VERĪTAS

**BUSINESS WITHOUT INTERRUPTION**"

### Improving Oracle Database Performance

Robert Spurzem Product Marketing Manager VERITAS Software Corporation Mountain View, CA





- Challenges of Storage Management in the Internet World
- Storage Management for Oracle Databases in the Internet World
  - Overview
  - Building a Foundation for Performance
  - Replication for Off-Host Processing and Disaster Recovery
  - Clustering for Continuous Data Availability
  - Efficient Data Management for Data Protection
  - Summary



### **Evolution of the Application Market**

|                    | The '70s:<br>Basic Accounting | 5 | The '90s:<br>Data Analysis<br>Analysis of |                  | What's next? |  |
|--------------------|-------------------------------|---|-------------------------------------------|------------------|--------------|--|
|                    | Automating                    |   | business-crit                             | ICAL             | requirements |  |
|                    | manual                        |   | storage                                   |                  | will grow    |  |
|                    | bookkeeping                   |   | requirements                              |                  | "ten-fold    |  |
| Data               | tasks.                        |   | grow "ten-fol                             | d                | again"!      |  |
| E                  |                               |   | again"!                                   |                  |              |  |
| Data               | The '80s: •                   |   |                                           | The '90s/'00s:   |              |  |
| Protec Entern      | orise Applications            |   |                                           | WEB              |              |  |
| Information on     |                               |   |                                           | Proliferation of |              |  |
| every asset of the |                               |   |                                           | multimedia data. |              |  |
|                    | enterprise                    |   |                                           | Storage          |              |  |
|                    | operation.                    |   |                                           | requirements     |              |  |
| TOCTO              | Storage                       |   |                                           | grow "ten-iol    | La           |  |
| requi              | LIEMETICS GLOW                |   |                                           | yet ayaııı":     |              |  |





### Challenges in the Internet World

- Every internet user needs high performance access to information
- Volume of data generated by each new major web application has expanded exponentially

 Need to be assured that data is always available - 24x365



### **Storage Fuels Applications** - Databases Drive them









### Storage Management Objectives

Configuring and maintaining storage resources to:

### Maximize I/O performance

- Is I/O done in an optimal manner for my application?
- Is my storage configured optimally?
- Minimize loss of access to data: "no time for down-time"
- Meet service level agreements
- Increase overall system reliability



### **Overview of Storage Management Components**







# Storage Is the Foundation of a Database System

#### **Database functions to:**

• Store, update, and retrieve structured information

#### Good storage design helps:

Meets rigorous performance and availability requirements of production databases

Data Access Data Protection



**BUSINESS WITHOUT INTERRUPTION**"

### Building a Foundation for Performance



### **Performance Can Be Everything**

#### Need to meet service level agreements

- Elegant designs can fail in production because of performance problems
- Administrators spend hours monitoring and balancing I/O loads to achieve better performance



### What Makes up the Foundation?

#### Volume management

- Move data between devices for load balancing
- Reorganize storage layout
- Dynamic multi-pathing
- Hot sparing
- RAID functionality
- Fast recovery mechanisms

#### File system

- Journaling / fast recovery, extent-based
- Online growth & shrinkage
- Online reorganization / de-fragmentation

#### Perform all disk & file management operations while applications are running

Pata

Data

Protection

### Logical Volumes As a Highly Performing Platform for Databases

#### Resolving hot spots can be:

- Time and resource consuming
- Analysis not guaranteed to work
  - Past behavior doesn't predict future behavior
- May not be possible

Data

 Creating logical volumes of physical disks can balance I/O loads

Through data striping





DURINESS WITHOUT INTERLETION

Data

**RAID - 1 or Mirroring: Exact duplicate volumes. Full Redundancy.** 

**RAID - 0 or Striping: Stripes data across all drives. No Redundancy., but helps to balance I/O load** 

**RAID - 0 + 1 or Mirrored Stripes: Stripes** data across all drives. Mirror with another **RAID 0** column. Full Redundancy with Full Performance.

RAID - 1 + 0 or Striped Mirrors: Improves performance by parallel data transfer with benefits of mirroring and enhanced redundancy

RAID - 5: Stripes data across all drives with parity. Limited Redundancy. Doesn't require duplicate storage investment.

#### Volume Manager Increases Performance Through Proper Storage Configuration

#### **RAID** functionality without specialized hardware

- Minimization of I/O bottlenecks
- Maximum throughput & bandwidth of I/O

#### Online Relayout



- Enables volume growth by adding columns
  - Incremental growth
- Ability to convert a RAID5 volume to a striped volume ONLINE
- Allows ONLINE changing of stripe unit size

### File Systems As a Highly Performing Platform for Databases

 Best of both worlds: raw I/O performance and ease of file system administration



Access Data Protection

Data

TAS

HOUT INTERAUPTION



Acce

### **Journaled File Systems**

Journaled File Systems if not closed properly simply check the status of all blocks that were previously being updated. This is known via the entries in the intent log. A journaled file system's fsck, or file system check, is totally dependent on the amount of

entries in the

journal.





### Increased Performance for Large I/O

- Extent-based allocation can accelerate I/O by increasing the I/O transfer size in the File System
- Optimal for multimedia files commonly found on the Internet





### Raw Device Performance Quick I/O for Databases

- Break-through VERITAS File System interface technology
- Presents regular VERITAS File System files to Oracle as raw character devices



- Allows parallel updates to database files for increased throughput
- Takes advantage of kernel async I/O (Solaris' KAIO)
- Oracle handles locking for data integrity
- Eliminates traditional UNIX file system overhead



### **Quick I/O Features**

#### Direct (non-buffered I/O)

- Buffered reads in case of Cached Quick I/O
- Bypasses the file system layer's locking
- Supports asynchronous I/O
- Easy Online Management to turn Cache on/off for Quick I/O files
- Multiple Database instances can co-exist with selective caching for specific datafiles
- Minimum changes to existing configuration
- No change to the OS or Database version levels





BUSINESS WITHOUT INTERRUPTION"

### Replication for Off-host Processing and Disaster Recovery







Acces

▼ 1 - Site Disaster Recovery

2 - Information Distribution

3 - Off-host processing or backup

 4 - Wide-Area HA (migration) (Clustering section)



Acces

### **Disaster Recovery**

- Replicate critical information to a disaster-safe location
- Replicate data over WAN
- Current data at remote hot site
- Replicate entire environment (not just logs)
- Data ALWAYS consistent (integrity)





### **Information Distribution**

#### Efficiently keep web data synchronized

- One to many (one source, many targets)
- Keep multiple Web or information servers totally in sync
- User controllable bandwidth usage







### Off-host Processing Block-Level Replication

- Off-load processing of maintenance tasks to secondary server
- Backups or any decision support can then be performed on data on second system
- Low CPU and network usage due to only replicating changed data blocks







**BUSINESS WITHOUT INTERRUPTION**"

### Clustering for Continuous Data Availability







### **Clusters Help Solve E-business Problems**

- Take over for failed server or crashed application
  - Load balance among servers

Data

Data

- Connect clients to alternate data paths if network links fail
- Recovery from site disasters
- Help meet service level agreements







### Wide Area Failover/migration

- Monitor and control of multi-heterogeneous clusters at multiple sites
- Disaster recovery between sites (data replicated in realtime)
- Ability to trigger action on a cluster based on events on other clusters





**BUSINESS WITHOUT INTERRUPTION**"

### Efficient Data Management for Data Protection



### **Backup Policies for E-Business**

- When to Back Data Up
  - Windows shrinking, data growing

### What Data to Back Up

Seldom vs. frequently changing data

#### Where to Back Data Up

local, remote, SAN

Data

 Optimize Flexibility, Reliability, and Utilization of Resources to Better Meet Service Level Agreements



### Protection Techniques -Backup & Restore

 Can use recovery manager as the interface to many backup and restore techniques

### Online backup

- Requires efficient creation of consistent, pointin-time image (snapshot)
  - To backup to other media (disk or tape) & discard
  - To maintain as an online copy than can be restored (rollback)

#### Incremental backup

- Only copy data that has changed
- Fast restoration of a consistent, point-intime image



### **Snapshot Technologies**

#### Snapshot = instant-in-time, online image of a database

• Used for online backup and rollback

### Snapshot technologies

- Mirror break-off
  - High storage costs (= size of database)
  - Easy to access mirror from other server
  - Examples: EMC Symmetrix, VxVM volume manager (future)
- Copy-on-write
  - Low storage costs (= size of changed data)
  - Access by other server through cluster file system (future)
  - Example: VxFS file system storage checkpoints













### VxFS Storage Checkpoint & Storage Rollback



Instantaneous recovery from logical data corruption

### **Restore Techniques**

#### Full restore from tape backup

- Very slow restore
- Low frequency backup -> long log replay

### Changed data restore

- From incremental backup on disk or tape
  - Slow, but protects against media failures
- From broken-off mirror

Data

- Instantaneous, but expensive in storage costs
- Resynchronization in background- resource intensive
- Rollback from a snapshot
  - Fast recovery from logical data corruption
- Restore to more recent image means shorter log replay



## **Storage Management**

 Integration of Data Management, Clustering & Replication, Disk & File Management, Databases, and Hardware Subsystems to Increase

Performance

Availability

Manageability

of Oracle Databases for E-Business