
Muddling Through Regular
Expressions

Presented by:
Fred Mallett frederm@aol.com

FAME Computer Education
250 Beach Blvd

Laguna Vista, TX 78578
(956) 943-4040

http://www.famece.com

Note: This material was extracted from the F.C.E. training course

“ Regular Expressions”

Introduction & Basics

Description

Regular Expressions are used to match, or
manipulate strings of text.
A Regular Expression is developed using a
pattern notation consisting or literal and
metacharacters, and is used to describe
sequences of text characters.
In a simpler definition, a Regular Expression
is a set of literal and special characters
(meta-characters) used to search for matches
in text.
Or even: A Regular Expressions describes a
set of possible strings.
It is good to think of the Regular Expression
Notation itself as a programming language.
This language (in several flavors) is embedded
into many common tools and programming
languages, such as:
ex grep egrep vi nedit emacs sed
more less perl tcl python awk

JavaScript
lex expect

and more.....
In this class, the term ” Regular Expression”
will be abbreviated as: RE, re, or rexexp.
Regexps add a great deal of power to text
manipulating programs. Using regexps, the
various tools can:
Determine if there is a match for an inexact
string
Substitute a string or expression result for
what was matched
Return the matched portion of a string

Address matched portions for use as an
operators operand

Why ” Regular” Expressions?

Below is a summary of the ” Mastering Regular
Expressions” books description of how the
term came about in computers (Page 60).
Around 1950 Stephen Kleene (a mathematician)
formally described models of how some
neurophysiologists thought the nervous system
worked.
Stephen described them in an algebra he called
regular sets. He then developed a notation to
express these regular sets, and called them
Regular Expressions.
These regular expressions were used primarily
in mathematic circles.
In 1968 Ken Thompson wrote an article called
Regular Expression Search Algorithm which
described the roots of the ed editor, which
became ex. This was the beginning of regular
expressions in computer circles.
ex had the g command, whose common use was
g/RE/p to print lines which contained a match
for RE. Eventually, this grep function became
its own command.

Learning Rexexps

How a regexp is used is under the control of
the program it is used by
This can vary widely in:

Which metacharacters are accepted
(and which need to be escaped)

Details about what a metacharacter can
” change” to
How the search is performed
What happens when a match is found
What the RE will match
How you can use the results of the match
(and what is returned)

The good news is, once you understand the
language of Regular Expressions, learning any
particular ” dialect” and its various
peculiarities is eas(y|ier).
This course covers writing regexps, using
tools like sed, grep, and perl since they are
found on most systems. Other tools are
addressed when needed.
There are many levels of proficiency in the
trip towards competence in regular
expressions:
Getting started
Know the basic RE metacharacters, and create
RE’s using them
This level allows you to save time in
performing simple tasks

Getting there
Know how the expressions characters
interact, and know what the ERE characters
mean
This level allows you to use many different
tools, and solve many common problems

You made it
Know how all meta-characters interact, and
can use all metacharacters that your choice
of tools is capable
This level allows you to solve difficult
problems with ease

Above and Beyond
Can write efficient dynamic expressions,
understanding the difference between
expressions that might give the same result
using multiple tools

As Jeffrey E.F. Friedl said:
” To Master regular expressions is to

master your Data”

Regexp usage

Literal regexp

A literal regexp consists entirely of
” ordinary” characters, those with no special
(programatic) meaning.
Though simple, these are very useful, and can
save a great deal of time.
Examples of literal expressions are strings
like: error warning
We will use literal expressions in many of the
following examples.
Binary Match

The simplest use of regexps is the binary
match usage.
In this usage a tool ” tests” a string to see
if it contains a match for a regexp, exactly
what it matches is irrelevant.
Almost all tools that accept regexps can
perform this type of match.
Some tools are limited to this type of match.
The command grep is probably the most commonly
used regexp tool, and is limited to the binary
match function. The problem with using grep
to learn regexps is that you never know
exactly what was matched, only if there was a
match. grep prints the entire line from an
input file if there is a match anywhere on
that line, even if the match length is zero
characters.
Binary matches are commonly used for
addressing lines in an editing type function.
Addressing match (or specific match)

In this type of match, exactly which
characters matched is important, as the
matched characters are what is acted upon by
the operation that called the regexp search to
be performed.
Many tools have a substitute operation which
uses an addressing match.
Other uses are for things like:

addressing a substring to be used as the
operand of an operator
 (mayby perform math on a matched numeric
substring)
splitting a string into fields by removing
matches
returning the matched string, removing the
matched string

Match side-effects

Many tools also retain information about the
most recent regexp search, using this
information is often called using the side-
effects of a match.
RE Testing tool:

This simple Perl (but verbose) program works
reasonably well for testing re’s:

#!/usr/local/bin/perl
$re=’\d*’;
while (<STDIN>) {

if (/$re/) {
 print ” Matched line $.:\n” ;
 print $_;
 if (length($&) == 0) {

print ” Zero length match!!\n” ;
 } else {

print ” $&\n” ;
 }
} else {

 print ” No match line $.\n” ;
} }

Issues

Thinking of regexps as a programming language
embedded into many tools and higher level
languages is a good idea.
Thinking of regexps as a type of foreign
language helps understand many of the issues
you will face when trying to learn them:
As with any language, there are many local
terms, not found elsewhere (why have 100
names for snow in florida?), and many
different dialects that can make
understanding things difficult, even when
using the same language.

The next few pages have some more details of
these dialect differences, and other issues we
must deal with when learning regexps.
Note: UNIX shell wildcards are not regexps
(though they share some characteristics, do
not confuse the two, they have very little in
common.

Passing Regexps

Though regexps are interpreted by a piece of
code within the various tools, the regexp
string itself is often ” handled” by programs
that do not ” understand” that it is a regular
expression. This can complicate the escaping
needed in a regular expression. A good example
of this is a command that takes a regular
expression as an argument on the command line,
like grep:

grep x;y # matches and prints lines with x, then
runs y

The above had to be written in one of the
manners below, since the ’;’ had special
meaning to the shell, though it is just a
literal (ordinary) character to the regexp
language:

grep ’x;y’ grep ” x;y” grep x\;y

It can get rather complex when a character has
meanings to the interpreter, and regexps. For
example, since ’*’ has meaning to both the
shell, and regexps, if we wanted to match a
literal ’*’, we would have to escape its
meaning from the shell, and also from the
regexps of grep:

grep x*y grep ’x*y’ grep ” x*y”

This means we need to understand text issues
with the tools used, as well as know regexps.
In some languages, regexps are first parsed as
strings, then used as regular expressions,
which can add even similar complexity.

Tool differences

Another issue is that there are so many
different tools using regular expressions, it
is difficult to learn the myriad of details.
The good part is that most ” masters” of
regexps use them primarily in one or two
tools, and use only simpler expressions in the
other tools as needed. (There is a benefit to
specialization).
The Major categories of differences in regexps
are driven by what ” engine” is used to
” execute” the regexp. This will be delved
into in much greater detail later in the
course, for now a brief summary of the two:
DFA (Deterministic Finite Automaton)
Often faster than NFA.
You do not need to write efficient regexps,

 speed will be the same, no matter how
it is written.
Does not support backreferencing

(the ability to create dynamic
expressions).
Always matches the longest possible match.
Examples of commands that use the DFA engine
are: awk, grep, lex.
(DFA is fast and consistent)

NFA (Nondeterministic Finite Automaton)
You must write efficient expressions or
speed can suffer.
Usually matches the longest match, but might
not.
Often support backreferences (easy to do
with this engine).

Examples of commands that use the NFA engine
are just about everything else (like perl,
vi, sed, javascript, tcl...).

In addition to the engines in use, there are
two categories of sets of meta-characters used
by tools. These are:
BRE (Basic Regular expressions)
ERE (Extended Regular Expressions)

There are also many tool specific
metacharacters that don’t fit into these two
catagories.

POSIX regexps

Posix defines a list of what metacharacters
are in BRE, and which are in ERE. We will
follow that list fairly closely in the next
few chapters when listing metacharacters, with
some tool specific exceptions. (Text book
page 64)

The POSIX standard affects how regexps work.
For example, it states that the longest match
must always be returned, so, if POSIX is
enabled, and an NFA tool is used, it must
still always return the longest match for a
given expression (even though NFA tools don’t
normally do that for all expressions).
In addition, the POSIX definition tries to
provide definitive answers to how every set of
metacharacters should be interpreted (what
they should match), but, like always, detailed
instructions are hard to follow, so there are
still some differences in interpretation
between two ” fully compliant” POSIX versions
of tools.
More dialect issues

We will see as we go along that in addition to
the above mentioned differences, there are
many minor dialects to regexps, and are often
found in the details like:
” Should a metacharacter that matches any
character,
 also match the newline character?”

chapter.4

” When supplied a set of items to match,
should it stop on the first successful, or

check them all to match the longest possible
of the items?”

(a|abba)

Using Binary matches

All tools support binary matches.
Binary matches are commonly used to check if a
pattern exists in a string, commonly, in
commands, a string is an entire line in a
file, but in programming languages, the string
to be tested is often assigned.
The most common use of a binary match is to
act on a line if it contains a match for a
regexp. The tool grep uses a binary expression
test to decide if it should print a line of
input.
In the large majority of tools, you can both
invoke, and define a regular expression by
enclosing it in slashes:

/regexp to test for/

This is the method we will use in most
examples in the handout.
The exceptions are those commands that take a
regular expression as a command line argument,
such as grep:

grep ’error’ result_file

The command above is the same as the perl
code:

while (<>){
 print if /error/;
}

or the awk command (code):

awk ’{if (/error/) print }’ result_file

or the sed command:

sed -n ’/error/p’ result_file

All examples would print all lines in the file
result_file that contain the string error.

For example, they would print both of the
lines below:

error 127
Holy Terror!!!

Due to the simplicity of the regexp (a literal
string), it is easy to see exactly what was
matched in each line, though the tools were
instructed to print the entire line if there
was a match anywhere.

Using Binary matches

Many editors and web sites allow the use of
regexps to search for something. Generally,
they either display what matched (like a web
search engine), or move the cursor to the
first match (many editors), or possibly
display all matches of the expression.
When working interactively, getting more than
you asked for is not that bad.
When trying to automate procedures, it can be
very bad.
What if we wanted only lines with the word
error on them, instead of having the word
terror also match?
That is the basis for the power of regular
expressions: the ability to describe not only
the literal text desired, but variable
situations of text.
Most importantly, you must know your data!! If
the word error was always lower case, at the
beginning of a line, and followed by a ” :” ,
life might be much simpler.

Basic Regular Expression Metacharacters

Meta-characters come in 4 flavors, grouped by
usage:
Position matchers (anchors)

These characters do not match anything in
the string or line you are testing, they
match only a location. The availability of
thes characters varies widely among the
different commands and tools.

^ $ \b \B \A \Z \G \<
Single character matches
The trick to remember here is that these
meta-characters, and meta-sequences will
always match exactly one character, or fail
the match if there is not a character for
them to match.

. [] [^] \w \W \s [[:set:]]
Quantity modifiers (quantifiers)
These characters have no meaning when used
alone, but take on a significant meaning if
there is any character (literal or mets)
before them in a regexp. They are extremely
powerful, they add a numeric quantity to
another characters meaning (how many of
those).

+ * ? { }
Quantifiers take a bit of a trick to get
used to reading. You must read the quantity
before what is being quantified or the
result is confusing.
It is also important to know how many
preceeding characters the numeric
modification affects, and sadly, this can
vary by tool.

Control, usage, and grouping

These characters are somewhat difficult to
get used to, as different escaping (or none)
is used indifferent tools. They fill in the
highest power levels, such as changing
precedence of characters, back referencing,
and dynamic control within an expression.

() \ $match pos()

Basic Regular Expression Anchors

There are several locations that can be
referenced in an expression, but BRE’s only
have two.
Another way to say this is that you can anchor
a match of an expression to specific locations
within the search string.
Some of these can occur multiple times in the
string being searched, thus multiple times in
an expression.
These two anchor symbols are available in all
regexp implementations:

^ beginning of string
$ end of string

The meaning of beginning and end can vary a
bit depending on the tool. We will revisit
these in a later chapter. For now, we will
take the common meanings.
For tools like grep, ex, and vi, these anchors
refer to the beginning or end of a line, as
they are line based tools.
For programming type tools, (awk, perl, tcl,
JavaScript,...), they usually mean beginning
and end of the string being tested for a
match. This is usually an arbitrary string
assigned to a variable. (You can aso guess
that the string might contain less than (no
newline), or more than a line of text).
Continuing the previous example, looking for
error only when it is the first thing on a
line, we could use this:

/^error/

Which means ” error at the beginning of a line
(string)” . What would these expressions mean
(in verbose english):

/^error$/ /^$/ /END$/ /^ /

These anchor characters only have meaning when
they are used as the first and last characters
in a string.
For example, the regexp /x^y/ means match
those three characters literally, as the ” ^”
was not the first character in the regexp,
therefore it is literal.
A ” $” used other than as the last character
can have different meaning depending on the
tool, we will discuss this in detail later.

Basic Regular Expression Single Character
Matches

Remember that these metacharacters match
exactly one character in the string (line)
being searched.
There are 3 ways to match a single character:

. Match any single character

[] Match any character in the enclosed class

[^] Match any character except those in the
enclosed class

When there must be a character at a certain
location, but you don’t care what it is, use
the period metacharacter.
When there must be a character at a certain
location, and it can only be one from a set of
possible characters, use the character class
metacharacter.
For example:

/^.../ Match the first 3 characters on lines that

have at

 least 3 characters
/error: .../ Match ” error” , colon, space, and the next 3

characters

Looking at the ” error” expression above, what
if the data we were looking for was the word
error, a space, then a 3 character number.
We could use:

/error .../

Which would work, but it would also match:
” terror to go there”
Like always, it is easy to match what we want,
it is more difficult to only match exactly
what we want.

Using the character class metacharacter, we
can define a match for number (integer)
characters:

[0123456789] which is easier written: [0-9]

Then we can write a more explicit expression:

/error [0-9][0-9][0-9]/

Many tools allow abbreviations of common
character class sets. Digits for example, can
be written \d in several tools (note we no
longer use the brackets):

/error \d\d\d/

Basic Regular Expression Single Character
Matches

We can supply a backslash to add meaning to
some characters in a character class (which
varies by tool):

[\t] tab [\n] newline [\r] return [\f] formfeed

Most tools also accept a special first
character in the class that negates the set of
characters in the class, meaning ” any
character that is not one of these” :

[^0-9] match any single character that is not
a digit

Some of the more common ranges and sets of
characters used in character classes and the
most common abbreviations:

[0-9] digits \d
[^0-9] non-digits \D
[a-z] lower case alphas
[A-Z] upper case alphas
[A-Za-z] alphas
[a-zA-Z0-9]alphanumerics \w
[^a-zA-Z0-9] non-alphanumerics \W

Note that some tools include ” _” in
alphanumerics
[\t\n\r\f]white space \s
[^ \t\n\r\f] non-white space \S

POSIX enabled tools also accept another set of
abbreviations:

[[:alpha:]]alpha
[[:alnum:]]alphanumerics
[[:blank:]]space and tab
[[:space:]]whitespace characters
[[:cntrl:]]control characters
[[:digit:]]digits
[[:lower:]]lower case alpha
[[:upper:]]upper case alpha

There are several more, see page 80 in the
text book.
To use these, note that the inner set of
brackets are part of the character class name:

/error:[[:space:]][[:digit:]][[:digit:]][[:digit:]
]/

Which means error, any space character, then 3
digits. The beauty of the POSIX classes is
that they understand Locale information.

Basic Regular Expression Single Character
Matches

Generally speaking, any character inside
brackets loses its meaning. Thus, you can
match a literal period with:

/[.]/

Remember that /./ means match any single
charater.
Another method would be to escape the period
with a backslash:

/\./

Some people prefer to use brackets, some
prefer the backslash. Keep in mind that in
some cases you would need two backslashes, as
the shell reading the command, or the string
parsing of the programming language, would try
to interpret the backslash.
Some characters already have special meaning
inside brackets. In the case of those
characters, escaping them inside the brackets
removes special meaning, allowing them to
become a member of a character class set:

/[:-_]/ Matches all characters between : and _
in ascii chart (:;[]^@<>\?=_)

/[:\-_]/ Match a :, -, or _

/[-;_]/ Match a :, -, or _ (- can’t mean range
here)

Don’t be suprised if you see spaces put in
brackets (for readability):

/error:[]\d\d\d/

A difficult issue to get used to is that a
single character can have so many meanings,

depending on where in a regexp it is used. For
example, the ^ character can be literal, a
beginning anchor, or negate a character class.
Hint: Get used to it.
Here is a summary of the meanings of ^:

/^x/ beginning anchor (x at beginning of the
string/line)
/x^/ literal (an x followed by a ^)
/[^x]/ negate a class (any character except an
x)
/[x^]/ literal (an x or an ^)

Basic Regular Expression Quantifiers

Quantifiers are characters that add meaning to
what preceeds them. Putting a quantifier
after a literal character sequence, or
metacharacter, means to allow a number of what
those characters match.
Consider the previously used:

/error [0-9][0-9][0-9]/

It could have been written simpler with the {}
quantifier, which accepts a numeric value:

/error [0-9]{3}/

{ , } is called the interval operator.
If the ” error code” might be from 1 to 1000,
we might have from one to four digits. The
following expression would match just one, two
or up to 4 trailing digits, depending on how
many were in the string:

/error [0-9]{1,4}/

This would have matched: error 4 error 92
error 573 error 234877
You can also create ” open ended” ranges of
numbers as follows:

{,3} match 0,1,2 or 3 of what preceedes
{1,} match 1 or more or what preceedes

Some useful combinations using interval are:

{n} exactly n
{,n} up to n, zero is ok
{n,} n or more
{n,m} n is the minimum number, m is the
maximum

Basic Regular Expression Quantifiers

The primary issue when using quantifiers is
what does it act on? Another way to say this
is ” what is considered to be ” preceeding”
the quantifier?” :

/test{3}/ match testtesttest or testtt?
/error[0-9]{3}/ match error and 1 digit 3 times?
or...

The general rule is that a quantifier acts on
only the single preceeding item:

/test{3}/ matches testtt
/error[0-9]{3}/ matches error and 3 digits
/^[]{0,1}CELL[][0-9]{1,}/

We will see later that you can use grouping
(precedence control) in some tools to change
the ” scope” of a quantifier:

/(the){2}/ match ” the the ”

NOTE: Although {} is in the POSIX definition
of BRE, it is not found in all ” basic” tools.

Basic Regular Expression Quantifiers

The asterisk (*) is a quantifier meaning the
same as {0,}.
For example, to re-write the error example
using asterisk:

/error [0-9][0-9]*/ match error, space, and all
following

 digits (one or more)

Note that we used the digit class twice with
an asterisk to mean one or more.
The difficult part to grasp is the zero in
zero or more. For example:

/error [0-9]*/

Would match even if there were no digits
following the ” error ” .
This is because * can mean zero of the
preceeding item (digits). Think of it as
” zero or more, but no match needed” .

/error [0-9][0-9]*/

In this case, the underlined digit is NOT
affected by the asterisk, so it MUST be
matched, the second digit IS affected by the
asterisk, so it is optional due to the ” zero
or more” meaning. Thus, the above regexp
actually reads in english as ” ’error’, space,
one or more digits” .
Both cases (zero and one or more) are useful:

/^[]*CELL[][]*[0-9][0-9]*/

Note that the above expression, when used only
as a binary match, could have been shortened
to:

/^[]*CELL[][]*[0-9]/

As we do not really care how many digits, just
that at least one was there. If we were going
to act on what was actually matched (like in a
substitution), it would be important to match
all the digits.
As with the {} character, you can use grouping
in most tools to make the asterisk act on more
than the single preceeding item:

/([0-9][0-9]*[][]*)*/

NOTE: The asterisk is available in all regexp
implementations.

Interpretation issues

As mentioned earlier, in the section called
” passing regexps” , there is more to writing a
regexp than just getting it right. You also
have to make sure that the tool reading the
regexp gets the regexp passed to it exactly as
intended.
The problem here, as always, is that different
tools handle the reading of regexps
differently.
There are some general rules though:
Escape any characters that are special to the
tool reading the regexp.
If you intend a character to be literal, it
must be escaped in the regexp, if the regexp
is being parsed as a string before being read
as a regexp, it will need to be escaped twice.
Methods used for escaping are typically quotes
(both types) and backslash, though putting
characters in a class set ([]) removes most
meanings.

When passing a regexp to a command line tool,
we must beware of any characters that the
shell considers special (this varies by
shell). For example:

grep # script.pl

Causes a grep usage message, rather than
printing lines with a # on them. We needed to
escape the # symbol in some way.
Generally speaking, if you put a regexp in
single quotes on the command line, you are
safe. (use double quotes in DOS shells, and

beware the ! in csh). You will be
experimenting with this in the lab exercise.

Interpretation issues

In programming languages, there are two major
categories of how regexps are handled: those
that parse a regexp as an interpreted string
first, and those that don’t.
You must know the tool you are using (we will
explore these issues in a later chapter).
For example, emacs, tcl, and python first
parse regexps as strings, thus a \t would
become a tab character due to string parsing,
not regexp capabiities.
Therefore, if a regexp contained [\t\n], the
\t would become a tab character before the
regexp got to see it. Not a big deal.
But, there are other escapes in regexps that
would be interpreted wrong, like \b. It would
need to be written \\b so that the string
parsing passed the desired \b to the regexp.
In a string, \b often becomes a backspace
character.
Even a * would become *, so it would have to
be written *.
In Perl, regexps are not parsed as strings
when supplied directly to the match operator,
or if placed in single quoted strings.

Basic Regular Expression Example

Suppose that we had a text file that was read
by another program. This program had certain
rules about which lines could have optional
leading white space, and when it is required.
To make checking this file out easier, we want
to print just the lines that have leading
white space. In the example below, datafile
contains the text.
Here are several ways to do this, using a few
different tools:

grep ’^[]’ datafile # (space and tab in [
])

sed -n ’/^[]/p’ datafile # (space and tab
in [])

perl -n -e ’print if /^[\t]/;’ datafile
perl -n -e ’print if /^\s/;’ datafile

awk ’{if (/^[\t]/) print }’ datafile

Note that perl allows the \s abbreviation for
all white space, and the \t tab character
shorthand, but grep and sed do not. awk allows
the \t, but not \s.
Does the second perl example do what we asked
for?

Some special notes

Even within the basic regular expression
characters, there are some major differences
in tools.
As previously mentioned, not all tools support
the BRE expressions of { , } and ().
More correctly, some tools do not support
them, and others require them to be escaped in
order to have meaning. Consider this command
line usage of grep, note that grep prints
lines that match, so when used from the
command line, you enter a line of text, after
pressing return, if it matched, the line will
be echo’d back. Lines returned by grep are
underlined below (for clarity):

$ grep ’(error)’
error
(error)
(error)

This means the parentheses were taken as
literal characters, but:

$ grep ’\(error\)’
error
error

In this case, they were taken as grouping.
This is also true for the interval operator:

$ grep ’[0-9]\{2\}’
3
34
34

So in order to use grouping with the interval
quantifier, we need:

$ grep ’\([A-Z][0-9]\)\{2\}’
A3

A3B7
A3B7

Before thinking that a tool does not support a
metacharacter or metasequence, try escaping
the characters as above (or look at the charts
we will be introducing later in the class).
For now, remember that grep, emacs, and vi all
need grouping escaped.

Testing Regular Expressions

When testing regexps, it often becomes a trial
and repeat scenario.
If an expression does not match, you can only
try again. When an expression matches more (or
more often) than you wanted it to, it is often
a great time saver to see exactly what it did
match.
Here are two ways to do this:
Using sed to substitute what was matched for
something else:

sed ’s/regexp/some-text/’

It is often helpful to change all occurences
on each line with:

sed ’s/regexp/some-text/g’

For example, if we wanted to match a set of
digits, and used /[0-9]*/ for the regular
expression, it would have a match on all lines
in a file, even those without digits. To test
it, we might try a substitution. Here is the
sample input file:

testdata
testdata 1
123 testing 456

This sed line:

sed ’s/[0-9]*/X/’

 would change the above test input file to:

Xtestdata
Xtestdata 1
X testing 456

And a global match (sed ’s/[0-9]*/X/g’) would
change it to:

XtXeXsXtXdXaXtXaX
XtXeXsXtXdXaXtXaX X
X XtXeXsXtXiXnXgX X

Testing Regular Expressions

Another way to test a regexp is to use perl to
show exactly what was matched. perl saves
some side effects of a match into special
variables that we can use later for printing.
Taking advantage of this side effect allows us
to do some convenient regexp testing. The
program below is in your lab files directory
for use during lab exercises.
It is called: testregexp
We will not worry about exactly how the
program works for now, just use it as a tool
when needed during lab.

#!/usr/local/bin/perl
while (<>){ # Get a line of input
 if (/[0-9]*/){ # regexp test, edit this regexp
as needed
 print; # print the line if it matched
 print(’ ’ x length($‘) . ’^’ x length($&));#
show match
 if (length($&) == 0) {
 print ” Zero length match” ;
 }
 print ” \n” ; # Add a newline
} } # go back for the next line of
input

Above we have the same regexp as used on the
previous page, below is some sample input to
the program:

123 test
test 123
12 34 56

And the resultant output:

123 test
^^^
test 123

Zero length match
12 34 56
^^

Note that we are only showing the first match
on each line.
Input lines that have no match will not be
printed.

Extensions

Extended Regular Expression Meta-charactrers

The POSIX specification for ERE’s has the
following additional quantifiers (with
meanings listed):

? Zero or one, same meaning as {0,1}
+ One or more, same meaning as {1,}

It also adds the alternation operator, which
uses the following symbol:

| Alternation

Alternation is very useful to supply a list of
possible matches:

/error|Error|Warning/

As mentioned, the real power of regexps comes
from the interactions of the many
metacharacters.
What lines of a file do you suppose this would
print:

egrep ’error|warning: [0-9]+’

There is precedence in metacharacters, that
is, which characters are interpreted first can
change the meaning of an expression. The
alternation character has very low precedence,
meaning it is interpreted later than most
characters:

$ grep -E ’^error|warning’
error
error
was an error
was a warning
was a warning

Note that the search was for ” error at the
beginning of a line, or, warning anywhere” .

Extended Regular Expression Meta-charactrers

Using grouping, we can make this work as
desired:

$ grep -E ’^(error|warning)’

Here is a more complex example:

/(error|warning):? [0-9]+/

What does that read in english?
We will address precedence in detail later.

There are often multiple ways to write the
same thing:

/[eE]rror/ /(e|E)ror/

Note that alternation and character classes
are NOT the same, the character class will
never match more, or less than one character.
When matching only one character, it is best
to use character classes, when you want to
match any one of multiple character strings,
you must use alternation (if the tool supports
it).

Remember that DFA engines match the longest
match (greedy):

% awk ’{gsub(/(a|abba)/,” X”);print}’
abba
X

But NFA engines do not (though they should
under POSIX):

% perl -pe ’s/(a|abba)/X/g;’
abba
Xbba

More Anchors

Most of the more powerful commands have some
additional anchors, usually with meanings that
make it easier to define ” words” of text.
If we needed an expression that: ” the string
error only as a word” , we would need a way to
say that the e must be preceeded by a
beginning of word location, and the last r
must be followed by an end of word location.
Remember that anchors match a position only,
they never match any characters (they are a
zero length required match).
The characters available varies by tools, but
are typically either:
Vi, newer egrep, vi, emacs:

\< Beginning of word location
\> End of word location

or:
Perl, JavaScript, Tcl, emacs:

\b Boundary between word, and non-word
characters

\B No boundary at this location

The meanings of these two anchor types are
almost identical, except one differentiates
between beginning and end, the other is a
generic ” word edge” anchor.
These anchors mark the places where there is a
change from alphanumerics, to non-
alphanumerics.
For example, how many of these anchor
locations are there in the string?:

\b ___
\< ___
\> ___

wilbur:Hy2K5ij:124.23 ” there was a” ;:(CELL 4)

More Anchors

Taking an example from the last chapter, when
looking for error, we also matched terror. We
could try to get just the word error with
something like this:

/(^|[])error([]|$)/

Which would catch only two of the following,
so we need to do better:

there was an error
error was there
there was an error?

Using the word anchors, we could use either of
the below to catch all three lines above (and
most other situations of the word error):

/\<error\>/ /\berror\b/

The regexp on the left would work in vi. In
Perl we use the one on the right.

Most tools definitions of ” word” begin and
end with a transition from [a-zA-Z0-9]
characters to [^a-zA-Z0-9], or the
end/beginning of the string/line (remember the
character sets for word, and non-word can be
abbreviated as \w and \W in some tools).
Note that some tools also include the
underscore as a member of the set of word
characters (perl and some versions of awk and
sed).
Tools using the Perl regexp engine also take
anchors like:

\A beginning of string

\Z end of string

\G location of previous match (or position in
string)

Precedence

The order of precedence for these
metacharacters is as follows, listed from high
to low:

() parenthesis
[] . single character matches
* + ? {n,m} quantifiers
^ $ \b \< \> anchors
abc literal concatenation
| alternation

Read precedence charts using the axiom of
” lower operators can be applied to higher
precedence operators” . For example,
quantifiers can be applied to single character
matches, or parenthesis (sub expressions in
parenthesis):

/” .+” / # Match one or more characters
in quotes
/(\d+\s+){2,}/ # Match 2 or more ” sets” of digits
followed

 # by whitespace

Below we use parenthesis to override default
precedence:

/^a|b/ # Match a at beginning, or b
anywhere
/^(a|b)/ # Match a or b at beginning
/file a|b/ # Match ” file a” or b
/file (a|b)/ # Match ” file a” or ” file b”
/file [ab]/# Match ” file a” or ” file b”

Backreferences

As mentioned, parenthesis can be used for
grouping.
The purpose of grouping can be either to
change precedence:

/^(error|warning)/

or to control the scope of quantifiers:

/error(code)?: \d+/

Note that in BRE tools, the parenthesis must
often be escaped (for example in most grep, vi
and emacs versions):

/^\(error|warning\):? [0-9][0-9]*/

Another purpose of parenthesis is to force the
regexp engine to ” remember” what was matched
by the sub-expression in parenthesis. This is
called backreferencing or tagging because the
” memorized” text can be referred to later in
the regexp.
Most tools use an escaped number to recall
backreferenced text, the number being which
set of parens, counted from the left. (\1 \2
etc..)

Backreferences

Backreferencing can be useful for finding
repeating sequences of text:

/\b([a-z]+)[]+\1/

This reads ” a word boundary, followed by a
lower case word, one or more spaces, and the
same word again (the boundary making it a
word)” . It would match the following:

and the the cat
she saw that that was correct

Due to the boundaries, it would not match in
the following data:

the thesis was
blithe the move was

It can also be useful for data validation:

/\w+(:|)\d+\1\w+/

Specific data cases:

/x=(\d+);y=\1;/

What is a ” valid” string (is matched by the
expression above)?
What invalid strings are we checking for in
the above?
Amusingly, grep, emacs, perl, tcl, and vi can
perform back references, but egrep cannot.
Some tools will only remember up to 9, some
tools will remember as many as you care to
spend the cpu time on.
Some tools allow you to act on, or return the
’tagged’ matches separately.

Addressing type matches

It is often important to write explicit
regexps when you are performing a binary
match. For example, /May/ would match in both
lines below:

Those five days in May
Maybe he can catch a ball

When performing addressing matches, it is
always important to write explicit regexps:
It is easy to match what you want, it is
hard to match only what you want, and
exactly the scope of what you want.

An addressing match allows you to act on
exactly the characters matched by the regexp.
In some cases it allows you to act on all
matches in a string/line.
In various tools, using various constructs,
the matched substring:
Might be returned by the match
Might have its character location/length
returned
Might be the target of a text operators
result (substitute operations)

In some tools the matched substring is
assigned into a special variable for later
access. We call this a side-effect of the
match. Some tools return only a true/false
(binary) from the match, then make all the
information above available through special
variables, or methods.
When performing binary match operations, say
to print all matching lines:

grep -E ’/(error|warning):? [0-9]+/’ logfile

The + in the regexp was not needed. If there
was one digit, print the line, it does not
matter that there were more digits following,
as we are acting on the entire line.
In the case of an addressing match, we would
need the +, as we want all the digits to be
matched so we can act on the entire matched
substring, but not necessarily the entire
string searched.

Regexp Substitutes

A common use for addressing matches is in a
substitute operation. The operator used to
invoke a substitute varies by command, but the
simplest syntax, and most common construction
is:

s/regexp/replacement-string/flag-options

This s operator is found in commands like vi,
ed, ex, perl , and sed.
Note that the replacement string allows
various metacharacters, depending on the
command. Typically the replacement string is
an interpreted string, and thus can contain
variables, character abbreviations (\t \n ...)
and other command specific string escapes,
such as perls \u \U \l \L \E \Q operators.
The tools listed above all allow
backreferences to be used in the replacement
string, but perl uses $n instead of \n for
backreferences.
All these tools also allow the use of $& in
the replacement string to print the entire
substring matched by the regexp.
The flag options can modify either the regexp,
or the replacement string. For example:
In sed the following flags are valid:

g global, perform all substitutions in a
string
n 1 to 512 meaning which match to substitute
w write string after substitution to a file

In perl the following flags are valid:

g global, perform all substitutions in a
string
i make the regexp case insensitive

m make the regexp act on multi-line string
e evaluate replacement string as an expression
there are also several others to be discussed
later

In ex and vi, the following flags are valid:

g global, perform all substitutions in a
string
p print lines with substitutes
c prompt for confirmation before each
substitute

Regexp Substitutes

Another form of regexp based substitute is
found in programming languages, which
typically use function calls.
For example, awk and python use:

sub(regexp,replacement,search-string)
gsub(regexp,replacement,search-string)

JavaScript uses:

search-string.replace(regexp)

Tcl uses:

regsub [options] regexp target replacement
destination

Emacs uses the following interactive commands:

replace-regexp
query-replace-regexp

Match Returns

Most command line tools (like ex, vi, sed,
grep, egrep) do not allow you to act directly
on the text matched by a regexp, except by
using a substitute operation.
Most programming tools do allow you to access
the the matched text in some way. It might be
assigned into a special variable, returned
from a special method or function, or it might
be returned by the match operation itself.
Documentation of the regexp utility of that
language should list which of these are
available, and how to use them.
Perl provides multiple ways to access the
exact substring of a match, so we will use it
as an example.

Special variables:

In perl, there are several variables set after
every match operation:

$string = ’before the match after’;
$string =~ /th(.*)ch/;
print ” $‘ \n$& \n$’ \n$1 \n” ;

The three variables named ‘ & and ’ are
components of the searched string ($string in
example above) representing the match (&) the
characters before the match (‘), and the
characters after the matched substring (’).
The sample code above results in the output
below:

before
the match
 after
e mat

Note that the tagged section of the match (in
parenthesis) gets moved into the variable $1,
with subsequent tagged sections going into $2,
$3, etc...
These variables allow for many different
manipulations. For example, we can use the
length of the $‘ variable to locate the
position of the matched string for substring
manipulation:

$string=’...variable=ABC;known=123’;
$string =~ /known/;
$needed=substr($string,length($‘)-4,3);
print(” $needed\n” , length($‘) , ” \n”);

Results in:

ABC
16

Another method to access the same data as
above (using a backreference):

$string=’...variable=ABC;known=123’;
$string =~ /(...);known/; # tag the characters
print ” $1\n” ; # use special variable
for access

Other tools have similar capabilities, for
example, tcl provides a Match variable that
gives begin and end locations of the match
(when -indices is used).

Returned substring

Perl has a way to let you return
backreferenced substrings from the match
operator.

$string = ’before the match after’;
($match) = ($string =~ /th(.*)ch/);# $match gets
” e mat”
print ” $& \n$1 \n$match\n” ; # $1 is also ” e
mat”

Beware that backrefernces are only returned
when the match is used in an array context (a
very Perlish thing):

$string = ’once upon a Jul 1 1997’;
$match = ($string =~ /((\w{3}) (\d{1,2})
(\d{2,4}))/);
$match gets ” 1” since match was ” successful”
@date = ($string =~ /((\w{3}) (\d{1,2})
(\d{2,4}))/);
Date array gets list of ” Jul 1 1997” , ” Jul” ,
” 1” , ” 1997”

Perl also allows you to perform a global
match, which can return all matches at once
(in array context):

$string = ” 1247 dsec 14 brof 237” ;
@allnums=($string=~/(\d+)/g); # array context
print ” @allnums\n” ; # prints 1247 14 237

How OO does it

In the languages that support regexps in an
Object Oriented manner, a regexp is typically
” compiled” , or created as an Object, then
” applied” to strings. In these languages, a
variable within the object is often set to the
matched substring. If not, a method is
provided that returns the matched string.
Here is an example from JavaScript:

re=/(\w+)=(\w+)/;
document.links[1]=” http://www.famece.com/cgi-
bin/request.cgi?SUBJ=UNIX&level=det” ;
data=document.links[1].match(re);
re=/(\w+)=(\w+)/g;
data2=document.links[1].match(re);

After the above, the following are true:

data[0] = ’SUBJ=UNX’ data2[0] = ’SUBJ=UNX’
data[1] = ’SUBJ’ data2[1] = ’level=det’
data[2] = ’UNIX’

We could have written this in a more OO manner
using the following:

re = new RegExp(” (\w+)=(\w+)” , ” ig”);
document.links[1]=” http://www.famece.com/cgi-
bin/request.cgi?SUBJ=UNIX&level=det” ;
data = re.exec(document.links[1]);

Performance

The book ” Mastering Regular Expressions” by
Jeffrey E.F. Friedl (O’Reilly) does a great
job with covering these issues (chapter 5).
An (apparently) simple change from:

/($DOUBLE|$SINGLE)|$COMMENT|$COMMENT2/

to

/($DOUBLE|$SINGLE|$OTHER)|$COMMENT|$COMMENT2/

reduced the run time against a 60K string from
37 seconds to 2.9 seconds by adding in a
possible match for things that would prevent
matching one of the comment alternatives.

