
-- --

pjw: A ‘‘process jail warden’’ for HP-UX
Mark Bartelt

Center for Advanced Computing Research
California Institute of Technology

Pasadena, California
626 395 2522

626 584 5917 (fax)
mark@cacr.caltech.edu

1. Introduction

Many problems in computational science involve the use of large multiprocessor systems to run parallel
applications. Thereare several common methods for implementing parallel codes.For example:

• MPI (see http://www-unix.mcs.anl.gov/mpi) is a standard which defines an API for exchange of mes-
sages between cooperating processes.

• OpenMP (see http://www.openmp.org) is a set of compiler directives and library routines for C, C++, and
Fortran, which provide shared-memory programming on SMP and ccNUMA systems.

• Some programmers prefer to code parallel applications by making calls to pthreads (Posix threads) rou-
tines directly.

Regardless of the programming model used, one characteristic that all parallel applications have in common
is that each of the N processes or threads does a portion of the total work. In a well-balanced application,
each process or thread would perform 1/N of the total work. Periodicsynchronization, either for processes
or threads to exchange information with each other, or to enable a non-parallelizable portion of the code to
run, is necessary.

A corollary of this is the fact that parallel codes run best when the individual processes or threads compris-
ing a parallel job don’t need to compete with unrelated resource-hungry processes (e.g. competing for CPU
cycles on the same processor), so that when the N components of a parallel job start at the same time,
they’re likely to reach their synchronization points at approximately the same time.A single MPI process
(or a {Posix|OpenMP} thread) which is slowed down by sharing timeslices with some other process will
delay some or all of its N-1 siblings, if they’ve reached a point at which components need to synchronize
with each other.

2. Computing Milieu

Caltech’s Center for Advanced Computing Research (http://www.cacr.caltech.edu) supports scientists and
engineers engaged in various fields of research in which high-end computing plays a major role.

Among CACR’s computing resources are two 64-processor V2500 SCA servers. TheV2500 SCA is a
ccNUMA version of the V2500, supporting a maximum of four SMP nodes with a maximum of 32 PA8500
processors per node.(See http://docs.hp.com/hpux/pdf/A5532-90001.pdf; also (but apparently not online)
the ‘‘V2500 SCA HP-UX System Guide’’ , A5532-90003.)

One of CACR’s V2500 SCA systems is a four-node system with 16 processors per node.The other is a
two-node system with 32 processors per node.

Submission, queuing, and launching of jobs is handled by Platform Computing’s LSF (Load Sharing Facil-
ity) software (see http://www.platform.com).

3. The Goal

A primary goal in configuring our V2500 systems was to provide optimal performance in a multi-job envi-
ronment. For our systems’ typical job mix, oversubscription (a situation in which N processes and/or

-- --

- 2 -

threads are competing for M processors, with M < N) invariably results in lower aggregate throughput.One
typical example of the impact that oversubscription can have on the total runtime of parallel jobs is the fol-
lowing: Two MPI jobs (‘‘A’’ , 16-way; ‘‘B’ ’, 8-way) were each run on an idle node.Five sequential runs of
‘‘ A’ ’ were followed by five sequential runs of ‘‘B’ ’, and timings noted.Then five sequential runs of both
were started simultaneously, both on the same node, to measure the impact of oversubscription.

Runtimes (wallclock seconds) for five consecutive runs of job ‘‘A’’ :

A: 106.0 105.6 105.5 105.2 105.4 (total527.7)

Runtimes for five consecutive runs of job ‘‘B’ ’:

B: 109.3 107.7 109.8 109.1 109.0 (total544.9)

Runtimes for five consecutive runs of both jobs, with the two sets launched simultaneously, sharing the
same 16-processor node:

A: 413.5 422.0 105.2 105.3 105.0 (total1151.0)
B: 224.2 111.7 136.6 143.3 190.7 (total806.5)

Job ‘‘B’ ’ ran more slowly by a factor of 1.5, on average. Butthe impact on ‘‘A’’ w as even more severe: At
first glance it appears that its slowdown was a bit more than a factor of two. Butin fact, the final 344.5 sec-
onds of its sequence of five runs occurred after the fifth run of ‘‘B’ ’ had completed.This means that during
the time when both ‘‘A’’ and ‘‘B’ ’ were running simultaneously, the average runtime for ‘‘A’’ i ncreased by
more than a factor of four. And in fact, the total elapsed time necessary for both ‘‘A’’ and ‘‘B’ ’ to complete
was longer than if the two sets of five runs had been done sequentially.

In short, it’s clear that avoiding oversubscription should be a high-priority goal, particularly when perfor-
mance is important.

4. First Attempts

At first, it appeared that a number of features provided by HP-UX and LSF would help us to minimize the
likelihood of oversubscription. Specifically:

• LSF provides hooks which give a system administrator control over how a job is launched:For example,
environment variables can be set appropriately before a job begins running, and the method by which the
job is actually started can be specified.

• HP-UX 11.10 (a special release for the V-class SCA systems) provides a command (mpsched) which can
be used to request that a command be run in a particular ‘‘locality domain’’ (in the context of this discus-
sion, a locality domain is the same as a physical node on an SCA-connected system).

• The mpsched command also permits one to specify scheduling policies for processes and threads.The
scheduling policies determine where newly-created processes and threads will run:

RR Eachnew { process|thread} will run in the next locality domain (round-robin order).
LL A new { process|thread} will run in the least-loaded locality domain.
FILL Launchin same node as parent, until one per processor; then spill to next node.
PA CKED All new { processes|threads} will run in the same node as the parent.

• HP’s implementation of MPI recognizes an environment variable (MPI_TOPOLOGY) which is used to
specify how many MPI ‘‘worker’’ processes will run in each of a system’s locality domains.In addition,
setting this variable also prevents an MPI job from starting if the number of MPI processes doesn’t match
the number expected (i.e. as implied by MPI_TOPOLOGY).

With this in mind, it seemed that a reasonable strategy would be to have LSF launch jobs in the following
way:

• After determining which node(s) a job should run on, set environment variables which specify the maxi-
mum number of threads a process is permitted to create, the node(s) on which MPI processes should run,
etc. Markthese as ‘‘readonly’’ shell variables, in case a user’s job is a shell script which attempts to assign
different values to them.

-- --

- 3 -

• Launch the job usingmpsched, to ensure that it will start running on the correct node.Also, set the job’s
process and thread scheduling policies to PACKED, to ensure that all newly-created processes and threads
will run on the same node as their parent.

• Keep track, via a job-to-node mapping, of which jobs have been launched on which nodes, and how many
processors each job has requested, so that subsequent jobs can be placed on processors not already assigned
to some other job(s), thereby avoiding oversubscription.

5. The Harsh Reality

It turned out that this approach failed, for two reasons. First,despite the fact that ...

• LSF was usingmpsched to launch each job in an LSF-specified locality domain,

• MPI_TOPOLOGY was being set to force the job’s MPI processes to run in that same locality domain,

• mpsched’s scheduling policies should have ensured that all new processes and threads would run in the
same LSF-specified locality domain,

we have nonetheless observed situations in which two 16-way jobs were running on the same node (while
another node had no active processes at all), despite the fact that the LSF batch system had specifically tar-
geted the two jobs for different nodes.In other words, HP-UX occasionally decides, for unknown reasons,
to migrate processes to nodes different from the ones requested.

Secondly, even if HP-UX had always behaved as it should it terms of honoring requests for process and
thread placement, there are numerous methods by which users could easily circumvent our attempts to
restrict the load they place on the system.For example, suppose that a user requests eight processors when
submitting a batch job. The LSF job starter might set the MPI_TOPOLOGY variable to 0,0,8,0 (which tells
MPI to run eight ‘‘worker’’ processes on node 2, and none on other nodes).Besides specifying the locality
domain on which the MPI processes will run, this setting of MPI_TOPOLOGY also prevents the user from
starting any N-way MPI job for which N does not equal 8.However, there would be nothing to prevent a
user from requesting eight processors, and having the batch job be a shell script which would start two or
more eight-way jobs, thereby acquiring more CPUs than LSF’s job information would indicate, and thus
oversubscribing the node on which the job was started.

Furthermore, the basic idea of attempting to restrict behavior by using readonly environment variables is
flawed: Althoughsh and ksh use the same method for marking environment variables as readonly, bash
uses a different method, so something marked as readonly by ash script won’t be recognized as such by a
bash script. Andcsh andtcsh don’t support readonly environment variables at all.So a user whose batch
job is a {bash|csh|tcsh} script can set environment variables to values different from what the LSF job
starter had set them to, thereby permitting more processes and threads to be created than the batch system
intended. Orev en in if a user’s batch job were a {sh|ksh} script, theenv command could be used to alter
the value of readonly environment variables on a per-command basis.

6. What? No Processor Sets?

One solution, if the functionality had been available to us, would have been to arrange for the batch system
to use processor sets to confine a job to a defined set of CPUs, thereby ensuring that no matter how many
processes and threads a job might create, they would be limited to the N processors that the user had
requested. Otheroperating systems (e.g. IRIX) provide this, but unfortunately HP-UX does not.Under
IRIX, processor sets work as follows:

• A processor set is a group of CPUs to which access may be restricted.

• Each processor set has a configuration file (specifying the CPUs the processor set contains) and a name.

• Access to a processor set (permission to retrieve information about it, permission to run a process in it) is
determined by a user’s {read|execute} access to the configuration file.

• System calls exist to create/destroy processor sets, run processes in one, move processes out of one, etc.

-- --

- 4 -

It’s easy to see how processor sets could be used to guarantee that batch jobs wouldn’t interfere with each
other: If someone requests N processors, the batch system could create an N-cpu processor set, and launch
the job there.The user’s job (and all new processes and threads that it might create) would be confined to
its processor set ‘‘jail’ ’. So if the user created more processes or threads than originally requested, an over-
subscription situation would still occur, but the user would be oversubscribing only against himself, and
thus not interfering with others’ jobs.

7. When in Doubt, Fake It!

But after a bit of thought, it became evident that even without operating system support for processor sets, a
clever privileged daemon could provide equivalent (or at least sufficiently similar) functionality. Thus was
born the ‘‘process jail warden’’ (pjw).

This is a program which monitors jobs launched by the LSF batch system, determines which processors
each batch job will be permitted to use, and ensures that each job’s processes and threads run only on the
processors which the daemon has associated with the job.

The three critical things which enable this to work are:

• Thepstat() system call permits a program to retrieve all important information about all the processes and
lightweight processes (threads) which are currently active.

• Thempctl() system call can be used to lock a process or thread to a designated CPU.

• When the LSF batch system launches a job, a remote execution server (the process which causes the
user’s job to run) does asetpgrp() before spawning any child processes; furthermore, mapping between a
job’s process group and its LSF job ID is straightforward. Thismeans that information returned bypstat()
can be used to easily identify which processes and threads belong to which batch job.

8. How it Works

The daemon wakes up periodically, and does three things:

• It collects information about all current batch jobs, all processes, and all threads, updating the information
it had the previous time it checked. New batch jobs may have been launched, in which case all the informa-
tion about that job’s processes and threads needs to be gathered. Existingbatch jobs may have caused new
processes or threads to be created, or old ones may no longer exist; in either case, tables of {process|thread}
information need to be updated.Some batch jobs which were active before may have completed.

• For any new batch jobs which may have been launched, a set of processors needs to be assigned.For any
old batch jobs which have completed since the previous time, whichever processors had been assigned to
them need to be put back into the daemon’s ‘‘available CPU’’ pool.

• For each active batch job, load balancing is done within the group of processors assigned to the job. This
involves examining the state (e.g. RUN, SLEEP) of each process and thread.Those which aren’t actually
running needn’t be locked to a processor. Those which are in a RUN state most of the time are locked to a
CPU in a round-robin fashion within the group of processors assigned to the job.

9. Results

Thepjw daemon does a good job of ensuring that batch jobs won’t interfere with each other by competing
for the same CPUs.It’s possible that there may be brief periods of oversubscription between the time that
the daemon goes to sleep and the next time that it wakes up to check on things.But these are negligible
compared with the total amount of time that a typical job runs.

Of course, the daemon doesn’t (and can’t, and perhaps shouldn’t) do anything about people oversubscribing
against themselves, i.e. trying to use more processors than they had asked for. But now people who do this
impact only their own job, and no longer interfere with others.

-- --

