Resource Partitioning Using HP PRM

ScottRhine M ike Carl Hew Lett-Packard 3000 W aterview Pkwy Richardson, Tx. 75083 Voice 972-497-4000 Fax 972-497-3123 m carl@rsn hp.com

HP-UX Process Resource Manager (PRM)

The Problem : Competition for Resources

The Solution: PRM

W hat is PRM?

PRM is a partitioning tool

- PRM controls:
 - CPU
 - Realmemory
 - Disk bandwidth

How PRM W orks

- Lets YOU controlhow system resources are albcated to users and applications
- System Administratordefines:
 - Resource groups
 - Policies for putting processes into groups
 - Resource allocations for each group
- Every process on the system belongs to one of the defined resource groups
- Each resource group is assigned an entitlem entfor the resources managed by PRM
- Processes in a resource group share the group's entitlem ents
- Supports resource policies based on users and applications
- Applications do not require modification to work with PRM
- PRM configuration can be changed at any time even under bad

PRM Features

- Resource shares
- HierarchicalG roups
- M em ory resource groups
- Processor sets
- Supports capping of CPU and Memory
- Manages multiple instances of databases (Oracle, Sybase, Inform ix)
- Integrated with HP ServiceG uard and G hnceP lus
- Reporting of PRM data to other enterprise apps via SNM P
- GUI form anaging PRM configuration
 - Java-based can run on HP-UX orW indows
 - Can manage multiple PRM installations with single GUI instance
- PRM CPU controls are also available on Linux see InterW orks presentation 018 'Plug-in SchedulerPolicies for Linux" for details

The PRM CPU Advantage

Standard UNIX Scheduler

Priority is lowered as processes consume more and more CPU Each process gets equal priority

PRM Memory Management

Standard HP-UX VM

System private m em ory

PRM Memory Management

Standard HP-UX VM vs.PRM Memory Management

Psets Example Configuration

PRM group O racle Sales

PRM group O racle Financials

Example consolidation with PRM

Three applications sharing server:

- App.owners contribute 60%, 30%, and 10% to funding of server
- PRM resource entitlem ents tied to funding

How iworks:

- W hen system is fully baded, groups get60%,30%, and 10% ofCPU and M em ory resources
- Option 1: Unlimited sharing of unused resources - Entitlem ent
- Option 2:No sharing of unused resources capping

Case Study: TPCC and CPU controls

Hypothesis: PRM CPU controls can allocate critical CPU resources to match business goals

Case Study: TPCC and CPU controls

Procedure:

- Using industry standard TPCC benchmark – measure TPM on lab system
- Introduce additional CPU consumer load and repeat step 1
- Configure PRM CPU controls and resulting TPM
- Repeat step 3 with CPU capping enabled
- Repeat steps 1-4 with two database instances of TPCC

TPCC Single Database

TPCC Single Database

PRM Configuration

TPCC Multiple Databases

Case Study:Data Mining and CPU versus Memory controls

Hypothesis: CPU controls are not always sufficient to assure application performance is meeting business goals, memory controls are needed

Case Study:Data Mining and CPU versus Memory controls

Procedure:

- A benchmark of large database sorts and selects was created to simulate a data mining application
- Repeated TPCC experiment with the exception of introducing memory consumers as well as CPU consumers

Data Mining Simulation BM

Data Mining Simulation BM Multiple Databases

Database1

■ Database2

Summary

PRM enables unning multiple, m ission critical applications onasingle system

http://www.hp.com/go/pm

QUESTDNS?

Backup slides