Flexible Capping and Usage Control With
HP-UX Workload Manager

Isom Crawford
Steve Landherr
Cliff McCarthy

Infrastructure, Solutions, and Partners Organization
Hewlett-Packard Company
3000 Waterview Parkway
Richardson, TX 75080
972 497 4000

wlmfeedback@rsn.hp.com

May 2001

HP-UX Workload

Manager

With HP-UX WLM,
system administrators
can provide

«Automatic resource allocation
based on actual application
performance

» Consistent performance
levels maintained
automatically

* Prioritization of workloads

*Ability to directly address
service level objectives
(SLOs)

Presentation

Overview

How to use new HP-UX
WLM features

sUsage Controls

«Constraining and distributing
resources

*\Weighting resource
allocations

*Flexible capping

Service Level

Objectives

HP-UX WLM addresses
system resources to
meet SLOs

» Often derived from Service
Level Agreements (SLAS)

« Examples are performance,
availability, and recovery

 Various goal definitions

— Maximum transaction time
— CPU usage
— Time variant workloads

SLO specification requires at least two
structures in the WLM configuration file.

* pr mstructure
— Only specified once, used with all slo
structures.
— Specifies “global” parameters.
— Example, gmaxcpu specifies
maximum CPU utilization by group.

Summary of

SLO Syntax

* sl o structure specifications

— Priority, from 1 (highest) to 2 million.
— Minimum CPU request is an integer

prm { from O to 100 indicating the absolute
gmaxcpu= groupl: max, ...; minimum CPU entitlement for this SLO.

} — Maximum CPU request defined

sl o sl onane { analogous to minimum.

: : : : — Entity identifies the workgroup
p.” - pr_l O.” ty; _ (specified in the pr mstructure) that this
M NCpu= mn_cpu_request; SLO is associated with. Note a
Maxcpu= max_cpu_request; workgroup can have multiple SLOs.
entity= PRM group group_narne; — SLOs may or may not have a goal

[goal = goal _expression; associated with them.

}

Usage Goals

Usage goals allow WLM
to adjust a workload’s
resource entitlements

*More efficiently match the
workload’s actual CPU usage

*Allocate CPU shares to a
group

— More when activity is high
— Less when activity is low

Specified as part of a slo
Usage Goal Syntax structure in the WLM

configuration file

usage CPU [|low eff [high eff]];

WLM keeps the efficiency percentage above low_eff and
below high_eff. If high_eff is not specified then its value
defaults to low_eff. If neither low_eff or high_eff are specified
then they default to 50 and 75, respectively.

Want those in PRM group A

to have high priority and
Usage Control Example

usage should always be
around 80%

Sl o A usage {
entity = PRM group A
pri = 1;
m ncpu=0;
maxcpu=100;
goal = usage CPU 80;

sl o A usage {
entity = PRM group A
pri = 1;
m ncpu=0;

Usage Control Example

maxcpu=100;
goal = usage CPU 80;

Entitlement for Actual CPU New entitlement Actual CPU
group A = 40% utilization = 36% for group A = 45% utilization = 36%
WLM

\ \
Usage = 36% / 40% = 90% Usage = 36% / 45

CPU utilization can be

Capping Utilization limited in different ways with
WLM

* Any individual SLO can have
constraints

— m ncpu/ maxcpu required
keywords in slo structure

» Entire groups may be limited

— gm ncpu/ gnaxcpu optional
keywords in prm structure

Utilization Capping

Example

Limiting CPU utilization in the
prm structure

prm {
groups= OTHERS: 1,
A 2,
B: 3,
C 4;
gmaxcpu= OTHERS: 10,
A: 40,
B: 50,
C. 50;

Distributing Excess

Shares

By default, any CPU shares
that remain after all SLOs are
met will be given to the
OTHERS group.

To distribute excess shares
fairly among all groups set the
di stri but e_excess keyword

to 1 (TRUE) in the tune
structure:

tune {
di stri bute_excess= 1;
}

Weighting Resource

Allocation

WLM provides control in
how CPU shares are

distributed through use of
the wei ght keyword.

* When there are insufficient
resources to satisfy all SLOs
at a given priority level.

* Whenever excess shares are
available and the
di stri bute _excess

keyword is set.

The wei ght keyword is
used in the prm structure:

prm {

Weight Syntax

wei ght = A: 50,
B: 30,
C. 20;

WLM will allocate excess shares to

Weight Example all groups according to weight up to
the gnaxcpu setting.

Group Weight Entitlement Entitlement/ | gmaxcpu Result
Weight Ratio (Ratio)

A 50 36 0.72 40 40 (0.8)

B 30 33 1.10 50 36 (1.2)

C 20 20 1.00 50 24 (1.2)

WLM attempts to equalize the entitlement/weight ratio. After group A’s
entitlement matches its gnaxcpu setting, the remaining (60) shares will be

distributed to B and C according to their weights.

Flexible Capping:
Putting It All Together

Flexible Capping With

HP-UX WLM

PRM can constrain all groups
or share among all groups.

In many cases, it is desirable
to distribute excess resources
to some groups but not all.

WLM provides the ability to
achieve “flexible” capping
through a combination of
functionality:

*Usage control
«Capping utilization
Distributing excess shares

*\Weighted resource allocation

Flexible Capping

Advantages

More generally, flexible
capping with HP-UX WLM has
the following advantages:

* Ability to allocate resources
to workloads according to their
needs without explicitly
providing performance metric
data to WLM.

« Superior to traditional system
schedulers in that some
workloads can be limited in
their resource consumption
while others may share
resources depending on how
busy they are.

Flexible Capping

Example

Consider a scenario in which
three groups fund a server:

Group A

— Funding 50%
— Well behaved workloads

*Group B

— Funding 30%
— Also has well behaved workloads

*Group C

— Funding 20%
— Want dedicated availability

— Workload runs continuously, will
consume all available resources

prm {
groups= A 2, B:3, C 4;
gm ncpu= C: 20;
gmaxcpu= A: 80, B:80, C 20;
wei ght = A: 50, B:30, C 20;
}
sl o A usage {
entity= PRM group A
pri=1; m ncpu=0; maxcpu=100;
goal = usage _CPU;
}
sl o B usage {
entity= PRM group B;
pri=1; m ncpu=0; nmaxcpu=100:
goal = usage _CPU;
}
sl o C usage {
entity= PRM group C
pri=1;, m ncpu=0; nmaxcpu=100;
}

tune

{

di stri bute_excess = 1;

}

Group C gets exactly 20%

Groups A and B can use up to 80%

Weight used to divide machine
based on funding

SLOs for groups A and B defined
with usage goals, enabling them to
utilize excess shares.

No goal for group C’'s SLO since
its utilization is static (20%).

Setting di stri bute_excess
enables WLM to distribute excess
shares to multiple groups.

Summary

New features in HP-UX
Workload Manager
enable better
performance and service
level management:

*Usage Controls

«Constraining and distributing
resources

*\Weighting resource
allocations

*Flexible capping

Check out the HP-UX
WLM website:

http://www.hp.com/go/wim/

More Information

Send guestions to

wimfeedback@rsn.hp.com

