module DLPI Module

 Port 2049

Paper # 126 Page 7 of 19

With the additional support of NFS over the TCP/IP
protocol, an additional STREAMS stack will be created
for each TCP connection created, as shown in figure 1.3.
The number of connections that can be supported by the
NFS daemon is specified by the “-c” option of the nfsd
command. By default, the number of connections is
unlimited.

Each connection may have maximum of 10 kernel
threads serving requests in the kernel space. The actual
number of kernel threads is dynamically adjusted by the
system according to the system load.

Each connection is associated with a stream stack
headed by the RPCMOD module. The nfsd program
communicates to the stream through the stream head, but
the kernel nfsd thread, known as KRPC, communicates
to the stream by passing packages between the
RPCMOD module and KRPC directly, bypass the
stream head.

 Figure 1.3 – NFS TCP Transport Stream Stack

Delivering Support for NFS/TCP

In order to deliver NFS support for TCP transport connections in HP-UX Release 11.0, a method
for limiting the impact of the transport upon system management and system performance was
required. It was determined that since NFS/TCP could only be delivered in a general release
patch on 11.0 (it will be supported in the first release of HP-UX 11.11), it should be delivered so
that it had no impact upon the unsuspecting user and/or system administrator.

This capability will therefore be delivered but not activated in a general release patch form as of
March, 2000. It will remain inactive – that is, neither a server nor a client will attempt to
establish TCP connections – unless activated by a command, /sbin/setoncenv, with the specific
parameter “NFS_TCP”. This will allow the system administrator to configure the NFS client
and/or server to attempt and complete TCP connections.

The system configuration will follow the methodology used in HP_UX release 10.20 (starting
with the May 1999 HP-UX Networking ACE releases), as well as HP-UX 11.0, where the NFS
configuration file, /usr/rc.config.d/nfsconf, contains environment variables which determine
what protocols and products are supported by the system. As with the AUTOFS variable, for
example, which tells the system whether or not AutoFS is a supported product, the NFS_TCP
variable will tell the system whether or not to allow NFS to use TCP transport.

As delivered, the HP-UX 11.0 general release patches for NFS will not alter the value of the
NFS_TCP environment variable, if it exists at all. If the system administrator wishes to activate
the usage of NFS across TCP/IP transport, she must set the NFS_TCP variable to 1 – either by

NFSD

Stream Head

RPCMOD

TCP Module

IP Module

KRPC

thread

thread

thread

DLPI Module

Port 2049

Paper # 126 Page 8 of 19

means of the /sbin/setoncenv activation command, or manually – and then stop and restart the
NFS client and server, either with /sbin/init.d/nfs.server and /sbin/init.d/nfs.client command, or
by rebooting the platform. Depending on the value of the NFS_TCP environment variable, the
client mount command and the server NFS daemon will determine, at startup time, whether or not
to allow any communication across TCP transport. Table 1-2 gives the name and the location of
the environment variables which can be modified by /sbin/setoncenv

Variable Value Location

AUTOFS 0 | 1 /etc/rc.init.d/nfsconf
AUTOMOUNT 0 | 1 /etc/rc.init.d/nfsconf
NFS_SERVER 0 | 1 /etc/rc.init.d/nfsconf
NFS_CLIENT 0 | 1 /etc/rc.init.d/nfsconf
NFS_TCP 0 | 1 /etc/rc.init.d/nfsconf
NIS_CLIENT 0 | 1 /etc/rc.init.d/namesvrs
NISPLUS_SERVER 0 | 1 /etc/rc.init.d/namesvrs
NISPLUS_CLIENT 0 | 1 /etc/rc.init.d/namesvrs
NIS_MASTER_SERVER 0 | 1 /etc/rc.init.d/namesvrs
NIS_SLAVE_SERVER 0 | 1 /etc/rc.init.d/namesvrs
PCNFS_SERVER 0 | 1 /etc/rc.init.d/nfsconf
START_MOUNTD 0 | 1 /etc/rc.init.d/nfsconf

Table 1.2 – ONC+ Environment Variables

Changes to the NFS Server daemon command

Aside from the product configuration mentioned above, very few changes are necessary to
support NFS transactions with the TCP/IP protocol. As mentioned, the NFS Server daemon,
/usr/sbin/nfsd, has been modified with additional parameters which, among other transport
oriented features, allows the designation of the maximum number of connections. The new man
page, which will be delivered with the NFS daemon,is attached in the appendix.

As part of the support requirements for NFS across TCP, the fact that port 2049 supports TCP
traffic must be advertised in the service file, /etc/services. This advertisement will be added to
the service file whether or not TCP support is activated. With this advertisement, the NFS Server
will recognize and accept incoming requests for TCP connections; otherwise, even if the NFS
configuration has been set to activate TCP, the request will be denied because the service is
ostensibly unavailable.

As with the current performance enhancements, the NFS Server daemon will replicate itself at
least as many times as there are processors on the Server, regardless of the number of server
daemons specified in the NFS configuration file. If support for NFS over TCP has not been
activated, the total number of NFS daemons managing UDP traffic will be some multiple of the

Paper # 126 Page 9 of 19

number of processors. If TCP support has been activated, then one more NFS Server daemon
process will be initiated. This daemon, as seen in figure 1.3, will launch a kernel component used
to manage kernel threads used to handle a particular connection’s traffic; The kernel component
will wait for incoming TCP traffic on port 2049, and will launch kernel threads to handle that
traffic.

Changes to the NFS Mount command

The mount command will contain an additional NFS specific option which specifies the transport
protocol which is desired. As with SUN, use of the TCP/IP protocol will be the default, with
UDP being the alternative if the server does not support TCP. If the command specifically calls
for the UDP protocol, only that protocol will be requested, and no other request will be made
regardless of the server’s response.

If the client has not been configured to use TCP, then UDP will be the default (and only)
protocol, and attempts to use TCP transport by specifying it in the mount options will generate an
error.

The actual variable which must be used with the protocol option (-o proto=tcp, or –o proto=udp)
will be the “netid” specified in the protocol configuration file used by transport independent RPC,
/etc/netconfig.

Conclusion

When activated, the underlying support within NFS required by the TCP protocol should be
unseen by the application user, and should only be visible to the system administrator through
minor changes to commands and daemons, and through entries in supporting files required to
advertise and support the TCP protocol. Its presence has been anticipated by the implementation
of the Transport Independent Remote Procedure Call components of ONC+ in the initial release
of HP-UX 11.0, and the architectural design within the HP-UX kernel has made every effort to
provide a smooth transition to general usage of NFS across the TCP/IP transport protocol.

References

“The Mystery of NFS Timeouts”, Van Co, August 1999

“NFS/TCP Connection Management in HP-UX”, Lisa Liu, August, 1999

“Implementing NFS over TCP/IP Transport in HP-UX”, Tom McNeal & Lisa Liu, HPWorld,
1999

Paper # 126 Page 10 of 19

 Appendix 1

mount_nfs(1M)

 NAME
 mount, umount - mount and unmount an NFS file systems

 SYNOPSIS
 /usr/sbin/mount [-l] [-p|-v]

 /usr/sbin/mount -a [-F nfs] [-eQ]

 /usr/sbin/mount [-F nfs] [-eQrV] [-o specific_options]
 {host:path|directory}

 /usr/sbin/mount [-F nfs] [-eQrV] [-o specific_options]
 host:path directory

 /usr/sbin/umount -a [-F nfs] [-h host] [-v]

 /usr/sbin/umount [-v] [-V] {host:path|directory}

 DESCRIPTION
 The mount command mounts file systems. Only a superuser can mount
 file systems. Other users can use mount to list mounted file systems.

 The mount command attaches host:path to directory. host is a remote
 system, path is a directory on this remote system and directory is a
 directory on the local file tree. directory must already exist, be
 given as an absolute path name and will become the name of the root of
 the newly mounted file system. If either host:path or directory is
 omitted, mount attempts to determine the missing value from an entry
 in the /etc/fstab file. mount can be invoked on any removable file
 system, except /.

 If mount is invoked without any arguments, it lists all of the mounted
 file systems from the file system mount table, /etc/mnttab. The
 umount command unmounts mounted file systems. Only a superuser can
 unmount file systems.

 OPTIONS
 -r Mount the specified file system read-only.

 -o specific_options
 Set file system specific options according to a comma-separated
 list chosen from words below.

 rw|ro resource is mounted read-write or read-only. The
 default is rw.

 suid|nosuid Setuid execution allowed or disallowed. The
 default is suid.

Paper # 126 Page 11 of 19

 remount If a file system is mounted read-only, remounts
 the file system read-write.

 bg|fg If the first attempt fails, retry in the
 background, or, in the foreground. The default is
 fg.

 quota Enables quota(1M) to check whether the user is
 over quota on this file system; if the file system
 has quotas enabled on the server, quotas will
 still be checked for operations on this file
 system. The default is quota.

 noquota Prevent quota(1M) from checking whether the user
 exceeded the quota on this file system; if the
 file system has quotas enabled on the server,
 quotas will still be checked for operations on
 this file system.

 retry=n The number of times to retry the mount operation.
 The default is 1.

 vers=<NFS version number>
 By default, the version of NFS protocol used
 between the client and the server is the highest
 one available on both systems. If the NFS server
 does not support NFS Version 3, then the NFS mount
 will use NFS Version 2 .

 port=n Set server UDP port number to n (the default is
 the port customarily used for NFS servers).

 proto=<transp> Use the transport protocol <transp> for this
 mount. Valid values for <transp> are tcp
 (connection-oriented), if support for tcp has been
 activated by the setoncenv command, and udp
 (connectionless). If activated, the default
 behavior is to attempt a tcp connection. If tcp
 is not activated, or if the tcp connection attempt
 fails when defaulting to tcp, a udp connection
 will be attempted.

 grpid By default, the GID associated with a newly
 created file will obey the System V semantics;
 that is, the GID is set to the effective GID of
 the calling process. This behavior may be
 overridden on a per-directory basis by setting the
 set-GID bit of the parent directory; in this case,
 the GID of a newly created file is set to the GID
 of the parent directory (see open(2) and
 mkdir(2)). Files created on file systems that are
 mounted with the grpid option will obey BSD
 semantics independent of whether the set-GID bit
 of the parent directory is set; that is, the GID
 is unconditionally inherited from that of the

Paper # 126 Page 12 of 19

 parent directory.

 rsize=n Set the read buffer size to n bytes. The default
 value is set by kernel.

 wsize=n Set the write buffer size to n bytes. The default
 value is set by kernel.

 timeo=n Set the NFS timeout to n tenths of a second. The
 default value is set by kernel.

 retrans=n Set the number of NFS retransmissions to n. The
 default value is 5.

 soft|hard Return an error if the server does not respond, or
 continue the retry request until the server
 responds. The default value is hard.

 intr|nointr Allow (do not allow) keyboard interrupts to kill a
 process that is hung while waiting for a response
 on a hard-mounted file system. The default is
 intr.

 noac Suppress attribute caching.

 nocto Suppress fresh attributes when opening a file.

 devs|nodevs Allow (do not allow) access to local devices. The
 default is devs.

 acdirmax=n Hold cached attributes for no more than n seconds
 after directory update. The default value is 60.

 acdirmin=n Hold cached attributes for at least n seconds
 after directory update. The default value is 30.

 acregmax=n Hold cached attributes for no more than n seconds
 after file modification. The default value is 60.

 acregmin=n Hold cached attributes for at least n seconds
 after file modification. The default value is 3.

 actimeo=n Set min and max times for regular files and
 directories to n seconds. actimeo has no default;
 it sets acregmin, acregmax, acdirmin, and acdirmax
 to the value specified.

 -O Overlay mount. Allow the file system to be mounted over an
 existing mount point, making the underlying file system
 inaccessible. If a mount is attempted on a pre-existing mount
 point without setting this flag, the mount will fail, producing
 the error device busy.

 Options (umount)
 umount recognizes the following options:

Paper # 126 Page 13 of 19

 -a Attempt to unmount all file systems described in
 /etc/mnttab. All optional fields in /etc/mnttab
 must be included and supported. If -F nfs option
 is specified, all NFS file systems in /etc/mnttab
 are unmounted. File systems are not necessarily
 unmounted in the order listed in /etc/mnttab.

 -F nfs Specify the NFS file system type (see fstyp(1M)).

 -h host Unmount only those file systems listed in
 /etc/mnttab that are remote-mounted from host.

 -v Verbose mode. Write a message to standard output
 indicating which file system is being unmounted.

 -V Echo the completed command line, but performs no
 other action. The command line is generated by
 incorporating the user-specified options and other
 information derived from /etc/fstab. This option
 allows the user to verify the command line.

 NFS File Systems
 Background vs. Foreground
 File systems mounted with the bg option indicate that mount is to
 retry in the background if the server's mount daemon (mountd(1M))
 does not respond. mount retries the request up to the count
 specified in the retry=n option. Once the file system is
 mounted, each NFS request made in the kernel waits timeo=n tenths
 of a second for a response. If no response arrives, the time-out
 is multiplied by 2 and the request is retransmitted. When the
 number of retransmissions has reached the number specified in the
 retrans=n option, a file system mounted with the soft option
 returns an error on the request; one mounted with the hard option
 prints a warning message and continues to retry the request.

 Hard vs. Soft
 File systems that are mounted read-write or that contain
 executable files should always be mounted with the hard option.
 Applications using soft mounted file systems may incur unexpected
 I/O errors.

 To improve NFS read performance, files and file attributes are
 cached. File modification times get updated whenever a write
 occurs. However, file access times may be temporarily out-of-
 date until the cache gets refreshed. The attribute cache retains
 file attributes on the client. Attributes for a file are
 assigned a time to be flushed. If the file is modified before
 the flush time, then the flush time is extended by the time since
 the last modification (under the assumption that files that
 changed recently are likely to change soon). There is a minimum
 and maximum flush time extension for regular files and for
 directories. Setting actimeo=n sets flush time to n seconds for
 both regular files and directories.

 EXAMPLES
 To mount an NFS file system:

Paper # 126 Page 14 of 19

 mount serv:/usr/src /usr/src

 To mount an NFS file system readonly with no suid privileges:

 mount -r -o nosuid serv:/usr/src /usr/src

 To mount an NFS file system over Version 3:

 mount -o vers=3 serv:/usr/src /usr/src

 To unmount all file systems imported from a given host, enter the
 following command as root:

 umount -h mysystem.home.work.com -a

 The hostname must match what is in /etc/mnttab exactly (as shown by
 the bdf command). For example, if bdf shows:

 mysystem:/projects,

 the umount command would be

 umount -h mysystem -a.

 FILES
 /etc/mnttab table of mounted file systems.
 /etc/fstab list of default parameters for each file system.

 SEE ALSO
 fsclean(1M), mount(1M), quotaon(1M) setoncenv(1M), mount(2), fstab(4),
 mnttab(4), fs_wrapper(5), quota(5).

 STANDARDS COMPLIANCE
 mount: SVID3

 umount: SVID3

Paper # 126 Page 15 of 19

Appendix 2

nfsd(1M)

 NAME
 nfsd, biod - NFS daemons

 SYNOPSIS
 /usr/sbin/nfsd and so forth [nservers]

 /usr/sbin/biod [nservers]

 DESCRIPTION
 nfsd starts the NFS server daemons that handle client file system
 requests (see nfs(7)). nservers is the suggested number of file
 system request daemons that will start. The minimum number of daemons
 will be equal to the number of active processors, or to nservers,
 whichever is greater. The actual number of daemons started will
 either be a multiple of the number of active processors, or, if tcp is
 activated, to that multiple plus 1.

 The server daemon will support NFS over connection-oriented (tcp)
 transport, if support for tcp has been activated by the setoncenv
 command. To obtain the best performance in most cases, set nservers to
 at least eight.

 biod starts nservers asynchronous block I/O daemons. This command is
 used on an NFS client to buffer cache handle read-ahead and write-
 behind. nservers is a number greater than zero. For best
 performance, set nservers to at least sixteen.

 OPTIONS
 nfsd recognizes the following options:

 -a Start a NFS daemon over all supported connectionless
 and connection-oriented transports, including udp and
 tcp. The NFS_TCP environment variable in
 /etc/rc.config.d/nfsconf configuration file, must
 have been set to 1 in order to support connect-
 oriented (tcp) transport.

 -c conns This sets the maximum number of connections allowed
 to the NFS server over connection-oriented
 transports, if tcp transport is activated. By
 default, the number of connections is unlimited.

 -p protocol
 Start a NFS daemon over the specified protocol.

 -t device Start a NFS daemon for the transport specified by the
 given device.

 nservers nservers is the suggested number of file system
 request daemons that will start. The actual number

Paper # 126 Page 16 of 19

 of daemons started will be one tcp daemon (to support
 kernel tcp threads) plus the number of udp daemons.
 The minimum number of udp daemons will be equal to a
 multiple of the active processors, or to nservers,
 whichever is greater. To obtain the best performance
 in most cases, set nservers to at least eight.

 AUTHOR
 nfsd was developed by Sun Microsystems, Inc.

 SEE ALSO
 mountd(1M), exports(4), setoncenv(1M).

Paper # 126 Page 17 of 19

Appendix 3

setoncenv(1M)

 NAME
 setoncenv - NFS environment configuration command

 SYNOPSIS
 /sbin/setoncenv variable [0|1]

 DESCRIPTION
 setoncenv initializes the value of NFS configuration environment
 variables, found either in /etc/rc.config.d/nfsconf or in
 /etc/rc.config.d/namesvrs (See rc.config(4)). The values may either
 be 0 (off, or inactive) or 1 (on, or active).

 OPTIONS
 setoncenv recognizes the following environmental variables:

 NFS_TCP NFS connections across TCP/IP transport are supported.

 AUTOFS The AutoFS product is supported, if AUTOMOUNT=1.

 AUTOMOUNT One of the two Automount products is supported.

 NFS_CLIENT The NFS client daemons will be launched.

 NFS_SERVER The NFS server daemons will be launched

 NISPLUS_CLIENT This platform can act as an NIS+ client.

 NISPLUS_SERVER This platform can act an NIS+ server.

 NIS_CLIENT This platform can act as an NIS client.

 NIS_MASTER_SERVER This platform will be an NIS master server.

 NIS_SLAVE_SERVER This platform will be an NIS slave server.

 PCNFS_SERVER PCNFS client requests will be answered.

 START_MOUNTD The Mount daemon will be launched at system startup.

AUTHOR

 setoncenv was developed by the Hewlett-Packard Company.

 SEE ALSO

 nfsd(1M) mountd(1M), mount_nfs(1M) rc.config(4).

Paper # 126 Page 18 of 19

Appendix 4

Included is a representative sample of the output from the nfsstat command. Please note the
division of data into the differing transport types - Connection oriented, as with TCP, and
Connectionless, as with UDP.

nfsstat

Server rpc:
Connection oriented:
calls badcalls nullrecv badlen xdrcall dupchecks dupreqs
7 0 0 0 0 0 0
Connectionless oriented:
calls badcalls nullrecv badlen xdrcall dupchecks dupreqs
0 0 0 0 0 0 0

Server nfs:
calls badcalls
6 0
Version 2: (0 calls)
null getattr setattr root lookup readlink read
0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
wrcache write create remove rename link symlink
0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
mkdir rmdir readdir statfs
0 0% 0 0% 0 0% 0 0%
Version 3: (6 calls)
null getattr setattr lookup access readlink read
1 16% 1 16% 0 0% 0 0% 1 16% 0 0% 0 0%
write create mkdir symlink mknod remove rmdir
0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
rename link readdir readdir+ fsstat fsinfo pathconf
0 0% 0 0% 0 0% 2 33% 0 0% 1 16% 0 0%
commit
0 0%

Client rpc:
Connection oriented:
calls badcalls badxids timeouts newcreds badverfs timers
32 0 0 0 0 0 0
cantconn nomem interrupts
0 0 0
Connectionless oriented:
calls badcalls retrans badxids timeouts waits newcreds
0 0 0 0 0 0 0
badverfs timers toobig nomem cantsend bufulocks
0 0 0 0 0 0

Paper # 126 Page 19 of 19

Client nfs:
calls badcalls clgets cltoomany
32 0 32 0
Version 2: (0 calls)
null getattr setattr root lookup readlink read
0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
wrcache write create remove rename link symlink
0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
mkdir rmdir readdir statfs
0 0% 0 0% 0 0% 0 0%
Version 3: (32 calls)
null getattr setattr lookup access readlink read
0 0% 8 25% 2 6% 2 6% 10 31% 0 0% 1 3%
write create mkdir symlink mknod remove rmdir
1 3% 1 3% 0 0% 0 0% 0 0% 0 0% 0 0%
rename link readdir readdir+ fsstat fsinfo pathconf
0 0% 0 0% 0 0% 4 12% 1 3% 1 3% 0 0%
commit
1 3%

	NFS over TCP/IP
	
	
	
	
	
	NFS across TCP/IP Transport in HP-UX Release 11.0

	Cupertino, CA 95014

	Impact of UDP on NFS behavior
	Table 1.1 – Minimum UDP Timeout Values
	Managing TCP connections
	Figure 1.1 – Establishing a TCP connection on a NFS client

	When the RPCMOD detects an idle connection, it sends a signal to the NFS daemon. The NFS daemon closes this connection accordingly.
	NFS Performance modifications in HP-UX 11.0
	
	
	Figure 1.2 – NFS Server UDP Transport Stream Stack

	Delivering Support for NFS/TCP
	Table 1.2 – ONC+ Environment Variables
	Changes to the NFS Server daemon command
	Changes to the NFS Mount command
	Conclusion
	References
	Appendix 2
	Appendix 3

