Plug-1n Scheduler Policiesfor Linux

Author: Scott Rhine

e-mail: scott rhine@hp.com|

Company: Hewlett-Packard Manageability Solutions Lab (MSL)
Mail stop diw45
3000 Waterview Parkway
Richardson, TX 75080

Phone: 972-497-4792

Fax: 972-497-3123

mailto:scott_rhine@hp.com

Plug-In Scheduler Policies for Linux

1. Introduction

Loadable kernel modules are commonly used in Linux for avariety of purposes|[1,2].
Often, these modules are invoked as drivers for specific devices that may not be common
to all Linux systems. Modules may be installed as needed while a system is running,
without the need for areboot. With the installation of anew patch [3] the kernel CPU
scheduler may be treated like a software device, alowing the system administrator to
change the scheduling policy to meet business objectives.

In section 2, instructions are given for system administrators who wish to take advantage
of alternate scheduling policies. Examples of two policies are offered to clarify the
concept and to give an idea of what can be done with the open framework provided. In
section 3, the framework itself is analyzed to provide a better understanding of the
mechanismsinvolved. Finally, section 4 offers helpful hints for kernel hackers wishing
to implement a customized scheduler.

Asamatter of formatting, C code, commands, file names, and function names will appear
inthe Couri er New font.

2. System Administration
2.1 Why Plug-In Scheduler Policies?

The default Linux scheduler is a general-purpose algorithm that performs very well for a
wide range of work loads and benchmarks [4]. However, there are times when another
scheduler might be advantageous to manage a specific workload with different job
selection preferences, CPU distributions, expected latencies, business priorities, or other
performance considerations. For example, take a machine with amixed load of ray-
tracers, compiles, and animations attempting to display. If the other (non-animation)
consumers take up too much CPU time, the animations will appear slow and bursty. An
alternate policy could smooth the animation behavior and give the application more
priority. This same technique could be used to provide essential resource minimums for
video streaming, databases, on-line shopping transactions, nightly back-ups, or any other
set of mission-critical applications or users. These mechanisms could also be employed
to help limit consumption by greedy applications or denial of service attacks.

Essentially, any scheduler feature available on other operating systems may now be
ported more easily to Linux: Processor/CPU Sets, batch queuing, gang thread scheduling,
Job Objects, and Fair Share scheduling just to name afew. A few of these methods of
making multi-CPU machines more manageable have already been implemented.

2.2 TheTest Drive

The best way to demonstrate the usefulness and effectiveness of thisfeatureisto seeit
first hand. How can a system administrator try this capability out? For Linux versions
2.2.14.50, 2.2.16, and severa flavors of 2.4.0, a patch and utilities are available for
download [3]. Follow theinstructions for building and configuring a kernel with the new

Plug-In Scheduler Policies for Linux

feature enabled. The changes made are relatively minor and have been submitted to the
main OS tree as part of the HP 1A64 project. However, thereis no guarantee of when
they might become part of a standard Linux release.

One of the last stepsin the patch procedure isto create the new / dev/ sched device via
the nknod command. Once the new kernel is running, any read of the device will display
the scheduling policy currently being enforced.

cat /dev/sched
schedul er o linux

At the lowest level, modifications to a particular scheduling policy such as Processor Sets
may be madeviai oct | callsto thisdevice; however, utility (psr set , pset ps) and
library (i bpset . so) interfaces are provided for usability.

The best demonstration for load behavior isavisual one. Several interesting graphical
programs are available free of charge as part of the OpenGL graphicslibrary [5]. The
bouncing ball program called bounce isa particular favorite. To build the package, type:

make | i nux

Start up one or severa of these animations, up to one per CPU. Get afed for how fast
they are displaying. The OpenGL programs often print rates of frames per second for
those who prefer numeric results. Note that displays will tend to be more responsive on a
system consol e than over the network.

Choose a good artificial load generator. Two or three consumers per CPU should be
sufficient. The simplest CPU consumer is atight while loop, easily programmablein a
wide array of languages. The utilities bundle aso has a convenient sched_bench
program capable of spawning as many consumers as desired (assuming your system
tunable parameters permit). Watch as the animation performance degrades.

Constant Time Round Robin Scheduler

Now the stage is set to experiment. While al thisisrunning, install an alternate
scheduler by typing:

/sbin/insmpd const_sched

Watch the performance improve dightly. Confirm that the new scheduler isreally
running by typing:
cat /dev/sched

The Constant Time Round Robin scheduler is the smplest example available, reducing
OS overhead. The default scheduler looks over every runnable process and decides
which one goes next based on a variety of factors such astick counters, memory region
affinity, threads, scheduling class, and nice levels. Because of this, the more processes it
finds on a system, the longer each decision takes. Scaling becomes a problem [6,7,8,9].
By contrast, the Constant Time scheduler treats all jobs the same. When it istime to pick
the next runner, it takes the next job on the queue and runsit for adlice. When finished,
the job gets placed on the end of the queue, and the next onein line getsits turn.

Whether there are thousands of processes, or just one, the overhead remains constant.

Plug-In Scheduler Policies for Linux

This scheduler provides an interesting academic lower bound for complexity while
demonstrating the effectiveness of the plug-in scheduler concept.
When satisfied, return to the default scheduler by removing the module:

/sbin/rmobd const_sched

The behavior will then return to normal. It'sthat simple.

Processor Sets

For amore advanced experiment, install the processor sets module under the same load:
/sbin/insnod pset

Nothing will change at first (except the label in/ dev/ sched), because everything on the
system still belongs to the default processor set (0). This may be verified using pset ps
with any options normally used for the ps command.

Scheduling in each processor set is done independently, and each emulates the default
Linux scheduler. Processor sets allow tasks to be associated with a collection of
processors rather than running on any available CPU on the machine. Think of a
processor set as an isolated virtual partition of the CPUs on amachine. A task or a CPU
belongs to exactly one processor set at atime, but may be reassigned by root. The default
processor set always exists and may not be destroyed. One CPU must aways remainin it
for the OS to function properly. Hence, this featureis of little value on asingle CPU
system.

Take the example of a4-CPU machine with CPUs numbered O through 3. The exact
numbering on a particular system can be obtained via/ pr oc/ cpui nf o or through
psrset. To re-partition amulti-CPU machine, create a new pset containing CPU 3.

psrset —c 3
This should generate processor set number 1. Verify with the following command:

psrset (no args)

PSET I D TYPE CPUs CPULI ST
0 FAI LBUSY 3 o, 1, 2
1 MOVEDFLT 1 3

Next, move the load generating spinnersinto the new processor set based on their process
identifiers provided by the ps command.

psrset —b 1 <pid list>

OO0 | O

default pset O: pset 1:
3 animation jobs, 12 spinners
daenons, etc

Figure 1: Segregation of CPUs and Jobs into Processor Sets

Plug-In Scheduler Policies for Linux

When this command has completely, watch the performance of the animation improve
dramatically. Asfar asthe animations are concerned, they are running on a dedicated 3-
CPU machine, while the spinners fight each other over the remaining one.

Note the difference in CPU accumulation rates visible viaps or
pset ps —ef

Try moving the CPUs around using
psetps —a PSET_id CPU.id

Processor sets with no CPUs can aso exist. Such a situation may be due to temporary
resource needs elsewhere in the system, or a crude implementation of batch queues.
When placed in a processor set that has no CPUs assigned, atask is effectively frozen,
making no forward progress until such assignment is made. Local, compute-intensive
jobs not requiring immediate turn-around can be placed in such empty processor sets.
After hours, when interactive users go home, some of the interactive CPUs can be loaned
to the batch job. If the batch jobs do not all complete by morning, they can be re-frozen
and the CPUs re-dedi cated to interactive support.

While there are still two processor sets, try to remove the module. Notice that the OS
will not allow this because the module is busy. In order to cleanly shut down the
processor set scheduler, first destroy all active sets, and then remove the module as
normal.

psrset —d al
[/ sbin/rmmod pset

More details are available from the man pages provided with the utilities bundle [3].
More plug-in schedulers will be posted to the web site as they become available.

Lastly, now that the default scheduler has been reinstated, the demonstration programs
may be cleaned up.

3. Flexible Scheduler Framewor k

What makes these plug-in scheduler modules work? The abstraction can be
divided up into three components. sched_pol i cy, / dev/ sched support, and the loadable
modules themselves. For those interested in details, read the raw patch file di f f or the
original design white paper [3]. All changes have been protected withi f def s and will
not become active unless aternate schedul ers are enabled from a configuration menu.

3.1 Scheduling Policies

There are only afew key changesinsched. c. In anutshell, the technique inserts codein
front of about five magjor decision points in the scheduler. If the kernel has an aternate
scheduler installed and that aternate scheduler has a preferred (non-NULL) method for
thisdecision, it will call out to that method in the module; otherwise, it falls through to
the default Linux behavior.

Pointersto the sched_pol i cy structure (figure 2) appear in both per-process and global
per-CPU structures.

Plug-In Scheduler Policies for Linux

. When processes enter or leave the global run queue,

CLASS: sched_policy hev i d h I b

Vari abl es: they increment or decrement the per-policy member
sp_runnabl e count sp_r unnabl e.
sp_private . . .

Vet hods: M any other per-pol icy functions and variables are
sp_choose_t ask possible, but core Linux doesn’'t need to see them.
sp_preenptability Anything else can be implemented inside the opague,
sp_choose_cpu _noli i i
ep_handl 6_t1 cks per-policy, private data areasp_pri vat e.

Figure 2

sp_choose_t ask isthe most basic and necessary of the methods. It chooses the next
process that will be run on this CPU. Note that the run queue lock must be held during
the invocation and continue to be held upon return.

sp_preenptabi l ity decidesfor aspecific CPU how likely another job isto preempt the
currently running job according to the rules of thispolicy. Itisgenerally called in aloop
for every CPU.

sp_choose_cpu containsthe same corelogic assp_pr eenpt abi | i ty, but decides the
best CPU to preempt. This became necessary for Linux 2.4.0+ kernels because
sp_preenptability isnolonger invoked for idle CPUs. If, asin the case of processor
sets, atask may not run on just any idle CPU, a higher level abstraction isrequired. At
most one of the pair of methods will ever get invoked.

sp_handl e_ti cks may be used to accumulate information every clock tick for the
purpose of debugging, monitoring, or control decisions. The Fair Share Schedulers use
this method to track how much usage groups get with respect to each other [10,11,12].

3.2 /dev/sched Kernel Support

The new fileal t pol i cy. ¢ provides support for the/ dev/ sched interface.

CLASS: schedul er device Thisfile holds the globals we rely on for the
Vari abl es: _ implementation, especially the file operations for
array policy_of_cpu thisdevice. If there are no alternate schedulers

schedul er nane

. loaded, a read operation invokes the default
file ops structure '
Vet hods: method, and ani oct | hasno effect. However,
def aul t _r ead_net hod when amoduler egi st er s itself, it may provide
regi ster_schedul er replacement methods for r ead, i oct | , aswell asa

unregi ster_schedul er new name and policy array. At most one alternate

policy may be registered at atime.

Figure 3

Theunr egi st er operation resets al globals and process pointers to their default values.

Plug-In Scheduler Policies for Linux

3.3 Loadable Scheduler M odules

The source code for the plug-ins themselves resides in the directory
l'i nux/drivers/sched. Theconventionisto provideasingle C file, asingle header
file, and asinglelinein the Makef i | e for every new alternate scheduler.

CLASS: 'ngggf‘g' e sched | A yniquenodul e name, including version number is

Vari abl es: necessary when registering or unregistering the module.

busy senaphore

Thebusy semaphor e prevents unloading of the module
nmodul e name

Vet hods: while structures inside the kernel may still reference
init_rmodul e addresses inside the module, or possibly while in the
cl eanup_nodul e middle of acritical operation.
choose_t ask o i
preenpt abi | i ty* i ni t _nodul e isinvoked uponinstall (i nsrmod) of the
choose_cpu* module. It should first attempt to allocate space for
handle_ti cks* internal data structures and r egi st er itself with the

*optionall oct!_func kernel. If either operation fails, the install should fail.

cl eanup_nodul e should likewise invoke unr egi st er..
Figure 4

Thelocal functionsfor choose_t ask, preenptability, choose_cpu, and

handl e_t i cks areassigned to the corresponding sched_pol i cy functions. Any
optional function with no local preference may be left NULL, and Linux default behavior
will be used.

i oct| _functi on isthe interface between the user world and the private functions of this
particular policy module. Any module expecting to control or modify the alternate
scheduler behavior must currently receive instructions in this manner.

Constant Time Scheduler

The Constant Time scheduler requires no interaction, complicated CPU selection method,
or statistic collection. Thus, most of its exported methods are NULL, and no busy
semaphor e isneeded. Eventhesp_preenpti bi | i ty function has been ssmplified to the
difference between two counter fields. The Constant Time scheduler, like the default
Linux scheduler is unified or universal, meaning that every process and CPU on the
machine point to asingle sched_pol i cy structure. Thereisalso no private

sched_pol i cy data. At 174 commented lines, this module is the shortest useful example
available.

Processor Set Scheduler

By contrast, the Processor Set scheduler can have potentially unlimited instances of the
same template, one for each set. Each copy hasit own method pointers (same) and its
own private data region (distinct). This replication requires additional methods for
managing instances, which are accessed viai oct | . When defining thei oct | constantsin

Plug-In Scheduler Policies for Linux

the header file, a unique offset must be used for each potential scheduler on the machine.
Why? Because a user application is not guaranteed from one system call to the next
which scheduler is actually running. If each scheduler starts numbering at 1, applications
attempting to control one scheduler flavor may get a successful return code, but totally
incorrect results. Any number outside the reserved range for a scheduler module should
return EI NVAL.

Private variabl es: The meaning of the private variables as well asthe extra
id functions are described in detail in the white paper [3]
spu_count and man pages.
non_enpty_op

nodul e nmet hods: Apart fromtheat t ri but e based functions, which define

g reate_group individualized behavior in certain boundary conditions

estroy_group (like deleting a non-empty set), all of the methods

nmove_t ask_to_group . .

move_cpu_to_group mentioned would be a good base pattern for any multi-

set_group_attributes group scheduler. Thisincludes the concept of a default

get_group_attributes group (0) where all processes and CPUs begin. The

query_group_i nfo busy | ock should remain on until only O remains.
Figure 5

All sched_pol i cy methods are defined except for sp_handl e_ti cks. Thisis because
the tick information could be gleaned indirectly from per-CPU statistics.

4. Experiences Building New Schedulers
4.1 What | Learned

This project was just the first iteration of feature development. | hope that it evolvesinto
astandard for plug-in scheduler policies. Already, other developers in the workload
management and 1A 64 spaces are attempting to leverage this work to save effort.

What did | learn personally from this project? Linux as a development tool is
tremendous. The fix and retry cycle on aloadable moduleisincredibly fast, much better
than having to reboot every time. Having booted the same code both built-in and asa
module, it is much simpler to write for amachine that is already up. Special casesfor the
idle/boot process can eat you alive and good luck finding out why it crashed. By
contrast, debugging amoduleis easy. There are only one or two critical routinesto go
wrong. Most errors are non-fatal. If it core dumped, there was generally an obvious bug
in my initialization of the private module data structures. A silent hang was inevitably
due to amissing unlock, membership count being off, or fumbling the SCHED_YI ELD flag.

The sched_bench benchmark developed for this project may not be the most
sophisticated, but it was great to show me the performance impact of changing one line of
code. | was ableto use it to tune the prototypes to speeds indistinguishable from or better
than the default (see Figure 6).

Seconds

-10

-15

-20

-25

Plug-In Scheduler Policies for Linux

Comparison vs. Linux 2_4 test9 sched_bench 4 CPU Baseline

700 800 900 1000
g
—eo— pset
—— multiqueue
constant

Number of Processes

Figure 6: sched_bench results

One important side note relates to the sched_pol i cy function call out pointers. If your
scheduler changes states, it may be more efficient to write separate call out functions and
switch them atomically at run time rather than stuff spaghetti logic into asingle all-
purpose function. A single extralinein the inner loop of the scheduler can have a huge
impact on performance.

The entire development experience was so positive that | now use Linux to prototype new
features for our product before running on other operating systems.

4.2 Recommendations

| highly recommend that people who have written their own schedulersin the past,
rewrite with this modular scheme. Even peoplein university OS courses can play with
the internals with relatively low risk. In the development process, however, | do have
some suggestions.

Plug-In Scheduler Policies for Linux

* Don't reinvent the wheel. Start from aworking pattern, and you can be testing in
hoursinstead of days. Due to the sheer amount of plumbing that has to work
together, if the module builds, installs, and runs on an idle system, the job is half
finished.

* Runasimplel s command. If theshell prompt comes back, congratulations.
* Write an exhaustive test for your i oct | interface. Remember, the moduleisroot.

» Write an automated basic functionality test to make sure that the scheduler
behaves as expected. Thisis especially important to make multi-platform and
multi-OS-version testing consistent and painless.

* Runsched_bench to seeif it stays up under 1000 hungry processes.
» Compare results against the default scheduler and check for scalability issues.

* Run the bounce demo under loadas described in section 2. It'sagreat
combinatorial/1O test.

Plug-In Scheduler Policies for Linux

References

[1] “Standalone Device Driversin Linux”, Theodore TS o, Proceedings of the1999
USENIX Annua Technica Conference, June 1999
http://www.usenix.org/publications/library/proceedingg

[2] “Red Hat Documentation — Kernel Modules’
http://www.europe.redhat.com/documentation/HOWT O/K ernel-HOWT O-10.php3|

[3] “Plug-In Scheduler Policies Web Page’
http://resourcemanagement.unixsol utions.hp.com/\WWaRM /schedpolicy.html|

[4] “Linux SMP Scheduler”, Moshe Bar, Byte Magazine, November 29, 1999
http://www.byte.com|

[5] “Open GL Mesa Library and Demos Download page”
http://sourceforge.net/projectsymesa3d|

[6] “The Linux Edge’, Linus Torvalds, 1999, in Open Sources, Eds. DiBona, Ockman, &
Stone, O’ Reilly, Sebastopol, Ca., page 110.

7] “ Scalable Linux Scheduling”, Molloy, Honeyman, & Bryant
http://www.research.ibm.com/acas/proj ects2000/Scal abl eLi nux Scheduling.htm|

8] “Java Technology, Threads, and Scheduling in Linux”, Bryant & Hartner
http://www.ibm.com/devel operworks/library/java?l

9] “Linux Scalability Effort Project Page’
http://sourceforge.net/projects/| sel

[10] “Process Resource Manager Project Page”
http://www.hp.com/qo/PRM|

[11] “A Hierarchical CPU Scheduler for Multimedia Operating Systems’, P. Goyal, X.
Guo, & H.M. Vin, Proceedings of 2nd Symposium on Operating System Design and
Implementation (OSDI'96), Seattle, WA, pages 107-122, October 1996
http://www.cs.umass.edu/~lass/software/glinux|

[12] “Rik van Riel’s Scheduler Page”
http://linux-patches.rock-projects.com/v2.2-c/schedul e-bi gpatch.html|

10

http://www.usenix.org/publications/library/proceedings
http://www.europe.redhat.com/documentation/HOWTO/Kernel-HOWTO-10.php3
http://resourcemanagement.unixsolutions.hp.com/WaRM/schedpolicy.html
http://www.byte.com/
http://sourceforge.net/projects/mesa3d
http://www.research.ibm.com/acas/projects2000/ScalableLinuxScheduling.htm
http://ibm.com/developerworks/library/java2
http://sourceforge.net/projects/lse
http://www.hp.com/go/PRM
http://www.cs.umass.edu/~lass/software/qlinux
http://linux-patches.rock-projects.com/v2.2-c/schedule-bigpatch.html

	Constant Time Round Robin Scheduler
	Processor Sets
	
	Figure 3

	Constant Time Scheduler
	Processor Set Scheduler

