Muddl i ng Through Regul ar
Expr essi ons

Present ed by:

Fred Mallett frederm@ol.com
FAVE Conput er Educati on
250 Beach Bl vd
Laguna Vista, TX 78578
(956) 943-4040
http://ww. fanmece. com

Note: This material was extracted fromthe F.C E. training course
“ Regul ar Expressions”

| nt roducti on & Basi cs
Descri ption

Regul ar Expressions are wused to nmatch, or
mani pul ate strings of text.

A Regular Expression is developed using a
pattern notation consisting or Iliteral and
met achar act er s, and is used to describe
sequences of text characters.

In a sinpler definition, a Regular Expression
is a set of literal and special characters
(nmeta-characters) wused to search for matches
I n text.

O even: A Regul ar Expressions describes a
set of possible strings.

It is good to think of the Regul ar Expression
Notation itself as a programmng | anguage.
This |l anguage (in several flavors) is enbedded
into many commbn tools and programm ng
| anguages, such as:

ex grep egrep Vi nedi t enacs
nore |l ess perl tcl python awk
JavaScri pt
| ex expect
and nore.....
In this class, the term ” Regul ar Expression”
w |l be abbreviated as: RE, re, or rexexp.

Regexps add a great deal of power to text
mani pul ati ng prograns. Using regexps, t he
various tools can:

Determne if there is a match for an i nexact

string
Substitute a string or expression result for
what was mat ched

Return the matched portion of a string

Address matched portions for use as an
oper at ors operand

Wiy 7 Regul ar” Expressions?

Below is a summary of the ” Mastering Regul ar
Expr essi ons” books description of how the
term cane about in conputers (Page 60).

Around 1950 Stephen Kleene (a nathematician)
formal |y descri bed nodel s of how sone
neur ophysi ol ogi sts thought the nervous system
wor ked.

St ephen described themin an al gebra he called
regul ar sets. He then developed a notation to
express these regular sets, and called them
Reqgul ar Expressi ons.

These regul ar expressions were used primarily
I n mat hematic circles.

In 1968 Ken Thonpson wote an article called
Regul ar Expression Search Algorithm which
described the roots of the ed editor, which
becane ex. This was the beginning of regular
expressions i n conputer circles.

ex had the g command, whose commbn use was
g/ RE/p to print lines which contained a match
for RE. Eventually, this grep function becane
| ts own conmand.

Lear ni ng Rexexps
How a regexp is used is under the control of

t he program | t S used by
This can vary wdely in:
VWi ch nmet achar acters are accept ed

(and which need to be escaped)
Details about what a netacharacter can

" change” to
How t he search S perfornmed
What happens when a match is found
What t he RE wi || mat ch

How you can use the results of the match
(and what is returned)

The good news is, once you understand the
| anguage of Regul ar Expressions, |earning any
particul ar " dial ect” and I ts vari ous
peculiarities is eas(y|ier).

This course <covers witing regexps, using
tools li ke sed, grep, and perl since they are
found on nobst systens. QO her tools are
addr essed when needed.

There are many l|levels of proficiency in the
trip t owar ds conpet ence I N regul ar
expr essi ons:

Getting started
Know t he basic RE netacharacters, and create
RE' s using them
This level allows you to save tinme 1iIn
perform ng sinple tasks

Getting there
Know how t he expr essi ons characters
| nteract, and know what the ERE characters
mean
This level allows you to use many different
tools, and sol ve many conmmon probl ens

You nmade it
Know how all neta-characters interact, and
can use all netacharacters that your choice
of tools is capable
This level allows you to solve difficult
problens wth ease

Above and Beyond
Can wite efficient dynamc expressions,
under st andi ng t he di fference bet ween
expressions that mght give the sane result
using nmultiple tools

As Jeffrey E.F. Friedl said:

" To Master regular expressions is to
mast er your Data”

Regexp usage
Literal regexp

A literal regexp consi sts entirely of
" ordinary” characters, those wth no speci al
(programati c) neaning.

Though sinple, these are very useful, and can
save a great deal of tine.

Exanples of literal expressions are strings
|1 ke: error warning
W will use literal expressions in nmany of the

foll owm ng exanpl es.
Bi nary Match

The sinplest wuse of regexps is the Dbinary
mat ch usage.

In this usage a tool tests” a string to see
If 1t contains a match for a regexp, exactly
what it matches is irrel evant.

Alnmost all tools that accept regexps can
perform this type of mat ch.
Sone tools are limted to this type of match.

The command grep is probably the nost commonly
used regexp tool, and is limted to the binary
mat ch functi on. The problem wth using grep
to learn regexps 1is that vyou never Kknow
exactly what was matched, only if there was a

mat ch. grep prints the entire line from an
lnput file if there is a match anywhere on
that line, even iIf the match length is zero

char act er s.

Bi nary mat ches are commonl y used for
addressing lines in an editing type function.

Addressi ng match (or specific match)

In this type of mat ch, exactly which
characters matched is inportant, as the
mat ched characters are what is acted upon by
the operation that called the regexp search to
be perforned.

Many tools have a substitute operation which
uses an addressi ng mat ch.

O her uses are for things |iKke:

addressing a substring to be used as the

oper and of an oper at or
(mayby perform math on a nmatched nuneric

substri ng)

splitting a string into fields by renoving

mat ches

returning the matched string, renoving the

mat ched string

Mat ch side-effects

Many tools also retain information about the
nost recent regexp search, usi ng this
information is often called using the side-
effects of a match.

RE Testing tool:

This sinple Perl (but verbose) program works
reasonably well for testing re’s:

#! [usr/ | ocal / bi n/ perl
$re="\d*’;
while (<STDIN>) {
i f (/$rel) {
print " Matched line $.:\n" ;
print $;
If (length($& == 0) {
print ™ Zero length match!!\n” ;
} else {
print 7 $&n”" ;

} else {

print " No match line $.\n”
} }

| ssues

Thi nki ng of regexps as a programm ng | anguage
enbedded into many tools and higher |evel
| anguages i s a good i dea.

Thinking of regexps as a type of foreign

| anguage hel ps understand nany of the issues

you wi Il face when trying to |l earn them
As wth any |anguage, there are many | ocal
terms, not found elsewhere (why have 100
names for snow in florida?), and nany
di fferent di al ects t hat can make
understanding things difficult, even when
usi ng the sane | anguage.

The next few pages have sone nore details of
t hese dialect differences, and other issues we
must deal w th when | earning regexps.

Note: UNI X shell wldcards are not regexps
(though they share sone characteristics, do
not confuse the two, they have very little in
conmon.

Passi ng Regexps

Though regexps are interpreted by a piece of
code within the wvarious tools, the regexp
string itself is often ” handled” by prograns
that do not ” understand” that it is a regular
expression. This can conplicate the escaping
needed in a reqgular expression. A good exanple
of this is a command that takes a regqgular
expression as an argunent on the command I|ine,
| i ke grep:

grep X;y # matches and prints lines with x, then
runs y

The above had to be witten in one of the
manners below, since the ’';’ had special
nmeaning to the shell, though it 1is just a
literal (ordinary) character to the regexp

| anguage:

grep " Xx;y’ grep " x;y” grep x\;y
It can get rather conplex when a character has
meanings to the interpreter, and regexps. For
exanple, since '*' has neaning to both the

shell, and regexps, Iif we wanted to nmatch a
literal '*, we wwuld have to escape its
meaning from the shell, and also from the
regexps of grep:

grep x*y grep 'x*y’ grep 7 x*y”

This neans we need to understand text 1ssues
with the tools used, as well as know regexps.

| n sone | anguages, regexps are first parsed as
strings, then wused as regular expressions,
whi ch can add even simlar conplexity.

Tool differences

Another issue is that there are so nany
different tools using regular expressions, it
s difficult to learn the nyriad of details.
The good part is that nost " nasters” of
regexps use them primarily in one or two
tools, and use only sinpler expressions in the
other tools as needed. (There is a benefit to
speci al i zation).

The Major categories of differences in regexps

are driven by what 7 engine” Is used to
" execute” the regexp. This wll be delved
into in nuch greater detail later in the

course, for now a brief summary of the two:
DFA (Determ nistic Finite Automaton)

Oten faster t han NFA.
You do not need to wite efficient regexps,

speed will be the sanme, no natter how
| t S written.
Does not support backr ef er enci ng

(t he ability to create dynam c
expr essi ons) .
Al ways mat ches the | ongest possi bl e nmatch.
Exanpl es of commands that use the DFA engine
are: awk, grep, |ex.
(DFA S f ast and consi stent)

NFA (Nondeterm nistic Finite Autonaton)
You nmust wite efficient expressions or
speed can suffer.
Usual ly matches the |ongest match, but m ght
not .
Often support backreferences (easy to do
with this engine).

Exanpl es of commands that use the NFA engi ne
are just about everything else (like perl,
vi, sed, javascript, tcl...).

In addition to the engines in use, there are
two categories of sets of neta-characters used
by tools. These are:

BRE (Basi c Regul ar expressions)

ERE (Ext ended Regul ar Expressi ons)

There are al so many t ool specific
nmet acharacters that don't fit into these two
cat agori es.

POSI X r egexps

Posi x defines a list of what netacharacters
are in BRE, and which are in EREE W wll

follow that list fairly closely in the next
few chapters when |isting netacharacters, wth
sone tool specific exceptions. (Text book
page 64)

The PCSI X standard affects how regexps work.
For exanple, it states that the |ongest match

must always be returned, so, if POSIX 1is
enabled, and an NFA tool 1is wused, it nust
still always return the |ongest match for a

gi ven expression (even though NFA tools don't
normally do that for all expressions).

In addition, the POSIX definition tries to
provide definitive answers to how every set of
nmet acharacters should be interpreted (what

t hey should match), but, |ike always, detail ed
I nstructions are hard to follow, so there are
still sone differences in interpretation
between two ” fully conpliant” POSIX versions
of tools.

More di al ect issues

W will see as we go along that in addition to

the above nentioned differences, there are
many mnor dialects to regexps, and are often
found Iin the details Iike:

" Should a netacharacter that natches any
char act er,
al so natch the newl i ne character?”

chapter. 4

" When supplied a set of itenms to nmatch,
should it stop on the first successful, or

check them all to match the |ongest possible
of the itens?”

(al| abba)

Usi ng Bi nary natches

Al tools support binary matches.

Bi nary matches are commonly used to check if a
pattern exists in a string, comonly, in
commands, a string is an entire line in a
file, but in programm ng | anguages, the string
to be tested is often assi gned.

The nbst common use of a binary match is to
act on a line if it contains a match for a
regexp. The tool grep uses a binary expression
test to decide if it should print a l|line of
| nput .

In the large majority of tools, you can both
| nvoke, and define a regqular expression by
enclosing it in slashes:

/regexp to test for/

This is the nmethod we wll wuse in nost
exanpl es in the handout.

The exceptions are those commands that take a
regul ar expression as a command |ine argunent,
such as grep:

grep 'error’ result file
The command above is the sane as the perl
code:

while (<>){
print if /error/;
}

or the awk conmmand (code):
awk " {if (/error/) print }’ result file
or the sed command:

sed -n '/error/p result file

Al exanples would print all lines in the file
result file that contain the string error.

For exanple, they would print both of the
| i nes bel ow.

error 127

Holy Terror!!!

Due to the sinplicity of the regexp (a literal
string), it is easy to see exactly what was
matched in each line, though the tools were

instructed to print the entire line if there
was a nat ch anywhere.

Usi ng Bi nary natches

Many editors and web sites allow the use of
regexps to search for sonething. Generally,
they either display what matched (like a web
search engine), or nove the cursor to the
first match (many editors), or possibly
di splay all matches of the expression.

When working interactively, getting nore than
you asked for is not that bad.

When trying to autonmate procedures, it can be
very bad.

What if we wanted only lines wth the word
error on them instead of having the word
terror also match?

That is the basis for the power of regqgular
expressions: the ability to describe not only

t he | iteral t ext desi r ed, but vari abl e
situations of text.
Most i nportantly, you must know your data!! |If

the word error was always | ower case, at the
beginning of a line, and followed by a 7 :”
|1 fe mght be much sinpler.

Basi ¢ Regul ar Expression Metacharacters

Met a- characters cone in 4 flavors, grouped by
usage:

Position matchers (anchors)
These characters do not match anything in
the string or line you are testing, they
match only a location. The availability of
thes characters varies wdely anong the
di fferent commands and tool s.
A $ \b \B \A \Z \G \«<

Si ngl e character matches
The trick to renenber here is that these
met a- char acters, and neta-sequences wll
al ways match exactly one character, or fail
the match iIf there is not a character for
themto nmatch.
[1 [l \w \W \s [[:set:]]

Quantity nodifiers (quantifiers)
These characters have no neaning when used
al one, but take on a significant neaning if
there i1s any character (literal or nets)
before them in a regexp. They are extrenely
powerful, they add a nuneric quantity to
anot her characters neaning (how nany of
t hose).

+ * ? { }

Quantifiers take a bit of a trick to get
used to reading. You nust read the quantity
before what 1Iis being quantified or the
result i s confusing.
It Is also inportant to know how many
preceedi ng characters t he nuneric
nodi fication affects, and sadly, this can
vary by tool.

Control, usage, and groupi ng

These characters are sonmewhat difficult to
get used to, as different escaping (or none)
Is used indifferent tools. They fill in the
hi ghest power levels, such as changing
precedence of characters, back referencing,
and dynam c control within an expression.

() \ $mat ch pos()

Basi ¢ Regul ar Expression Anchors

There are several | ocati ons that can be
referenced in an expression, but BRE s only
have two.

Anot her way to say this is that you can anchor
a match of an expression to specific |ocations
W thin the search string.

Sone of these can occur nmultiple tines in the
string being searched, thus nmultiple tines iIn
an expression.

These two anchor synbols are available in all
regexp I npl enentations:

A begi nning of string

$ end of string
The neaning of beginning and end can vary a
bit depending on the tool. W wll revisit
these in a later chapter. For now, we wl]l
t ake the commobn neani ngs.

For tools |ike grep, ex, and vi, these anchors
refer to the beginning or end of a line, as
they are |ine based tools.

For programm ng type tools, (awk, perl, tcl,
JavaScript,...), they wusually nean beginning
and end of the string being tested for a
match. This is wusually an arbitrary string
assigned to a variable. (You can aso guess
that the string mght contain less than (no
new ine), or nore than a |ine of text).

Continuing the previous exanple, |ooking for
error only when it is the first thing on a
| ine, we could use this:

[“error/

VWhich neans ” error at the beginning of a |ine

(string)” . What would these expressions nean
(in verbose english):
[~error$/ ["$/ | ENDS$/ /I~

These anchor characters only have neani ng when
they are used as the first and |ast characters
In a string.

For exanple, the regexp /x"y/ neans match
t hose three characters literally, as the ” 2"

was not the first character in the regexp,
therefore it is literal.

A" $ used other than as the |ast character
can have different neaning depending on the
tool, we will discuss this in detail |ater.

Basi ¢ Regul ar Expression Single Character
MVat ches

Remenber t hat these netacharacters match
exactly one character in the string (line)
bei ng sear ched.

There are 3 ways to natch a single character:
: Mat ch any single character
[] Match any character in the enclosed cl ass

[~] Match any character except those in the

encl osed cl ass
Wien there nust be a character at a certain
| ocation, but you don't care what it is, use
t he peri od netacharacter.

When there nust be a character at a certain
| ocation, and it can only be one froma set of
possi ble characters, use the character class
nmet achar act er.

For exanpl e:

[N Match the first 3 characters on |ines that
have at

| east 3 characters
[error: .../ Match ” error” , colon, space, and the next 3
characters

Looking at the ” error” expression above, what
if the data we were looking for was the word
error, a space, then a 3 character nunber.
We coul d use:

[error .../

Which would work, but 1t would also nmatch:
" terror to go there”

Li ke always, it is easy to match what we want,
it is nore difficult to only match exactly
what we want.

Using the character class netacharacter, we
can define a match for nunber (integer)
char act ers:
[0123456789] which is easier witten: [0-9]
Then we can wite a nore explicit expression:
[error [0-9][0-9][0-9]/
Many tools allow abbreviations of comobn
character class sets. Digits for exanple, can

be witten \d in several tools (note we no
| onger use the brackets):

[error \d\d\d/

Basi ¢ Regul ar Expression Single Character
MVat ches
W can supply a backslash to add neaning to
sone characters in a character class (which
varies by tool):
[\t] tab [\n] newine [\r] return [\f] fornfeed

Most tools also accept a special first
character in the class that negates the set of

characters in the class, nmeaning " any
character that is not one of these”
[7O- 9] mat ch any single character that is not
a digit

Some of the nore common ranges and sets of
characters used In qharacter cl asses and the
nost common abbrevi ati ons:

[0- 9] digits \'d

[7O- 9] non-digits \D

[a- z] | ower case al phas

[A- Z] upper case al phas

[A- Za- z] al phas

[a- zA- Z0- 9] al phanunerics \'w

[Ma- zA- Z0- 9] non- al phanuneri cs \'W
Note that sonme tools include ” " in

al phanunerics

[\t\n\r\f] white space \'s

[A \t\n\r\f] non-white space \'S

POSI X enabl ed tools al so accept anot her set of
abbrevi ati ons:

[[:al pha:]] al pha

[[:al num]] al phanunerics
[[:blank:]] space and tab

[[: space:]] whitespace characters

[[:cntrl:]] control characters
[[:digit:]] digits
[[:lower:]] | ower case al pha

[[: upper:]] upper case al pha

There are several nore, see page 80 in the
t ext book.

To use these, note that the inner set of

brackets are part of the character class nane:
[error:[[:space:]][[:digit:]][[:digit:]][[:digit:]
1/

Whi ch neans error, any space character, then 3

digits. The beauty of the POSIX classes 1is
that they understand Local e i nformati on.

Basi ¢ Regul ar Expression Single Character
MVat ches

Generally speaking, any character | nsi de
brackets loses its neaning. Thus, you can
match a literal period wth:

1.1/

Remenber that /./ nmeans nmatch any single
char at er.

Anot her nmethod would be to escape the period
wi th a backsl ash:

A

Sone people prefer to use Dbrackets, sone
prefer the backslash. Keep in mnd that in
sone cases you would need two backsl ashes, as
the shell reading the command, or the string
parsing of the programm ng | anguage, would try
to interpret the backsl ash.

Sone characters already have special neaning
| nsi de Dbrackets. In the case of t hose
characters, escaping them inside the brackets
renoves special neaning, allowng them to
becone a nenber of a character class set:

[T:-_]11 Mat ches all characters between : and _
I n ascii chart (:;[]1"M"@>\?=)

[T:\-_]/ Match a :, -, or _

I1-; 11 Match a :, -, or _ (- can’t nean range

her e)

Don't be suprised if you see spaces put in
brackets (for readability):

[error:[]\d\d\d/

A difficult issue to get used to is that a
single character can have so many neani ngs,

depending on where in a regexp it is used. For
exanple, the ”~ character can be literal, a
begi nni ng anchor, or negate a character cl ass.
Hint: Get used to it.

Here is a summary of the neani ngs of *:

/| “x/ begi nni ng anchor (x at begi nning of the
string/line)

/x™ literal (an x foll owed by a *)

[T™Xx] 1 negate a class (any character except an

X
[[x™]/ literal (an x or an %)

Basi ¢ Regul ar Expression Quantifiers

Quantifiers are characters that add neaning to
what preceeds them Putting a quantifier
after a literal character seguence, or
nmet acharacter, neans to allow a nunber of what
t hose characters natch.

Consi der the previously used:
/error [0-9][0-9][0-9]/

It could have been witten sinpler with the {}
gquantifier, which accepts a nuneric val ue:

[error [0-9]{3}/
{ , }) is called the interval operator.

|f the ” error code” mght be from1 to 1000,
we mght have from one to four digits. The
foll ow ng expression would match just one, two
or up to 4 trailing digits, depending on how
many were in the string:

[error [0-9]{1, 4}/

This would have nmatched: error 4 error 92
error 573 error 234877

You can also create ” open ended’” ranges of
nunbers as fol |l ows:

{, 3} match 0,1,2 or 3 of what preceedes
{1,} match 1 or nore or what preceedes
Sone useful conbinations using interval are:

{n} exactly n

{,n} up to n, zero is ok

{n,} n or nore

{n, m nis the mninmum nunber, mis the

maxi num

Basi ¢ Regul ar Expression Quantifiers

The primary issue when using quantifiers is
what does it act on? Another way to say this
Is " what is considered to be ” preceeding’
the quantifier?”

/test{3}/ match testtesttest or testtt?
/error[0-9]{3}/ match error and 1 digit 3 tines?
or. ..

The general rule is that a quantifier acts on
only the single preceeding item

/test {3}/ mat ches testtt
[error[0-9]{3}/ mat ches error and 3 digits
/™ 1{0, 1} CELL[][0-9]{1,}/

W will see later that you can use grouping
(precedence control) in sone tools to change
the ” scope” of a quantifier:

/[(the){2}/ match 7 the the ”

NOTE: Although {} is in the PCSI X definition
of BRE, it is not found in all " basic” tools.

Basi ¢ Regul ar Expression Quantifiers

The asterisk (*) is a quantifier neaning the
sane as {0,}.

For exanple, to re-wite the error exanple
usi ng asteri sk:

[error [0-9][0-9]*/ match error, space, and all
fol |l om ng
digits (one or nore)

Note that we used the digit class twce wth
an asterisk to nean one or nore.

The difficult part to grasp is the zero iIn
zero or nore. For exanpl e:

[error [0-9]*/
Wuld nmatch even if there were no digits
foll ow ng t he " error "
This is because * <can nean zero of the
preceeding item (digits). Think of it as
" zero or nore, but no match needed”

[error [0-9][0-9]*/
In this case, the wunderlined digit is NOT
affected by the asterisk, so it MJST be
mat ched, the second digit IS affected by the

asterisk, so it is optional due to the zero
or nore” meaning. Thus, the above regexp
actually reads in english as ” "error’, space,

one or nore digits”

Both cases (zero and one or nore) are useful:
[~ 1*CELLL TT 1*[0-9][0-91*/

Note that the above expression, when used only

as a binary match, could have been shortened
to:

[~ 1*CELL]][1*[0-9]/

As we do not really care how nmany digits, just
that at |east one was there. If we were going
to act on what was actually matched (like in a
substitution), it would be inportant to nmatch
all the digits.

As with the {} character, you can use grouping
I n nost tools to nake the asterisk act on nore
than the single preceeding item

F([o-9][0-91*[1[1*)*/

NOTE: The asterisk is available in all regexp
| npl ement ati ons.

| nterpretation i ssues

As nentioned earlier, in the section called
" passing regexps” , there is nore to witing a
regexp than just getting it right. You also
have to make sure that the tool reading the
regexp gets the regexp passed to it exactly as
| nt ended.

The problem here, as always, is that different
t ool s handl e t he readi ng of regexps
differently.

There are sonme general rules though:

Escape any characters that are special to the
tool readi ng the regexp.

|f you intend a character to be literal, it
must be escaped in the regexp, if the regexp
IS being parsed as a string before being read
as a regexp, it wll need to be escaped tw ce.

Met hods used for escaping are typically quotes
(both types) and backslash, though putting
characters in a class set ([]) renoves nost
meani ngs.

When passing a regexp to a conmmand |ine tool,
we nmust beware of any characters that the
shel | consi ders speci al (this varies by
shell). For exanple:

grep # script.pl
Causes a (grep usage nessage, rather than
printing lines wiwth a # on them W needed to
escape the # synbol in sonme way.
Generally speaking, 1f you put a regexp iIn
single quotes on the comand line, you are
safe. (use double quotes in DOS shells, and

beware the | in csh). You Wwll be
experinenting wwth this in the | ab exerci se.

| nterpretation i ssues

In programm ng |anguages, there are two major
categories of how regexps are handl ed: t hose
that parse a regexp as an interpreted string
first, and those that don’t.

You must know the tool you are using (we wll
explore these issues in a |ater chapter).

For exanpl e, emacs, tcl, and python first
parse regexps as strings, thus a \t would
becone a tab character due to string parsing,
not regexp capabiities.

Therefore, 1If a regexp contained [\t\n], the
\'t would beconme a tab character before the
regexp got to see it. Not a big deal.

But, there are other escapes in regexps that
woul d be interpreted wong, like \b. It would
need to be witten \\b so that the string
parsing passed the desired \b to the regexp.
In a string, \b often becones a backspace
character.

Even a * would becone *, so it would have to
be witten *,

In Perl, regexps are not parsed as strings
when supplied directly to the match operator,
or if placed in single quoted strings.

Basi ¢ Regul ar Expressi on Exanpl e

Suppose that we had a text file that was read
by another program This program had certain
rules about which lines could have optional
| eadi ng white space, and when it is required.

To make checking this file out easier, we want
to print just the lines that have |eading
white space. In the exanple below, datafile
contains the text.

Here are several ways to do this, using a few
di fferent tools:

grep ']’ datafile # (space and tab in |

1)

sed -n " /7]]/p’ datafile # (space and tab
in[1)

perl -n -e 'print if /"~ \t]/;’ datafile

perl -n -e "print if /™Ms/;’ datafile

awk " {if (/™[\t]/) print }' datafile

Note that perl allows the \s abbreviation for
all white space, and the \t tab character
shorthand, but grep and sed do not. awk allows
the \'t, but not \s.

Does the second perl exanple do what we asked
for?

Sone special notes

Even wthin the basic regular expression
characters, there are sonme nmmjor differences
I n tools.

As previously nentioned, not all tools support
t he BRE expressions of { , } and ().

More correctly, sonme tools do not support
them and others require themto be escaped in
order to have neaning. Consider this conmand
|1 ne usage of grep, note that grep prints
lines that match, so when wused from the
command |ine, you enter a line of text, after
pressing return, if it matched, the line wll
be echo’d back. Lines returned by grep are
underlined below (for clarity):

$ grep '(error)’
error
(error)

(error)
This neans the parentheses were taken as
|iteral characters, but:

$ grep '\(error\)’

error

error

In this case, they were taken as grouping.
This is also true for the interval operator:

$ grep '[0-9]\{2\}’
3

34
34

So in order to use grouping wth the interval
gquantifier, we need:

$ grep "\ ([A-Z][0-9]\)\{2\}"
A3

A3B7
A3B/

Before thinking that a tool does not support a
nmet acharacter or netasequence, try escaping
the characters as above (or |l ook at the charts
we w Il be introducing later in the class).

For now, renenber that grep, enmacs, and vi all
need groupi ng escaped.

Testi ng Regul ar Expressions

When testing regexps, it often becones a trial
and repeat scenario.

| f an expression does not nmatch, you can only
try again. Wien an expression matches nore (or
nore often) than you wanted it to, it is often
a great tine saver to see exactly what it did
mat ch.

Here are two ways to do this:

Using sed to substitute what was nmatched for
sonet hi ng el se:

sed ' s/regexp/ sone-text/’

It is often helpful to change all occurences
on each line wth:

sed ' s/regexp/ sone-text/g’

For exanple, if we wanted to match a set of
digits, and wused /[0-9]*/ for the regqgular
expression, it would have a match on all 1|ines
in a file, even those wthout digits. To test
it, we mght try a substitution. Here is the
sanple input file:

t est dat a
testdata 1
123 testing 456

This sed |ine:
sed 's/[0-9]*/ X/’
woul d change the above test input file to:

Xt est dat a

Xtestdata 1

X testing 456
And a global match (sed 's/[0-9]*/X/g") would
change it to:

Xt XeXs Xt XdXaXt XaX
Xt XeXs Xt XdXaXt XaX X
X Xt XeXsXt Xi XnXgX X

Testi ng Regul ar Expressions

Anot her way to test a regexp is to use perl to
show exactly what was natched. perl saves
sone side effects of a match into special
vari ables that we can use later for printing.

Taki ng advantage of this side effect allows us
to do sone convenient regexp testing. The
program below is in your |lab files directory
for use during | ab exercises.

It is called: t estregexp

W will not worry about exactly how the
program works for now, just use it as a tool
when needed during | ab.

#!/usr/ 1 ocal / bi n/ perl
while (<>){ # Get a line of input
1T (/[0-9]*/){ # regexp test, edit this regexp
as needed
print; # print the line if it matched
print(’ > x length($') . ' x length($&)); #
show mat ch

i f (length($& == 0) {
print ” Zero length match” ;
}
print " \n” ; # Add a newine
} } # go back for the next |line of
I nput

Above we have the sane regexp as used on the
previ ous page, below is sonme sanple input to
t he program

123 t est
test 123
12 34 56

And t he resultant output:
123 test

NNN

test 123

Zero |l ength match

12 34 56

NN\
Note that we are only showng the first match
on each | i ne.
| nput lines that have no match will not be

printed.

Ext ensi ons
Ext ended Regul ar Expressi on Meta-charactrers
The POSI X specification for ERE s has the

foll ow ng addi ti onal quantifiers (Wwth
meani ngs |isted):

? Zero or one, sane neaning as {0, 1}

+ One or nore, sane neaning as {1,}

It also adds the alternation operator, which
uses the foll owm ng synbol:

| Al ternation

Alternation is very useful to supply a list of
possi bl e mat ches:

[error| Error|Warni ng/

As nentioned, the real power of regexps cones
from t he | nt eractions of t he many
met achar act er s.

What |lines of a file do you suppose this woul d
print:

egrep 'error|warning: [0-9]+
There is precedence in netacharacters, that
I's, which characters are interpreted first can
change the neaning of an expression. The
alternation character has very | ow precedence,

neaning it 1Is interpreted l|ater than nost
char act ers:

$ grep -E '“error|warning’
error

error

was an error

was a warni ng

was a warni ng

Note that the search was for ” error at the
begi nning of a line, or, warning anywhere”

Ext ended Regul ar Expressi on Meta-charactrers

Using grouping, we can make this work as
desi r ed:
$ grep -E '~(error|warning)’
Here is a nore conpl ex exanpl e:
/[(error|warning):? [0-9]+/
What does that read in english?
W w || address precedence in detail |ater.

There are often nmultiple ways to wite the
sane thing:

/[eE]rror/ /| (e|E)ror/
Note that alternation and character cl asses

are NOT the sane, the character class wl|
never match nore, or |l ess than one character.

When matching only one character, it iIs best
to use character classes, when you want to
match any one of nmultiple character strings,
you nmust use alternation (if the tool supports

it).

Renmenber that DFA engines nmatch the | ongest
mat ch (greedy):

% awk ' {gsub(/(alabba)/,” X");print}’
abba
X

But NFA engines do not (though they should
under POSI X) :

% perl -pe 's/(alabba)/ X/ g;’
abba
Xbba

More Anchors

Most of the nore powerful conmmands have sone
addi ti onal anchors, usually wth neani ngs that
make it easier to define ” words” of text.

|f we needed an expression that: ” the string
error only as a word” , we would need a way to
say that the e nust be preceeded by a
beginning of word location, and the last r
must be foll owed by an end of word | ocati on.

Renmenber that anchors match a position only,
they never match any characters (they are a
zero |length required nmatch).

The characters available varies by tools, but
are typically either:

Vi, newer egrep, Vi, enacs:

\ < Begi nni ng of word | ocation
\ > End of word | ocation
or:
Perl, JavaScript, Tcl, ennacs:
\'b Boundary between word, and non-word

char acters

\B No boundary at this | ocation

The neanings of these two anchor types are
al rost identical, except one differentiates
between beginning and end, the other is a
generic " word edge” anchor.

These anchors mark the places where there is a

change from al phanuneri cs, to non-
al phanuneri cs.
For exanpl e, how nmany of t hese anchor

| ocations are there in the string?:

Wi | bur: Hy2K5ij:124.23 ” there was a” ;:(CELL 4)

More Anchors

Taking an exanple from the |ast chapter, when
| ooking for error, we also nmatched terror. W
could try to get just the word error wth
sonething like this:

(ML 1)error (L 119)/

Whi ch would catch only two of the follow ng,
so we need to do better:

t here was an error
error was there
there was an error?

Usi ng the word anchors, we could use either of
the below to catch all three |ines above (and
nost ot her situations of the word error):

[\ <error\>/ [\ berror\Db/

The regexp on the left would work in vi. In
Perl we use the one on the right.

Most tools definitions of ” word” Dbegin and
end wth a transition from [a-zA-Z0-9]
characters to ["a- zA- Z0- 9], or t he

end/ begi nning of the string/line (renenber the
character sets for word, and non-word can be
abbreviated as \w and \Win sone tools).

Not e t hat sone t ool s al so | nclude the
underscore as a nenber of the set of word
characters (perl and sone versions of awk and
sed).

Tools using the Perl regexp engine also take
anchors |ike:

VA begi nni ng of string
\Z end of string

\G | ocation of previous match (or position in
string)

Pr ecedence

The or der of precedence for t hese
nmet acharacters is as follows, listed from high
to | ow

() par ent hesi s

[] . singl e character matches

*+ ?2{n,mM quantifiers

NS \b A<\ > anchors

?bc literal concatenation

al ternati on

Read precedence charts wusing the axiom of
" lower operators can be applied to higher
precedence operators” . For exanpl e,
gquantifiers can be applied to single character
mat ches, or parenthesis (sub expressions in
par ent hesi s):

[7 .+] # Match one or nore characters

I N quot es

[(\d+\s+){2,}/ # Match 2 or nore ” sets” of digits
f ol | owed

by whitespace

Bel ow we use parenthesis to override default
precedence:

/| Ma| b/ # Match a at beginning, or b
anywher e

I M(al b)/ # Match a or b at begi nning

/| # Match ” file a” or b

b)/ # Match ” file a” or ” file b”
1/ # Match ” file a” or " file b”

Ifile
[file
[file

Backr ef er ences

As nentioned, parenthesis can be wused for
gr oupi ng.

The purpose of grouping can be either to
change precedence:

/[~(error|warning)/
or to control the scope of quantifiers:

/error(code)?: \d+/

Note that Iin BRE tools, the parenthesis nust
often be escaped (for exanple in nost grep, Vi
and enmacs versions):

/™" (error|warning\):? [0-9][0-9]*/

Anot her purpose of parenthesis is to force the
regexp engine to " renmenber” what was matched
by the sub-expression in parenthesis. This iIs
call ed backreferencing or tagging because the
" menorized” text can be referred to later iIn
t he regexp.

Most tools use an escaped nunber to recall
backreferenced text, the nunber being which
set of parens, counted from the left. (\1 \2
etc..)

Backr ef er ences

Backreferencing can be wuseful for finding
repeati ng sequences of text:
I\b([a-z]+)[]+ 1/

This reads ” a word boundary, followed by a
| ower case word, one or nore spaces, and the
sane word again (the boundary nmeking it a
word)” . It would match the follow ng:

and the the cat
she saw that that was correct

Due to the boundaries, it would not nmatch 1 n
the foll ow ng dat a:

t he thesis was
blithe the nove was

It can al so be useful for data validation:

I\w+(o])\ d+\ 1\ wa/
Speci fic data cases:

[x=(\d+);y=\1;/
What is a ” valid” string (is nmatched by the
expressi on above) ?

What invalid strings are we checking for in
t he above?

Amusi ngly, grep, emacs, perl, tcl, and vi can
perform back references, but egrep cannot.
Sonme tools wll only renenber up to 9, sone

tools wll renmenber as nany as you care to
spend the cpu tine on.

Sone tools allow you to act on, or return the
'tagged’ mat ches separately.

Addr essi ng type mat ches

It is often inportant to wite explicit
regexps when you are performing a binary
mat ch. For exanple, /May/ would match in both
| i nes bel ow.

Those five days in My
Maybe he can catch a ball

When performng addressing matches, it IS
al ways inportant to wite explicit regexps:
It is easy to nmatch what you want, it 1Is

hard to match only what you want, and
exactly the scope of what you want.

An addressing match allows you to act on
exactly the characters matched by the regexp.
In sonme cases it allows you to act on all
mat ches in a string/line.

In various tools, wusing various constructs,
t he mat ched substri ng:
M ght be returned by the nmatch
Mght have its <character location/length
returned
Mght be the target of a text operators
result (substitute operations)

In sone tools the matched substring is
assigned into a special wvariable for Ilater

access. W call this a side-effect of the
match. Some tools return only a true/false
(binary) from the match, then nmake all the

I nfformati on above available through special
vari abl es, or nethods.

When performng binary nmatch operations, say
to print all matching |ines:

grep -E '/(error|warning):? [0-9]+/" logfile

The + in the regexp was not needed. If there
was one digit, print the line, it does not
matter that there were nore digits follow ng,
as we are acting on the entire |ine.

In the case of an addressing match, we would
need the +, as we want all the digits to be
matched so we can act on the entire matched
substring, but not necessarily the entire
string searched.

Regexp Substitutes

A common use for addressing matches is in a
substitute operation. The operator wused to
| nvoke a substitute varies by command, but the
sinpl est syntax, and nobst common construction
| S:

s/ regexp/ repl acenent-string/fl ag-options

This s operator is found in conmands |ike vi,
ed, ex, perl , and sed.

Note that the replacenent string allows
various netacharacters, depending on the
command. Typically the replacenent string is
an interpreted string, and thus can contain
vari abl es, character abbreviations (\t \n ...)
and other command specific string escapes,
such as perls \u\U\Il \L \E \Q operators.

The t ool s | isted above al | al | ow
backreferences to be used in the replacenent
string, but perl uses $n instead of \n for
backr ef erences.

All these tools also allow the use of $& in
the replacenent string to print the entire
substring matched by the regexp.

The flag options can nodify either the regexp,
or the replacenent string. For exanple:

In sed the followng flags are valid:

g gl obal, performall substitutions in a

string

n 1 to 512 nmeaning which match to substitute

W wite string after substitution to a file
In perl the followng flags are valid:

g gl obal, performall substitutions in a

string

| make the regexp case insensitive

m make the regexp act on nulti-line string
e eval uate replacenent string as an expression
there are al so several others to be di scussed

| at er
In ex and vi, the followng flags are valid:

g gl obal, performall substitutions in a
string

P print lines with substitutes

C pronpt for confirmation before each

substitute

Regexp Substitutes

Anot her form of regexp based substitute 1is
f ound I N progr amm ng | anguages, whi ch
typically use function calls.

For exanple, awk and python use:

sub(regexp, repl acenent, search-string)
gsub(regexp, repl acenent, search-stri ng)

JavaScri pt uses:

search-string. repl ace(regexp)
Tcl uses:

regsub [options] regexp target replacenent
destinati on

Enmacs uses the followng interactive conmands:

repl ace-regexp
query-repl ace-regexp

Mat ch Ret ur ns

Most command line tools (like ex, vi, sed,
grep, egrep) do not allow you to act directly
on the text matched by a regexp, except by
using a substitute operation.

Most programm ng tools do allow you to access
the the matched text in sone way. It mght be
assigned into a special variable, returned
froma special nethod or function, or it m ght
be returned by the match operation itself.
Docunentation of the regexp utility of that
| anguage should Ilist which of these are
avai | abl e, and how to use them

Perl provides nultiple ways to access the
exact substring of a match, so we wll wuse it
as an exanpl e.

Speci al vari abl es:

In perl, there are several variables set after
every match operation:

$string = 'before the match after’;

$string =~ /th(.*)ch/;

print 7 $ \n$& \n$ \n$l \n” ;
The three variables naned ° & and '’ are
conponents of the searched string ($string in
exanpl e above) representing the match (& the
characters before the mtch ('), and the
characters after the nmatched substring ().
The sanple code above results in the output
bel ow.

bef or e

t he natch
af ter

e mat

Note that the tagged section of the match (in
parent hesis) gets noved into the variable $1,
w t h subsequent tagged sections going into $2,
$3, etc...

These variables allow for many different
mani pul ati ons. For exanple, we can use the
| ength of the $ variable to |l|ocate the
position of the matched string for substring
mani pul ati on:

$string="...variabl e=ABC, known=123" ;

$string =~ / known/;

$needed=substr($string, |l ength($')-4, 3);

print(” $needed\n” , length($') , " \n");
Results in:

ABC

16

Another nethod to access the sane data as
above (using a backreference):

$string="...variabl e=ABC, known=123" ;

$string =~ /(...); known/; # tag the characters
print " $1\n” ; # use special variable
for access

O her tools have simlar capabilities, for
exanple, tcl provides a Match variable that
gives begin and end locations of the match
(when -1 ndi ces S used).

Ret ur ned substring

Per | has a way to | et you return
backreferenced substrings from the match
oper at or .

$string = "before the match after’;

($match) = ($string =~ /th(.*)ch/);# $match gets

” e rmt "

print 7 $& \n$l \n$match\n” ; # $1 is also " e
rmt "

Beware that backrefernces are only returned
when the match is used in an array context (a
very Perlish thing):

$string = 'once upon a Jul 1 1997 ;
$match = ($string =~ /((\W3}) (\d{1,2})
(\d{2,4}))7);

$natch gets ” 1" since match was ” successful”

@lat ($string =~ /((\W3}) (\d{1,2})

(\ {2 M))1);

Date array gets list of ” Jul 1 1997” , ” Jul” ,
17, " 19977

Perl also allows you to perform a gl obal
match, which can return all matches at once
(in array context):

$string = " 1247 dsec 14 brof 237" ;
@l | nums=($string=~/(\d+)/Q); # array context
print 7 @l !l nuns\n” ; # prints 1247 14 237

How OO does it

In the |anguages that support regexps in an
hject Oiented manner, a regexp is typically
" conpiled” , or created as an bject, then
" applied” to strings. | n these | anguages, a
variable within the object is often set to the
mat ched substri ng. |f not, a nethod is
provided that returns the matched string.
Here is an exanple from JavaScri pt:

re=/ (\w+) =(\w+)/;

docunent .l inks[1l] =" http://ww.fanmece. conicgi -
bi n/ request . cgi ?SUBJ=UNI X& evel =det” ;

dat a=docunent .l i nks[1] . match(re);
re=/(\w+)=(\w+)/g;

dat a2=docunent . | i nks[1] . match(re);

After the above, the followng are true:

data[0] = * SUBJ=UNX dat a2[0] = ' SUBJ=UNX
data[1] = ’ SUBJ’ data2[1] = 'l evel =det’
data[2] = "UN X

We could have witten this in a nore OO nmanner
using the follow ng:
re = new RegExp(” (\w+)=(\w)" |, " i1g");
docunent .| inks[1] =" http://ww.fanmece. conicgi -

bi n/ request . cgi ?SUBJ=UNI X& evel =det” ;
data = re.exec(docunent.!|links[1]);

Per f or mance

The book " Mastering Regular Expressions” by
Jeffrey E.F. Friedl (OReilly) does a great
job with covering these issues (chapter 5).

An (apparently) sinple change from
/ ($DOUBLE]| $SI NGLE) | $COMVENT| $COMVENT2/
to

/ ($DOUBLE| $SI NGLE| $OTHER) | $COMVENT| $COMVENT2/

reduced the run tinme against a 60K string from
37 seconds to 2.9 seconds by adding in a
possible match for things that would prevent
mat chi ng one of the comment alternatives.

