pjw: A ““processjail warden” for HP-UX

Mark Bartelt
Center for Adanced Computing Research
California Institute of €&chnology
Pasadena, California
626 395 2522
626 584 5917 éx)
mark@caccaltech.edu

1. Introduction

Many problems in computational sciencevdtve the use of lage multiprocessor systems to run parallel
applications. Therare sgeral common methods for implementing parallel codes. example:

* MPI (see http://www-unix.mcs.anl.gnpi) is a standard which defines an API facleange of mes-
sages between cooperating processes.

» OpenMP (see http://wwwpenmp.ay) is a set of compiler diregtis and library routines for C, C++, and
Fortran, which preide shared-memory programming on SMP and ccNUMA systems.

» Some programmers prefer to code parallel applications by making calls to pthreads (Posix threads) rou-
tines directly

Regardless of the programming model used, one characteristic that all parallel applicat®imrsdoanmon

is that each of the N processes or threads does a portion of thedikallwa well-balanced application,
each process or threaswd perform 1/N of the total ark. Periodicsynchronization, either for processes
or threads toxxhange information with each other to enable a non-parallelizable portion of the code to
run, is necessary

A corollary of this is thedct that parallel codes run best when theviddal processes or threads compris-

ing a parallel job dot’need to compete with unrelated resource-hungry processes (e.g. competing for CPU
cycles on the same processor), so that when the N components of a parallel job start at the same time,
they're likely to reach their synchronization points at approximately the same Airsieigle MPI process

(or a {Posix|OpenMP} thread) which is sled davn by sharing timeslices with some other process will
delay some or all of its N-1 siblings, if tige reached a point at which components need to synchronize
with each other

2. Computing Milieu
Caltechs Center for Adanced Computing Research (http://weacrcaltech.edu) supports scientists and
engineers eraged in arious fields of research in which high-end computing plays a major role.

Among CACR’s computing resources are awb4-processor V2500 SCA sems. TheV2500 SCA is a
ccNUMA version of the V2500, supporting a maximum of four SMP nodes with a maximum 852
processors per nodgSee http://docs.hp.com/hpux/pdf/A5532-90001.pdf; alsi &pparently not online)
the *V2500 SCA HP-UX System Guide” , A5532-90003.)

One of CACR’s V2500 SCA systems is a fenode system with 16 processors per nodke other is a
two-node system with 32 processors per node.

Submission, queuing, and launching of jobs is handled by Platform CompuiBg’(Load Sharing &€il-
ity) software (see http://wwplatform.com).
3. TheGoal

A primary goal in configuring our V2500 systemasamo preide optimal performance in a multi-jobven
ronment. Br our systems’ typical job mix,versubscription (a situation in which N processes and/or

-2

threads are competing for M processors, with M < Mriably results in laver aggrgate throughput.One
typical exkample of the impact thatversubscription can v m the total runtime of parallel jobs is the fol-
lowing: Two MPI jobs (‘A”, 16-way; “B’’, 8-way) were each run on an idle nod&ve squential runs of
“A’ were follaved by five quential runs of B’’, and timings noted.Then five quential runs of both
were started simultaneoushboth on the same node, to measure the impaates§bscription.

Runtimes (vallclock seconds) for fevansecutie runs of job ‘A" :

A 106.0 105.6 105.5 105.2 105.4 (to&27.7)
Runtimes for fie consecutie uns of job ‘B’’:

B: 109.3 107.7 109.8 109.1 109.0 (tof44.9)

Runtimes for fie mnsecutre muns of both jobs, with the twsets launched simultaneouskharing the
same 16-processor node:

A: 413.5 422.0 105.2 105.3 105.0 (totbl51.0)
B: 224.2 111.7 136.6 143.3 190.7 (to206.5)

Job ‘B’’ ran more slaly by a factor of 1.5, on\gerage. Buthe impact on'‘A” w as @en more seere: At
first glance it appears that its wihown was a bit more than adtor of twp. Butin fact, the final 344.5 sec-
onds of its sequence of &ivuns occurred after the fifth run d8*’ had completed.This means that during
the time when bothA” and “B’’ were running simultaneouslthe average runtime for'A” i ncreased by
more than adctor of four And in fact, the total elapsed time necessary for Bathand “B’’ to complete
was longer than if the tev sets of five runs had been done sequentially

In short, its dear that ®oiding oversubscription should be a high-priority goal, particularly when perfor
mance is important.

4. First Attempts

At first, it appeared that a number of features/ioied by HP-UX and LSF wwuld help us to minimize the
likelihood of awersubscription. Specifically:

» LSF pravides hooks which ge a gstem administrator controlver how a pb is launchedor example,
ervironment \ariables can be set appropriately before a jainserunning, and the method by which the
job is actually started can be specified.

* HP-UX 11.10 (a special release for theldss SCA systems) prioles a commandrfpsched) which can
be used to request that a command be run in a partitatality domain’ (in the contgt of this discus-
sion, a locality domain is the same as ggital node on an SCA-connected system).

» The mpsched command also permits one to specify scheduling policies for processes and thteads.
scheduling policies determine wherevwhecreated processes and threads will run:

RR Eachnew { process|thread} will run in the xielocality domain (round-robin order).
LL A new {process|thread} will run in the least-loaded locality domain.
FILL Launchin same node as parent, until one per processor; then spilttocue.

PACKED All new {processes|threads} will run in the same node as the parent.

* HP’s implementation of MPI recognizes anvieanment \ariable (MP1I_TOPOLOGY) which is used to
specify hav mary MPI “worker” processes will run in each of a systergcality domains.In addition,
setting this ariable also preents an MPI job from starting if the number of MPI processes doesith
the number xpected (i.e. as implied by MPIOPOLOGY).

With this in mind, it seemed that a reasonable giyat®uld be to hee LSF launch jobs in the folldng

way:

 After determining which node(s) a job should run on, set@mment \ariables which specify the maxi-

mum number of threads a process is permitted to create, the node(s) on which MPI processes should run,

etc. Markthese asreadonly’ shell variables, in case a usejbb is a shell script which attempts to assign
different \alues to them.

-3-

» Launch the job usingpsched, to ensure that it will start running on the correct nodéso, set the jols
process and thread scheduling policiesAGKRED, to ensure that all mdy-created processes and threads
will run on the same node as their parent.

» Keep track, via a job-to-node mapping, of which jobsHaen launched on which nodes, and/maary
processors each job has requested, so that subsequent jobs can be placed on processors not already assigned
to some other job(s), therebyaiding oversubscription.

5. TheHarsh Reality

It turned out that this approachiled, for two reasons. Firstjespite thedct that ...

» LSF was usingmpsched to launch each job in an LSF-specified locality domain,

* MPI_TOPOLOGY was being set to force the jeli¥IPI processes to run in that same locality domain,

» mpsched's scheduling policies should ti@ ensured that all v processes and threadswid run in the
same LSF-specified locality domain,

we hare ronetheless obsexd situations in which tav16-way jobs were running on the same node (while
another node had no aaiprocesses at all), despite tlaeff that the LSF batch system had specifically tar
geted the tw jobs for diferent nodes.In other words, HP-UX occasionally decides, for untmoreasons,

to migrate processes to nodedatiént from the ones requested.

Secondly even if HP-UX had alvays behaed as it should it terms of honoring requests for process and
thread placement, there are numerous methods by which users could easily entcamvattempts to
restrict the load theplace on the systenf-or example, suppose that a user requests eight processors when
submitting a batch jobThe LSF job starter might set the MPDPOLOGY \ariable to 0,0,8,0 (which tells

MPI to run eight‘worker” processes on node 2, and none on other no@esides specifying the locality
domain on which the MPI processes will run, this setting of MBPOLOGY also preents the user from
starting ag N-way MPI job for which N does not equal 8lowever, there wuld be nothing to prent a

user from requesting eight processors, andnigathe batch job be a shell script whicbwd start tvo or

more eight-vay jobs, thereby acquiring more CPUs than Is36b information wuld indicate, and thus
oversubscribing the node on which the johsstarted.

Furthermore, the basic idea of attempting to restrict\nehay using readonly eironment \ariables is

flawed: Althoughsh andksh use the same method for markingzieonment \ariables as readonlpash

uses a dferent method, so something madkas readonly by gh script won't be recognized as such by a

bash script. Andcsh andtcsh don't support readonly esironment \ariables at all.So a user whose batch

job is a {pash|csh|tcsh} script can set enronment \ariables to alues diferent from what the LSF job

starter had set them to, thereby permitting more processes and threads to be created than the batch system
intended. Orven in if a users batch job were adhlksh} script, theenv command could be used to alter

the \alue of readonly aronment \ariables on a pezommand basis.

6. What? No Processor Sets?

One solution, if the functionality had beersi(able to us, wuld hare keen to arrange for the batch system
to use processor sets to confine a job to a defined set of CPUs, thereby ensuring that nowmatey ho
processes and threads a job might create, Waild be limited to the N processors that the user had
requested. Othesperating systems (e.g. IRIX) ptide this, it unfortunately HP-UX does notUnder
IRIX, processor setsaovk as follavs:

» A processor set is a group of CPUs to which access may be restricted.
» Each processor set has a configuration file (specifying the CPUs the processor set contains) and a hame.

» Access to a processor set (permission to uetirformation about it, permission to run a process in it) is
determined by a user{read|@ecute} access to the configuration file.

» System calls xist to create/destyoprocessor sets, run processes in one/enuocesses out of one, etc.

-4 -

It's easy to see hw processor sets could be used to guarantee that batch ¢olidniinterfere with each

other: Ifsomeone requests N processors, the batch system could create an N-cpu processor set, and launch
the job there.The uses job (and all ne& processes and threads that it might cream)levbe confined to

its processor sefail’’. Soif the user created more processes or threads than originally requested; an o
subscription situation awuld still occur but the user wuld be @ersubscribing only agjnst himself, and

thus not interfering with others’ jobs.

7. When in Doubt, Fake It!

But after a bit of thought, it becameident that gen without operating system support for processor sets, a
clever privileged daemon could prie equvaent (or at least sti€iently similar) functionality Thus was
born the "process jail varden” (pjw).

This is a program which monitors jobs launched by the LSF batch system, determines which processors
each batch job will be permitted to use, and ensures that eashpjotesses and threads run only on the
processors which the daemon has associated with the job

The three critical things which enable this torivare:

» Thepstat() system call permits a program to retgedl important information about all the processes and
lightweight processes (threads) which are currentlyeacti

» Thempctl() system call can be used to lock a process or thread to a designated CPU.

* When the LSF batch system launches a job, a renxataiteon serer (the process which causes the
users job to run) does aetpgrp() before spaning ary child processes; furthermore, mapping between a
job’s process group and its LSF job ID is straightfard: Thismeans that information returned pstat()

can be used to easily identify which processes and threads belong to which batch job

8. How it Works
The daemon akes up periodicallyand does three things:

« It collects information about all current batch jobs, all processes, and all threads, updating the information
it had the preious time it checkd. Nev batch jobs may hee keen launched, in which case all the informa-

tion about that jols processes and threads needs todibayed. Existindpatch jobs may h& caused ne
processes or threads to be created, or old ones may no laisfeinesither case, tables of {process|thread}
information need to be update8ome batch jobs which were aetibefore may hee completed.

 For ary new katch jobs which may e keen launched, a set of processors needs to be asskmezhy
old batch jobs which v@ completed since the prious time, whicheer processors had been assigned to
them need to be put back into the daemdavailable CPU’ pool.

 For each actie hatch job, load balancing is done within the group of processors assigned ta tfikifob
involves &amining the state (e.g.UN, SLEEP) of each process and thredthose which aret’actually
running needn’be locked to a processoiThose which are in alN state most of the time are lazkto a
CPU in a round-robinaishion within the group of processors assigned to the job

9. Resaults

The pjw daemon does a good job of ensuring that batch javet witerfere with each other by competing
for the same CPUslt's possible that there may be brief periods wdreubscription between the time that
the daemon goes to sleep and thet miene that it vakes up to check on thing8ut these are mgigible
compared with the total amount of time that a typical job runs.

Of course, the daemon doesfaind cart, and perhaps shouldhto arything about peopleversubscribing
against themsels, i.e. trying to use more processors thawy tiagl asked for But nov people who do this
impact only their wn job, and no longer interfere with others.

