
Flexible Capping and Usage Control W ith
HP-UX W orkload M anager

Isom Crawford
Steve Landherr
Cliff M cCarthy

Infrastructure, Solutions, and Partners Organization

Hewlett-Packard Com pany

3000 W aterview Parkway

Richardson, TX 75080

972 497 4000

wlm feedback@ rsn.hp.com

M ay 2001

HP-UX W orkload
M anager

W ith HP-UX W LM ,
system adm inistrators
can provide

•Autom atic resource allocation
based on actual application
perform ance

• Consistent perform ance
levels m aintained
autom atically

• Prioritization of workloads

•Ability to directly address
service level objectives
(SLOs)

Presentation
Overview

How to use new HP-UX
W LM features

•Usage Controls

•Constraining and distributing
resources

•W eighting resource
allocations

•Flexible capping

Service Level
Objectives

HP-UX W LM addresses
system resources to
m eet SLOs

• Often derived from Service
Level Agreem ents (SLAs)

• Exam ples are perform ance,
availability, and recovery

• Various goal definitions

– M axim um transaction tim e

– CPU usage

– Tim e variant workloads

Sum m ary of
SLO Syntax

short description

SLO specification requires at least two
structures in the W LM configuration file.

•prm structure
– Only specified once, used with all slo
structures.

– Specifies “global” param eters.
– Exam ple, gm axcpu specifies
m axim um CPU utilization by group.

• slo structure specifications
– Priority, from 1 (highest) to 2 m illion.
– M inim um CPU request is an integer
from 0 to 100 indicating the absolute
m inim um CPU entitlem ent for this SLO .

– M axim um CPU request defined
analogous to m inim um .

– Entity identifies the workgroup
(specified in the prm structure) that this
SLO is associated with. Note a
workgroup can have m ultiple SLO s.

– SLO s m ay or m ay not have a goal
associated with them .

prm {
 gmaxcpu= group1:max, … ;
}
slo sloname {
 pri= priority;
 mincpu= min_cpu_request;
 maxcpu= max_cpu_request;
 entity= PRM group group_name;
 [goal= goal_expression;
}

Usage Goals

short description

Usage goals allow W LM
to adjust a workload’s
resource entitlem ents

•M ore efficiently m atch the
workload’s actual CPU usage

•Allocate CPU shares to a
group

– M ore when activity is high

– Less when activity is low

Usage Goal Syntax
Specified as part of a slo
structure in the W LM
configuration file

short description

usage _CPU [low_eff [high_eff]];

W LM keeps the efficiency percentage above low_eff and
below high_eff. If high_eff is not specified then its value
defaults to low_eff. If neither low_eff or high_eff are specified
then they default to 50 and 75, respectively.

Usage Control Exam ple

W ant those in PRM group A
to have high priority and
usage should always be

around 80%

short description

Slo A_usage {
 entity = PRM group A;
 pri = 1;
 mincpu=0;
 maxcpu=100;
 goal = usage _CPU 80;
}

Usage Control Exam ple

slo A_usage {
 entity = PRM group A;
 pri = 1;
 mincpu=0;
 maxcpu=100;
 goal = usage _CPU 80;
}

W LM40%

A

Entitlem ent for
group A = 40%

Actual CPU
utilization = 36%

Usage = 36% / 40% = 90%

45%A

New entitlem ent
for group A = 45%

Actual CPU
utilization = 36%

Usage = 36% / 45% = 80%

Capping Utilization

short description

CPU utilization can be
lim ited in different ways with
W LM

• Any individual SLO can have
constraints

– mincpu/maxcpu required
keywords in slo structure

• Entire groups m ay be lim ited

– gmincpu/gmaxcpu optional
keywords in prm structure

Utilization Capping
Exam ple

Lim iting CPU utilization in the
prm structure

prm {
 groups= OTHERS:1,
 A:2,
 B:3,
 C:4;
 gmaxcpu= OTHERS:10,
 A:40,
 B:50,
 C:50;
}

Distributing Excess
Shares

By default, any CPU shares
that rem ain after all SLOs are
m et will be given to the
OTHERS group.

To distribute excess shares
fairly am ong all groups set the
distribute_excess keyword
to 1 (TRUE) in the tune
structure:

tune {
 distribute_excess= 1;
}

W eighting Resource
Allocation

W LM provides control in
how CPU shares are
distributed through use of
the weight keyword.

• W hen there are insufficient
resources to satisfy all SLOs
at a given priority level.

• W henever excess shares are
available and the
distribute_excess
keyword is set.

W eight Syntax

The weight keyword is
used in the prm structure:

prm {

…

weight= A:50,

 B:30,

 C:20;

}

W eight Exam ple
W LM will allocate excess shares to
all groups according to weight up to
the gmaxcpu setting.

50

50

40

gm axcpu

24 (1.2)1.002020C

36 (1.2)1.103330B

40 (0.8)0.723650A

Result
(Ratio)

Entitlem ent/
W eight Ratio

Entitlem entW eightGroup

W LM attem pts to equalize the entitlem ent/weight ratio. After group A’s
entitlem ent m atches its gmaxcpu setting, the rem aining (60) shares will be
distributed to B and C according to their weights.

Flexible Capping:
Putting It All Together

Flexible Capping W ith
HP-UX W LM

PRM can constrain all groups
or share am ong all groups.

In m any cases, it is desirable
to distribute excess resources
to som e groups but not all.

W LM provides the ability to
achieve “flexible” capping
through a com bination of
functionality:

•Usage control

•Capping utilization

•Distributing excess shares

•W eighted resource allocation

Flexible Capping
Advantages

M ore generally, flexible
capping with HP-UX W LM has
the following advantages:

• Ability to allocate resources
to workloads according to their
needs without explicitly
providing perform ance m etric
data to W LM .

• Superior to traditional system
schedulers in that som e
workloads can be lim ited in
their resource consum ption
while others m ay share
resources depending on how
busy they are.

Flexible Capping
Exam ple

Consider a scenario in which
three groups fund a server:

•Group A

– Funding 50%

– W ell behaved workloads

•Group B

– Funding 30%

– Also has well behaved workloads

•Group C

– Funding 20%

– W ant dedicated availability

– W orkload runs continuously, will
consum e all available resources

G roup C gets exactly 20%

G roups A and B can use up to 80%

prm {
 groups= A:2, B:3, C:4;
 gmincpu= C:20;
 gmaxcpu= A:80, B:80, C:20;
 weight = A:50, B:30, C:20;
}
slo A_usage {
 entity= PRM group A;
 pri=1; mincpu=0; maxcpu=100;
 goal = usage _CPU;
}
slo B_usage {
 entity= PRM group B;
 pri=1; mincpu=0; maxcpu=100;
 goal = usage _CPU;
}
slo C_usage {
 entity= PRM group C;
 pri=1; mincpu=0; maxcpu=100;
}
tune
{
 distribute_excess = 1;
}

W eight used to divide m achine
based on funding

SLO s for groups A and B defined
with usage goals, enabling them to
utilize excess shares.

No goal for group C’s SLO since
its utilization is static (20%).

Setting distribute_excess
enables W LM to distribute excess
shares to m ultiple groups.

Sum m ary

New features in HP-UX
W orkload M anager
enable better
perform ance and service
level m anagem ent:

•Usage Controls

•Constraining and distributing
resources

•W eighting resource
allocations

•Flexible capping

M ore Inform ation

Check out the HP-UX
W LM website:

http://www.hp.com /go/wlm /

Send questions to

wlm feedback@ rsn.hp.com

