
Convolo: A Case Study in High-Availability Clustering
Richard Rabbat, Tom McNeal, Tim Burke

Mission Critical Linux, Inc.
{rabbat, mcneal, burke@missioncriticallinux.com)

100 Foot of John Street, Lowell, MA 01852
Phone: 877-625-4689, Fax: 978-606-0390

Abstract
This paper discusses the design and implementation of a high-availability clustering
solution. This solution provides data integrity guarantees and a simple and effective way
for making services highly available. The implementation of the system design in a Linux
environment on commodity hardware is documented. A proof-of-concept to provide a
highly available NFS server is explained with caveats and their resolutions. Benchmarks
are also provided that show the applicability and effectiveness of such a system.

1 Introduction
Clustering has become a necessity in the enterprise in order to guarantee 24/7 service
availability. The high visibility brought about by the Internet puts strains the IT
infrastructure by growing transaction volumes and increasing the work hours to full 24
hour days. The new demands on the infrastructure increase the number of servers that are
accomplishing the same task on one hand, and the need for redundancy on the other.

Cluster servers that deal with the same task, such as web farms, distribute the load
amongst themselves to achieve scalability. Those clusters belong to a class of load
balancing clusters dealing largely with static information serving. Their dynamic content
is served off of databases in the backend. Since load balancing servers deal with static
content, they constitute a poor choice for dynamic content that have to maintain data
integrity. A database service that is load balanced will not be able to maintain data
consistency across multiple servers unless very sophisticated methods are used, such as in
Oracle Parallel Server. The same logic applies to NFS servers that would not be able to
maintain a consistent view of the file system contents.

Clusters that guarantee data integrity are called high-availability clusters; their focus is to
keep a service running at all times. They achieve data integrity by only allowing one
system to own a service and move that service to another server when the other service is
down or unavailable due to hardware or software problems. They achieve scalability by
making each cluster member responsible for a certain subset of the total services.

This paper discusses the Convolo high-availability cluster. Section 2 discusses previous
work in this area. Section 3 discusses the design of the Convolo software. Section 4 is a
presentation of NFS clustering, as a proof of concept of the viability of the design.
Section 5 concludes this paper by discussing achievements as well as future approaches.

2 Previous Work
In a recent white paper on High Availability cluster technologies, the Aberdeen group
notes that HA clusters “usually consist of two to eight or more nodes, with two node
clusters being the most frequently used”. They note that over 80% of clusters currently in
use are using only two nodes. The basic technique cited which acheives high availability
is the failover mechanism, where the other node(s) will take over the services provided by
a node, in the event of the failure of that node. In the event of a failover, the cluster
software will move the required resources to the target node. In general, the target node
is the surviving node of the two node cluster, but in some clusters with more than two
nodes, the resources may actually be moved to multiple surviving nodes.

Another feature noted in the Aberdeen Group white paper is that cluster products appear
in two configurations – the “active-active” configuration, where both nodes are running
applications at the same time, and the “active-passive” configuration, where one node
runs the applications, while the other node stand by, ready to pick up the application load
in the event of a failure on the first node. These two designs offer differences in costs and
capabilities, and will also differ in behavior when the cluster consists of more than two
nodes.

Finally, the white paper also discusses the organization of storage in the clustered
environment, noting that the two choices are “shared data” or “shared nothing” storage.
With no data sharing, the access to data is reserved by the particular application, and the
application must maintain access to the storage devices regardless of which node is
currently executing it. Sharing data among the nodes will not necessarily require
concurrent access to the same storage devices from all nodes, but will require distributed
lock management in order to maintain data integrity.

As an example of cluster design, the Tru64 Cluster implements a Highly-Available
solution. Its scalability and manageability are counterbalanced by its use of proprietary
hardware as well as SCSI reservations makes the design highly dependent on proper
operation of the hardware in question and the specialization of the hardware drivers to
accommodate the needed enhancements.

Another highly-available cluster system, the Windows 2000 Advanced Server, supports a
2-node cluster, and can also run in either “active-active” or an “active-passive”
configuration. This type of cluster can detect network failures as well as node failures. It
does not, however, deal with hung nodes that may go live again, therefore creating the
possibility of both nodes running the same service and writing to the same shared
partition.

HP’s MC/ServiceGuard High-Availability cluster solution may also be configured in
either the “active-active” or the “active-passive” configuration, and will support up to 16
nodes in the cluster. When the cluster contains more than 2 nodes, and is configured to
operate in the “active-passive” mode, one of the cluster members serves as a standby
member on a rotating basis, while all other members are active. It also uses the same

package structure as some other clusters, including the Convolo cluster, where IP
addresses are associated with a service, and travel with the service when it migrates from
one node to another.

Some new application servers provide their own high-availability schema. The most well
known of these is the Oracle Parallel Server (OPS), which uses distributed locking
techniques to allow concurrent execution on all members of the cluster. In general, the
advantage of such a solution is that the failover mechanism is written and optimized
specifically for that service. The disadvantage is the need to rebuild the whole failover
for other applications, making this approach expensive and duplicating the effort needed
to increase the availability of services by that number of services.

3 The Design of Convolo
The design of Convolo tries to build on several goals: high-availability, data integrity and
unspecialized hardware. Shows the hardware layout that is supported in Convolo and
specifies the different functional pieces needed in its operation.

Figure 1 Convolo Cluster Architecture

Several components were built to achieve these goals:
• Host membership: this involves knowing which nodes are considered to be cluster

members.
• Shared storage: infrastructure to ensure that the disk devices are accessed by only

one server at a time; and that I/O requests cannot be initiated in an
unsynchronized manner.

• Services Infrastructure: ability to define high availability services and provide a
means of having them stopped and started in response to cluster state transitions.

• System Management: allowing the specification of configuration and tuning
parameters, as well as monitoring current operational status.

3.1 Host Membership
The host membership is designed as a peer algorithm, which each cluster member
monitoring itself and its peers in the cluster. In addition, there is need for breaking out of
inconclusive states. A foundation component is the "Quorum" disk partition (also
referred to as shared state disk) used to represent a node’s status. On a frequent basis,
each node updates its own timestamp on the shared state partition, as well as monitors its
peers’ state. If a node is unable to access the shared state partition (e.g. SCSI cable pull),
that node will take itself out of the cluster by rebooting itself. Inability to access the
shared state partition at cluster startup time will cause a node to not commence cluster
operation. In the case of an inconclusive state, if a hung node is assumed inoperative and
another cluster member takes over services, that hung node may become “un-hung” and
the service it hosts would issue I/O requests that would almost certainly compromise data
integrity. To prevent that, an I/O barrier is provided through a power switch that may
power cycle the hung node after it has stopped responding for a period of time.
As mentioned above, each node monitors the status of other cluster members in order to
determine when service state transitions are warranted. Example service state transitions
include:

• Cluster node startup
• Cluster node shutdown (planned and unplanned)

Based on a node’s state transitions, services will be started up and balanced according to
a placement policy.
There are two means of monitoring the state of other members:

3.1.1 Monitoring Status Information in the Shared State Partition
A node whose state on the shared state partition is up and fails to update its timestamp
within a specified grace period will be considered failed and forcibly removed from the
cluster via a remote power cycle. In this manner, the shared state partition is the
cornerstone of the host membership algorithm.

3.1.2 Heartbeat Pinging over Ethernet and/or Serial Ports
Cluster nodes also monitor each other through a set of "heartbeat channels", which can
include any number of Ethernet connections (both LAN-based as well as point-to-point).
Additionally, Convolo supports point-to-point serial connections as heartbeat channels for
2-node clusters.

3.2 Shared Storage
Shared storage is needed when all of servers are serving dynamic content (such as web
content) and need to interact with a common back end data store.
Shared physical storage is required for the cluster shared state partition and is also used
for the highly available cluster services. The cluster implementation provides primitives
that are utilized by services requiring access to shared storage. Highlights include:

• Service start/stop infrastructure guaranteeing that a service is only running on one
node at a time.

• Filesystem mount and unmount mechanisms associated with service start/stop.
This includes escalating levels of "forced unmount".

• A low-level lock synchronization mechanism layered on top of the shared state
disk primitives. This is used by the service start/stop infrastructure to protect
against inherent race conditions.

As the design assumption involves Off-The-Shelf (OTS) hardware, Convolo does not rely
on SCSI reservations or any other low-level storage substrate mechanism to reserve
devices, or otherwise try to block I/O operations from failed nodes. Instead, the design
only requires support for single-initiator SCSI buses or single-initiator Fibre Channel
interconnects. To use single-initiator buses, a RAID controller must have multiple host
ports and provide simultaneous access to all the logical units on the host ports. Convolo
cannot use host-based, adapter-based, or software RAID products in a cluster, because
these products usually do not properly coordinate multi-system access to shared storage.
Not relying on SCSI reservations also allows Convolo to have a single physical disk
associated with more than one highly available cluster service. This obviously improves
hardware utilization. In the case of single-initiator SCSI, for hot plugging support,
Convolo requires an external LVD active terminator to a host bus adapter that has
disabled internal termination. This enables the system to disconnect the terminator from
the adapter without affecting bus operation.

3.3 Services Infrastructure: The Service Manager
This is a daemon that runs on all nodes of the cluster to manage availability of cluster
services. It ensures that each service is running only once in the cluster and chooses a
cluster node if more than one are available to run a service. The service manager takes
care of the different service states and applies action appropriately according to its state
machine to take a service from a certain state to another or to copy with an error status.
Table 1 shows the different states that a service could be in. A description of each state is
also presented. This allows us to design the state-machine that shows all possible states
and transitions between states.
Table 1 Service States

Name Description
Service Stopped
SVC_STOPPED

A service that is in the stopped state is a service that is not running on any cluster
node and is a candidate to run. A service in the stopped state does not have an
owner assigned to it and all of its resources are not configured on any cluster
node.

Service Starting
SVC_STARTING

A service in the starting state is a service that has been requested to start on a
cluster node. It is in this state until either the start of the service is successful or it
fails. This is a transient state and it is owned by the cluster node starting the
service

Service Running
SVC_RUNNING

A service in the running state is a service that has all of its resources configured
on a cluster node. This is a persistent state in which the cluster node that owns the
resources owns the service.

Service Stopping
SVC_STOPPING

A service in the stopping state is a service that has been requested to stop on a
cluster node. It is in this state until either the stop of the service is successful or it
fails. This is a transient state owned by the cluster node stopping the service.

Service Disabling
SVC_DISABLING

A service in the disabling state is the same as a service in the stopping state
except the resulting state will be SVC_DISABLED.

This is a transient state requested by a cluster system administrator. Disabling a
service means to stop the service and not start it unless requested by the cluster
system administrator

Service Disabled
SVC_DISABLED

A service in the disabled state is similar to a service in the stopped state except
the service will not be started unless requested by the cluster system
administrator. In normal operation the
Service Manager will skip over any service in the disabled state and not change
its state.

Service Error
SVC_ERROR

A service in the error state is a service in which its state cannot be determined.
Moving the service out of the error state requires cluster system administrative
intervention. It is unclear what resources associated with the service might still be
configured on a cluster node.

Figure 2 is the state machine for the service manager that was used in the implementation
of the service manager.

disabled

error

disabling

stopping

stopped

starting

running

stop
ok?

cluster start

initlocalSrvcs()

error

error

reboot

error

state
transition
error?

start?

start
ok?

disable
ok?

system
shutting
down?

start
ok?

stop/
start or
error?

stop/
start
svc?

start
ok?

stop
ok?

start
svc?

start
svc?

start
ok?

stop
ok?

state
transition
error?

start
or stop?

N

N

Y
Y

user
req

Y

host up N

host down N

Y

Y

Y

user
req

user
req

Y

N

N

N

Y

Y

N

user
req

Y

Y

Y

Y
Y

error

do
nothing

stop

stop

start
host
down

host
 up

stop

start

do nothing

host down

host
 up

NN

N

host
up

host
down

N

N

N

N

Figure 2 State diagram used by Service Manager

The Service Manager allows the cluster to use the standard start/stop scripts of the
daemon/service in question. This enables support for a range of services without the need
to develop customized solutions for every service needed. The caveat is to make sure that
the cluster node does not try to start the script itself as is common at bootup. The only
process that will be allowed to start and stop the service in question is the cluster daemon.
If no scripts are provided for a certain service, then it is sufficient to write a minimal
script that can start or stop that service depending on the command-line option passed to
that script.

Convolo does not provide more data integrity than a server can allow. For example, in
the case of the MySQL database server, since the application does not support
transactions, if it failed during the processing of server SQL commands, the data may
become inconsistent since some in-memory computations may not have been saved to
disk. On the other hand, if the application guarantees data integrity, such as the case for
PostgreSQL and Oracle through the use of transactions, then Convolo will be able to
failover the application from the failed node and run the service on another node
consistently, with no loss of data.

The implementation of the Convolo design was done for the Linux operating system.
Several tools were put together to ease installation and allow remote administration
through a web interface. This interface shows snapshots of the clustered solution, as well
as the services running in the cluster. Adding/deleting/disabling/enabling services can all
be done remotely through that management tool.

4 Proof-of-Concept: NFS Fail-over
Several features of NFS need to be considered when supporting failover of NFS services
in a High-Availability cluster. Some of the considerations may be due to the cluster
design itself, and some are unavoidable consequences of NFS designs in general. The
general class of problems encountered during our implementation of a cluster using dual
connected shared-nothing storage, along with service-specific IP aliases, were related to
the following issues:

• Local File System Usage - NFS uses files in the Server’s local file system to
maintain the Server’s current state.

• Migrating the Service IP Address - The migration of NFS services involves
migration of the IP address associated with the service

• Server Request Queue Management - Graceful failover may leave the Server
which originally supported the NFS service in an inconsistent state

• Lock Management for an NFS Service - Starting and stopping the NFS service on
the same Server is not well supported by the NFS locking daemons.

In addition, some general lock management bugs not associated with cluster issues were
uncovered during testing, and were solved and submitted back into the open source
community. One interesting feature we encountered was that supporting graceful

failovers - that is, shutting down and migrating a particular NFS service while leaving the
original server running - presented a much more complex environment than the standard
catistrophic failover, where the server supporting the particular service has died, either by
natural causes, or by being shot by the other server, due to heartbeat or partition failures.
This is due partially to the fact that an NFS service is defined as a particular file system
export (or exports), and does not include the entire NFS subsystem, and partly to the fact
that the server executing a graceful failover does not go through all the initialization
stages encountered during a reboot. Making sure that the service in question migrates
cleanly, and that the services remaining on the original server (including other exported
file systems covered by another NFS service) are unaffected, was a challenging task for
the cluster implementation team.

4.1 Local File System Usage
Some clusters associate specific disk partitions and file systems on these partitions with
the service being supported by the cluster Servers. In the case of the Convolo cluster, the
service partitions are on a shared storage device, separate from the device supporting the
Server’s local file system. This presents an issue for NFS Servers, since the Server
maintains its state by continuously updating several files on the local file system.
Migration of the NFS service from one Server to another must assure that these files – or
the information they contain – are migrated as well.

The first instance of this issue is found with the Server’s mount daemon, rpc.mountd,
which keeps the current mount state in the /var/lib/nfs/xtab file. When clients request
mounts from a Server, the Server’s mount daemon will add an entry to this file, once the
mount has been approved. This file is consulted when requests come in from clients who
have already mounted the exported file system, and if the file is not up to date on the
Server to which a service has migrated, the Server may deny requests which should be
approved.

The second, and more obvious, instance, involves the protocol used by the Server’s lock
daemon and status monitor daemon, where the status monitor registers all locks granted
by the Server in files contained in the directories /var/lib/nfs/sm and /var/lib/nfs/sm.bak.
These directories allow a recovering Server to notify all clients which own locks in the
Server’s exported file system, allowing those clients to recover ownership of those locks.
If the contents of these directories are not migrated to the Server which is taking
ownership of the NFS service, the new Server will be unaware that these locks are held,
and will not notify such clients that their locks are no longer valid. If this occurs, the
Server may grant a lock to another client, allowing more than one client to own – or think
that they own – the lock, resulting in possible data corruption

The solution taken by the Convolo cluster software is to associate files with the particular
NFS service (remembering that there may be more that one, each of which is associated
with a specific IP address), using the shared storage partition owned by the NFS service.

This assures that all updates to the relevant files and/or directories are seen by both
Servers, and will be consistent after a service migration.

4.2 Migrating the Service IP Address
Another issue related to locking, and recovery of locks, is the differentiation between the
Server’s generic IP address, and the IP address associated with a particular service,
whether it is NFS, or any other application. Since the IP address in question is associated
with the service, this differentiation from the Server’s underlying IP address is important.
In the case of lock recovery, it must be clearly understood by the client that the lock
should be reacquired from the IP address representing the service.

As noted above, assuring accurate reacquisition of locks requires that the Server keep
local lock status, which is accomplished through zero length file entries in the status
monitor directories listed above, and that the clients named in these directories are
notified by the Server that their previously held locks are no longer held, and must be
reacquired. The reacquisition request must be made to the IP representing the NFS
service, and not to the IP representing the specific Server itself, since the service address
is designed to follow the service, and is not specifically related to an individual Server.

4.3 Server Request Queue Management
When a service migrates from one Server to another, either due to a request for a graceful
shutdown, or due to a migration back to the preferred Server after a catastrophic failover
and the subsequent Server reboot, the Server which releases ownership of the NFS
service for that particular IP address will modify its own privately held export table, in
order to eliminate the export of the file system associated with the service.

If the migration is graceful, there may be outstanding requests left on the original Server’s
NFS daemon queues at the time that the Server deletes the export details from its export
table. When these requests are subsequently executed, they will encounter errors since
the Server no longer exports this particular file system to the client. In this case, an error
(ESTALE) will be generated and sent back to the client. Since the service has actually
migrated over to the other Server, the request generating this error should simply be
dropped, forcing the client to reissue the request. When the request is reissued, it will be
sent to the correct Server, which is now exporting the file system in question, and no
ESTALE error will be generated.

4.4 Lock Management for an NFS service
There are two lock management issues encountered during service migration, when the
original Server is remains in operation – allowing the service to be released on the
original Server (requiring the deletion of the file system in question from the original
Server’s export list), and allowing the necessary time on the new Server for the clients to
reacquire the locks released by the original Server.

In the first case, the locks must be released on the original Server, or else the export
command which removes the exported file system from the Server’s export tables will
encounter an error (EBUSY) due to the locks held on files in this file system.
Additionally, the Server which now owns the NFS service must now give the clients
which originally held locks the time to reacquire those locks. This is generally
accomplished at startup time by giving the lock manager daemon a “grace period” of a
given, configurable length, when the lock manager and status monitor are first executed.

Since the NFS service migrates to an already running Server, this grace period must be
imposed on the running lock manager, in order to prevent the it from granting locks to
other clients, which may conflict with locks currently being reacquired.

4.5 Overall NFS Lock Management
During the implementation and testing of the cluster, the engineers at Mission Critical
Linux discovered several generic problems related to locking and lock recovery which
were unrelated to the cluster, or to management of cluster services. These were solved,
and submitted back to the open source community prior to the release of 2.2.18, and are
included in that release. The specific problems encountered were:

• An infinite loop in nlm_traverse_locks if a lock is held by a client during
shutdown

• A memory leak in the status monitor daemon
• Unreliable server notification of all clients holding locks after a server crash
• Client recovery of locks after notification from the server that the server had

crashed and lost all locks

4.6 Summary
The Linux environment, the structure and behavior of an NFS Server, and the
requirements of a High Availability cluster solution presented challenges in implementing
NFS failover capability. The behavior of an NFS client, particularly when using the
request and reply mechanisms of UDP, assures that the migration of the NFS service from
one server to another in a dual-connected data storage environment is fast, seamless and
straightforward, with no effect upon data integrity. The client and server behavior in a
connection-oriented network may present further challenges for clustered servers, and
will be addressed when NFS over TCP has been successfully implemented in the Linux
operating system.

5 Conclusion
High-Availability cluster implementations are currently available in a range of Operating
System environments, offering different configurations, behavior, manageability, and
reliability options. This paper discusses one implementation, running on the Linux
operating system, using design assumptions weighted toward execution on “off-the-shelf”
hardware, and towards supporting any software service. In general, service support may

require a minimal set of requirements, but in some cases, such as NFS, the cluster design
as well as the service design will require service modification as well as cluster software
changes. The overall cluster design, implementation, and behavior will impact the
supportability of generic services, and the service behavior must handle the clustered
environment, as well as the cluster failover mechanism.

6 References

Analysis of High Availability Cluster Technologies for Linux: Who are the Leaders?,
Aberdeen Group, Inc., January, 2001

Clusters for High Availability, Peter S. Weygant, Prentice Hall, 1996

NFS Illustrated, Brent Callaghan, Addison Wesley, December, 1999

Private Communication, Gregory Myrdal, Mission Critical Linux, August, 2000

	Introduction
	Previous Work
	The Design of Convolo
	Host Membership
	Monitoring Status Information in the Shared State Partition
	Heartbeat Pinging over Ethernet and/or Serial Ports

	Shared Storage
	Services Infrastructure: The Service Manager

	Proof-of-Concept: NFS Fail-over
	Local File System Usage
	Migrating the Service IP Address
	Server Request Queue Management
	Lock Management for an NFS service
	Overall NFS Lock Management
	Summary

	Conclusion
	References

