
Trusted Linux : A Secure Platform for Hosting Compartmented
Applications

Author: Tse Huong Choo

Hewlett Packard Laboratories
Filton Road, Stoke Gifford,

Bristol BS34 8QZ,
United Kingdom

Telephone Number: +44-117-3128966
Fax Number: +44-117-3128985

Email: tchoo@hpl.hp.com

Introduction

Our research work over the last few years has
shown that Trusted Operating Systems provide
specific properties that we believe are critical for
building secure Internet gateways and
Application service platforms. One of the most
significant properties they offer over normal
operating systems is containment. Containment
allows us the assurance that even if an
application or service is broken (non-maliciously
or by an attacker) the amount of damage that can
be done via that compromised application or
service is tightly controlled and possibly
negligible.

This document describes the architecture and
design of a Trusted Operating System based on
Linux that provides the containment property.
We believe it is significantly more usable,
maintainable and application friendly than
traditional Trusted Operating Systems.

We first describe in more detail the concept of
containment and why it is useful. We then
briefly describe the traditional approach used by
Trusted Operating Systems to achieve
containment, and some of the major problems
associated with that approach. Following that
we outline our alternative, more lightweight,
approach to achieving containment. We describe
in detail our overall architecture and design, our
user level support requirements, our kernel

extensions and the general kernel modifications
we have made. We then show our approach to
hosting services on the platform, application
integration and administration of the enhanced
functionality. Finally, we discuss some
outstanding issues and some of our future
research aims.

Containment

An application (or service) is contained if it has
strict controls placed on which resources it can
access (and what type of access to those
resources it has, e.g. read-only) even if the
application has been compromised. Containment
also implies that an application that is contained
should be protected from external attack and
interference. Containment applies to file system,
process and network resources.

Containment is particularly useful on systems
used as network gateways and application
hosting platforms between the Internet and an
internal network. For example, it is possible to
guarantee that if a service on the gateway
machine is attacked and compromised from the
Internet, the attacker can’t then go on and gain
access to whole the internal network. Similarly,
on a platform hosting multiple applications, we
can be guaranteed that one process can not
interfere with the running of another process or
get access to it’s perhaps sensitive data.

Traditional Trusted OS approach to
containment

Typically, Trusted Operating Systems achieve
containment through a combination of
Mandatory Access Controls (MAC), and
Privileges. MAC protection schemes enforce a
particular policy of access control to the system
resources such as files, processes and network
connections. This policy is enforced by the
kernel and cannot be overridden by a user or
compromised application. Most current trusted
operating systems use the Bell-LaPadula policy
model. This is a formal model developed on
behalf of military organizations in which the
flow of information around the system is
predictable

Whilst appropriate for the military domain, we
have found Bell-LaPadula MAC controls too
restrictive when trying to deploy Internet
applications on trusted operating systems.
However, privileges can be given to applications
so they can override some of the mandatory
access controls on the system. This is typically
done so that applications can communicate with
other applications on the machine (and over the
network) or get access to selected files, which
the MAC policy prevents. However, the
allocation of privileges has to be carefully
managed so as not to render the MAC controls
ineffective.

For application to application communication, an
alternative approach is to use privileged user
space relays between applications. Whilst
potentially more secure than granting the
applications themselves privileges, this often
requires the applications to be modified (and the
user space relays have to be provided).

Overall, whilst trusted operating systems based
on the Bell-LaPadula model do usefully provide
containment, they provide too much. This leads
to often severe application integration issues and
a significant management overhead. The end
result is that whilst these systems are
considerably more secure than ordinary
operating systems they have not used extensively
in practice outside of the military domain.

Our approach to containment

Similar to the traditional trusted operating
system approach we achieve the property of

containment by kernel level mandatory
protection of processes, files and network
resources. However, our mandatory controls are
somewhat different to those found on traditional
trusted operating systems. We have attempted to
reduce some of the application integration and
management problems associated with
traditional trusted operating systems.

The key concept of our trusted operating system
is the compartment. Services and applications
on the machine are run within separate
compartments.

We use simple mandatory access controls and
process labeling to create the concept of a
compartment. Each process is given a label;
processes with the same label belong to the same
compartment. We enforce kernel level
mandatory checks to ensure that processes from
one compartment cannot interfere with processes
from another compartment. The access controls
are very simple, labels either match or they
don’t. There is no hierachial ordering of labels
within the system such as there is in the Bell-
LaPadula model.

Filesystem protection is also mandatory. Unlike
traditional Trusted operating system, we do not
use labels to directly control access to the
filesystem; each compartment has a section of
file system associated with it. This section of
file system is a chroot of the main filesystem.
Processes running within a particular
compartment only have access to that section of
the filesystem. Importantly, via kernel controls,
we remove the ability of a process to transition
to root from within a compartment so that the
chroot cannot be escaped. We also have the
ability to make selected files within the chroot
immutable.

Flexible communication paths between
compartments and network resources are
provided via narrow, kernel level controlled
interfaces to TCP/UDP plus most IPC
mechanisms. Access to these communication
interfaces is governed by rules specified by the
security administrator on a per compartment
basis. Unlike traditional trusted operating
systems we don’t have to override our
mandatory access controls with privilege or
resort to the use of user level trusted proxies to
allow communication between compartments /
network resources.

These features together give us as a system that
both offers containment but also has enough
flexibility to make application integration
relatively straightforward. This in turn reduces
the management overhead and pain of deploying
and running a trusted system. The rest of this
document describes our design and architecture
in detail.

Baseline Architecture

The Trusted Linux kernel is a layered extension
of the standard Linux kernel (with user level
support). It has the containment property that we
believe is essential in guarding against
application compromise amongst other things.

The Trusted Linux platform consists of
modifications to the base Linux kernel to support
containment of user-level services e.g. HTTP-
servers. These changes can be broadly
categorized as such:

1. Kernel modifications in the areas of:
• TCP/IP networking
• Routing-tables and routing-caches

• System V IPC – Message queues,
shared memory and semaphores

• Processes and Threads
2. Kernel configuration interfaces in the form

of:
• Dynamically loadable kernel modules
• Command-line utilities to communicate

with these kernel modules
3. User-level scripts to administer/configure

individual compartments:
• Scripts to start/stop compartments

Figure 1 shows the architecture of our Trusted
Linux host, including the major areas where
these changes occur in the kernel and the
addition of a series of compartments in user-
space implementing Web-servers capable of
executing CGI-binaries in configurable chroot-
jails.

From the diagram it can be seen how we have
modified some of the Linux kernel subsystems
(TCP/IP, SysV IPC, etc.) to make call outs to our
kernel level security module. The security
module makes access control decisions and is
responsible for enforcing our concept of a
compartment. This is how we provide
containment.

Figure 1. Baseline Architecture for a Trusted Linux host

Kernel

Kernel Extensions

User Internal Compartments

External Compartments

Command-line utilities

TCP/IP Networking

WEB1 HTTPD

Rule Database

Admin Compartment AdminMCGA

Configuration Files
• Rules
• Routes
• FCDB

WEB2 HTTPD

WEB3 HTTPD

WEB1-MCGA

WEB2-MCGA

WEB3-MCGA

Device ConfigUNIX Domain Sockets

SysV IPC

Other Subsystems

Kernel Modules

ioctl

exec
MCGA

system calls

Security Module

The security module additionally consults a rule
database when making a decision. The rule
database contains information about allowable
communication paths between compartments and
is how we provide the narrow well controlled
interfaces in and out of a compartment.

The diagram also shows how our kernel
extensions (security module, rule database, etc.)
are administered from user space via a series of
ioctl commands. These ioctl take two forms;
ones to manipulate the rule table and others to
run processes in particular compartments and
configure network interfaces.

User space services such as the web servers
shown in the diagram are run unmodified on the
platform but have a compartment label
associated with them via the command line
interface to our security extensions. The security
module is then responsible for applying our
mandatory access controls to them based on their
applied compartment label. Importantly, this
mechanism ensures that we can contain our user
space services without having to modify those
services.

The following section deals with major
components of the architecture in detail. First the
format of the rules used for implementing our
containment mechanism. Secondly, the loadable
modules that implement this functionality within
the kernel and the command line utilities
required to configure and administer aspects of
our security extensions such as the
communication rules and process compartment
labels.

Access Control Rules
Each security check consults a table of rules.
Each rule has the form:

source -> destination method m [attr]
 [netdev n]
where:
source/destination is one of:
 COMPARTMENT (a named compartment)
 HOST (a fixed IPv4 address)
 NETWORK (an IPv4 subnet)
 m: supported kernel mechanism
 e.g. tcp, udp, msg (message queues),
 shm (shared-memory) etc.
attr: attributes further qualifying the method m
 n: a named network-interface if
 applicable eg eth0

An example of such a rule which allows
processes in the compartment named “WEB” to

access shared-memory segments (e.g. using
shmat/shmdt()) from the compartment named
“CGI” would look like:

COMPARTMENT:WEB -> COMPARTMENT:CGI
 METHOD shm

Present also are certain implicit rules, which
allow some communications to take place within
a compartment e.g. a process is allowed to see
the process identifiers of processes residing in
the same compartment. This is to allow a bare-
minimum of functionality within an otherwise
unconfigured compartment. An exception is
compartment 0, which is relatively unprivileged
and where there are more restrictions applied.
Compartment 0 is typically used to host kernel-
level threads (such as the swapper).

In the absence of a rule explicitly allowing a
cross-compartment access to take place, all such
attempts fail. The net effect of these rules is to
enforce mandatory segmentation across
individual compartments, except for those that
have been explicitly allowed to access another
compartment’s resources.

LNS Kernel Module
The current prototype uses a kernel module
called LNS to implement custom ioctl()s that
enable the insertion/deletion of rules and other
functions e.g. labeling of network interfaces. The
main client of this module is the lcu command-
line utility described below.

1. a calling process to switch compartments
2. individual network interfaces to be assigned

a compartment number
3. utility functions such as process listing with

compartment numbers and the logging of
activity to kernel-level security-checks.

4. add/delete rules including the translation
between higher-level simplified rules into
primitive forms more readily understood by
kernel lookup-routines.

LCU Command-line Utility
The lcu command-line utility provides an
interface to the LNS kernel-module. Its most
important function is to provide various
admininstration-scripts with the ability to spawn
processes in a given compartment and to set the
compartment number of network interfaces.
Example of its usage are:

struct csecinfo {
unsigned long sl;

};
struct sock {
…
#ifdef TLINUX
 /* contains compartment number */
 struct csecinfo csi;
#endif /* TLINUX */
};

1. lcu setdev eth0 0xFFFF0000

Sets the compartment number of the eth0
network interface to 0xFFFF0000

2. lcu setprc 0x2 –cap_mknod bash

Switches to compartment 0x2, removes the
cap_mknod capability and invokes bash.

General Kernel Modifications

Modifications were made to the kernel sources to
introduce a tag on various datatypes and for the
addition of access-control checks made around
such tagged datatypes. Each tagged datatype
contains an additional struct csecinfo data-
member which is currently used to hold a
compartment number (see below), but may be
extended in future to hold other security
attributes. In general, the addition of this member
is typically done at the very end of a data-
structure to avoid issues related to the common
practice casting pointers between two or more
differently named structures which begin with
common entries.

Figure 2. Example of modified datatype

The net effect of tagging individual kernel
resources is to very simply implement a
compartmented system where processes and the
data they generate/consume are isolated from
one another. This isolation is not meant to be
strict as many covert channels exist (see the
discussion about processes below) – the isolation
exists to protect the obvious forms of conflict
and/or interaction between logically different
groups of processes.

There exists a single function cnet_chk_attr()
that implements a yes/no security-check for the
subsystems that are protected in the kernel. Calls
to this function are made at the appropriate
points in the kernel sources to implement the
compartmented behaviour desired. This function
is predicated on the subsystem concerned and
may implement slightly different defaults or
rule-conventions depending on the subsystem of
the operation being queried at that time. For

example, most subsystems implement a simple
partitioning where only objects/resource having
exactly the same compartment number result in a
positive return value. However, in certain cases
the use of a no-privilege compartment 0 and/or a
wildcard compartment –1L can be used e.g.
compartment 0 as a default ‘sandbox’ for
unclassified resources/services; a wildcard
compartment for supervisory purposes, like
listing all processes on the system prior to
shutting down.

Networking
To understand better the changes made to the
TCP/IP stack, a short explanation of how
networking works in Linux is given. Each
process or thread is represented by a struct
task_struct variable in the kernel. A process may
create sockets in the AF_INET domain for
network-communication over TCP/UDP. These
are represented by a pair of struct socket and
struct sock variables, also in the kernel.

Figure 3. Major networking datatypes in Linux
IP networking

The struct sock datatype contains amongst other
things queues for incoming packets represented
by struct sk_buffs. It may also hold queues for
pre-allocated sk_buffs for packet transmission.
Each sk_buff represents an IP packet and/or
fragment travelling up/down the IP-stack. They
either originate at a struct sock (more
specifically, from its internally pre-allocated
send-queue) and travel downwards for
transmission, or their originate from a network-
driver and travel upwards from the bottom of the
stack starting from a struct net_device which
represents a network interface. When travelling
downwards, they effectively terminate at a struct
net_device. When travelling upwards, they are
usually delivered to a waiting struct sock
(actually, its pending queue).

Kernel

AF_INET

User User process/thread

struct net_device

struct sk_buff

struct task_struct

struct socket

struct sock

ip_input() – handle incoming
packets
ip_output() – handle outgoing
packets prior to transmission by
network driver

Packet delivery for TCP, UDP et
al. via tcp_rcv(), udp_rcv() etc.
sk_buff packets travel up/down the
stack

AF_INET sockets are represented
by a struct sock variable each time
they are created

2

3

1

Struct sock variables are created by indirectly by
the socket()-call1 and can usually be traced to an
owning user-process i.e. a task_struct. There
exist a struct net_device variable for each
configured interface on the system, including the
loopback interface. Localhost and loopback
communications appear not to travel via a
fastpath across the stack for speed, rather they
travel up and down the stack as one would
expect for remote host communications. At
various points in the stack, calls are made to
registered netfilter-modules for the purposes of
packet interception.

By adding an additional csecinfo data-member to
the most commonly used datatypes in Linux IP
networking, it becomes possible to trace
ownership and hence read/write-dataflows of
individual IP packets for all running processes
on the system, including internal kernel-
generated responses.

Modified Networking Datatypes
Most of the data-structures modified are related
to networking and occur in the networking stack
and socket-support routines. The tagged network
data structures serve to implement a partitioned
IP stack. The following data structures were
modified to include a struct csecinfo:

1. struct task_struct - processes (and threads)
2. struct socket - abstract socket

representation
3. struct sock - domain-specific socket
4. struct sk_buff - IP packets or messages

between sockets
5. struct net_device - network interfaces e.g.

eth0,lo etc.

Once the major datatypes were tagged, the entire
IP-stack was checked for points at which these
datatypes were used to introduce newly
initialised variables into the kernel. Having
identified these, code was inserted to ensure that
the inheritance of the csecinfo structure was
carried out. The next section describes how the
csecinfo structure is propagated throughout the
IP networking stack.

1 Well, almost. There are private per-protocol
sockets owned by various parts of the stack
within the kernel itself that cannot be traced to a
running process. See the discussion later about
this.

Propagation of struct csecinfo in IP
networking
There are two named sources of struct csecinfo
data members – per-process task_structs and per-
interface net_devices. Each process inherits its
csecinfo from its parent, unless explicitly
modified by a privileged ioctl(). Currently, the
init-process is assigned a compartment number
of 0. Therefore, every process spawned by init
during system startup will inherit this
compartment number unless explicitly set
otherwise. During system startup, init-scripts are
typically called to explicitly set the compartment
numbers for each defined network interface. The
diagram below illustrates how csecinfo data-
members are propagated for the most common
cases.

All other data structures inherit their csecinfo
structures from either a task_struct or a
net_device. For example, if a process creates a
socket, a struct socket and/or struct sock may be
created which inherit the current csecinfo from
the calling process. Subsequent packets
generated by calling write() on a socket generate
sk_buffs which inherit their csecinfo from the
originating socket.

Incoming IP packets are stamped with the
compartment number of the network interface on
which it arrived, so sk_buffs travelling up the
stack inherit their csecinfo structure from the
originating net_device. Prior to being delivered
to a socket, each sk_buff’s csecinfo structure is
checked against that of the prospective socket.

Example Propagation
Kernel functions that create/copy/clone the
modified networking datatypes are modified to
also handle the propagation of the struct csecinfo
data-member. The code-fragment below shows
how skb_clone() which clones an input struct
sk_buff copies over the struct csecinfo member.

struct sk_buff * skb_clone(struct sk_buff * skb,
 int gfp_mask)
{

struct sk_buff *n;
n = skb_head_from_pool();

// other initialization steps
// ...
n->cloned = 1;
n->next = n->prev = NULL;
n->list = NULL;
// ...

#ifdef TLINUX /* copy security info */
n->csi = skb->csi;

#endif
return n;

}

Figure 4. Propagation of struct csecinfo data-members for IP-networking

Handling Loopback communications
Special care has to be taken for non-remote
networking. We need to handle the case when a
connection is made between compartments X
and Y through any number of the configured
network interfaces and is allowed by a rule of
this form:

COMPARTMENT X -> COMPARTMENT Y METHOD tcp

Because the security checks happen twice for IP-
networking (once on output and once on input)
we may naively end up looking for the existence
of these rules instead:

COMPARTMENT X -> HOST a.b.c.d METHOD tcp
(for output)
HOST a.b.c.d -> COMPARTMENT X METHOD tcp
(for input)

which although are valid may not be used in
preference to the rule specifying source and
destination compartments directly. To cater for
this, packets sent to the loopback device retain
their original compartment numbers and are
simply ‘reflected’ off it for eventual delivery.
Note that the actual security check happens on
delivery and not transmission. Upon receipt of an
incoming local packet on the loopback interface,
we avoid overwriting the compartment number
of the packet with that of the network-interface
and allow it to travel up the stack for the
eventual check on delivery. Once there, we
perform a check for a rule of the form:

COMPARTMENT X -> COMPARTMENT Y METHOD tcp

instead of
HOST a.b.c.d -> COMPARTMENT Y METHOD tcp

because of the presence on the sk_buff of a
compartment number that is not of a form
normally allocated to network interfaces.2

Dynamic Rules in TCP/IP
Because the rules are unidirectional, the TCP
layer has to dynamically insert a rule to handle
the reverse data flow once a TCP connection has
been setup, either as a result of a connect() or
accept(). This happens automatically in the
current prototype and the rules are then deleted
once the TCP connection is closed. Special
handling occurs when a struct tcp_openreq is
created to represent the state of a pending
connection request, as opposed to one that has
been fully set up in the form of a struct sock. A
reference to the reverse-rule created is stored
with the pending request and is also deleted if
the connection request times out or fails for some
other reason.

An example of this would be when a connection
is made from compartment 2 to a remote host
10.1.1.1. The original rule allowing such an
operation might have looked like this:

COMPARTMENT 2 -> NET
10.1.1.0/255.255.255.0 METHOD tcp

2 Network interfaces as a general rule are
allocated compartment numbers in the range
0xFFFF0000 and upwards and can therefore be
distinguished from those allocated for running
services.

Process execution

TCP/IP Stack

Device Driver

Socket layer

System Boot

struct net_device

struct task struct

struct sock

struct sk_buff

struct sock

struct net_device

struct sk_buff

init-scripts

write()

ip_input()

(csecinfo inherited)

(csecinfo inherited)

exec()

(csecinfo set)

System time

socket()

(csecinfo inherited)

As a result, the reverse rule would be something
like this (abc/xyz being the specific port-
numbers used):

HOST 10.1.1.1 PORT abc -> COMPARTMENT 2
PORT xyz METHOD tcp

Per-Compartment Routing
To support per-compartment routing-tables, each
routing-table entry is tagged with a csecinfo
structure. The modified data-structures are:

1. struct rt_key
2. struct rtable
3. struct fib_rule
4. struct fib_node

Inserting a route using the route-command will
cause a routing-table entry to be inserted with the
csecinfo structure inherited from the calling
context of the user-process i.e. if a user invokes
the route-command from a shell in compartment
N, the route added will be tagged with N as the
compartment number. Attempts to view routing-
table information (usually by inspecting
/proc/net/route and /proc/net/rt_cache) are
predicated on the value of the csecinfo structure
of the calling user-process.

The major routines used to determine input and
output routes a sk_buff should take are
ip_route_output() and ip_route_input(). These
have been expanded to include an extra argument
consisting of a pointer to the csecinfo structure
on which to base any routing-table lookup. This
extra argument is supplied from either the
sk_buff of the packet being routing for input or
output.

Kernel-inserted routing-entries have a special
status and are inserted with a wildcard
compartment number (-1L). In the context of
per-compartment routing, they allow these
entries to be shared across all compartments. The
main purpose of such a feature is to allow
incoming packets to be routed properly up the
stack. Any security-checks occur at a higher-
level just prior to the sk_buff being delivered on
a socket (or its sk_buff queue).

The net effect is that each compartment appears
to have their individual routing tables which are
empty by default. Every compartment shares the
use of system-wide network-interfaces – there is
currently no support for the concept of an IP-
address per-compartment, although this can

appear to be supported at a higher-level e.g.
individual HTTP-servers bound to unique IP-
addresses.

Subject to future revision, it is possible to restrict
individual compartments to a strict subset of the
available network-interfaces. This is because
each network-interface is notionally in a
compartment of its own (with its own routing
table). In fact, to respond to an ICMP-echo
request, each individual interface can optionally
be configured with tagged routing-table entries
to allow the per-protocol ICMP-socket to route
its output packet.

Other Subsystems
• UNIX Domain Sockets: Each UNIX

domain socket is also tagged with the
csecinfo structure. As they also use sk_buffs
to represent messages/data traveling
between connected sockets, many of the
mechanisms used by the AF_INET domain
described above apply similarly. In addition,
security-checks are also performed at every
attempt to connect to a peer.

• System V IPC: Each IPC-mechanism listed
above is implemented using a dedicated
kernel structure that is similarly tagged with
a csecinfo structure. Attempts to list, add,
remove or add messages to these constructs
are subject to the same security checks as
individual sk_buffs. The security-checks are
dependent on the exact type of mechanism
used.

• Processes/Threads:
Since individual processes i.e. task_structs
are tagged with the csecinfo structure, most
process-related operations will be predicated
on the value of the process’s compartment
number. In particular, process listing (via the
/proc interface) is controlled as such to
achieve the effect of a per-compartment
process-listing. Signal-delivery is somewhat
more complicated as there remains issues
around delivering signals to parent processes
who may have switched compartments –
thus constituting a 1-bit covert channel.
Such cases have not been analysed in detail
in the expectation that many other such
covert channels (usually much wider) do
exist – such as the consumption of CPU-
time/disk-space as a signal in morse, for
example.

System Defaults

Per-protocol Sockets
The Linux IP-stack uses special, private per-
protocol sockets to implement various default
networking behaviours such as ICMP-replies.
These per-protocol sockets are not bound to any
user-level socket and are typically initialised
with a wildcard compartment number to enable
ICMP et al. to behave normally.

Use of Compartment 0 as Unprivileged
Default
The convention is to never insert rules that allow
compartment 0 any access to other compartments
and network-resources. This way, the default
behaviour of initialised objects, or objects that
have not been properly accounted for will fall
under a sensible (and restrictive) default.

Default Kernel Threads
Various kernel threads may appear by default
e.g. kswapd, kflushd and kupdate but to name a
few. These threads are also assigned a csecinfo
structure per-task_struct and their compartment
numbers default to 0 to reflect their relatively
unprivileged status.

Sealing Compartments Against Assumption
of Root-identity
Individual compartments may optionally be
registered as “sealed” to protect against
processes in that compartment from successfully
calling setuid(0) and friends, and also from
executing any SUID-root binaries. This is
typically used for externally-accessible services
which may in general be vulnerable to buffer-
overflow attacks leading to the execution of
malicious code. If such services are constrained
to initially run as a pseudo-user (non-root) and if
the compartment it executes in is sealed, then
any attempt to assume the root-identity either by
buffer-overflow attacks and/or execution of
foreign instructions will fail. Note that any
existing processes running as root will continue
to do so.

Layering User-level Services

The kernel modifications described previously
serve to support the hosting of individual user-
level services in a protected compartment. In
addition to this, the layout, location and
conventions used in adding or removing services
in the current prototype are described here.

Individual services are generally allocated a
compartment each. However, what an end-user
perceives as a service may actually end up using
several compartments. An example would be the
use of a compartment to host an externally-
accessible Web-server with a narrow interface to
another compartment hosting a trusted gateway
agent for the execution of CGI-binaries in their
own individual compartments. In this case, one
would need at least 3 compartments:

• One for the web-server processes
• One for the trusted gateway agent which

executes CGI-binaries
• As many compartments as is needed to

properly categorise each CGI-binary, as the
trusted gateway agent will fork/exec CGI-
binaries in their configured compartments

Directory Layout
Every compartment has a name and resides as a
chroot-able environment under /compt.
Examples used in the current prototype include:

Location Description
/compt/admin Admin HTTP-server
/compt/omailout Externally visible HTTP-

server hosting OpenMail
CGIs

/compt/omailin Internal compartment
hosting OpenMail server
processes

/compt/web1 Externally visible HTTP-
server

/compt/web1mcga Internal trusted gateway
agent for web1’s CGI-
binaries

In addition, these subdirectories also exist:

1. /compt/etc/cac/bin – various scripts and
command-line utilities for managing
compartments

2. /compt/etc/cac/rules – files containing rules
for every registered compartment on the
system

3. /compt/etc/cac/encoding – configuration file
e.g. compartment-name mappings

Layout of a Typical Compartment
To support the generic starting/stopping of a
compartment, each compartment has to conform
to a few basic requirements:

1. be chroot-able under its compartment
location /compt/<name>

2. provide /compt/<name>/startup and
/compt/<name>/shutdown to start/stop the
compartment

3. Startup and shutdown scripts are responsible
for inserting rules, creating routing-tables,
mounting filesystems (e.g. /proc) and other
per-service initialization steps.

In general, if the compartment is to be externally
visible, the processes in that compartment should
not run as root by default and the compartment
should be sealed after initialization. Sometimes,
this is not possible due to the nature of a legacy
application being integrated/ported – in this case,
one should remove as many capabilities as
possible in order to prevent the processes from
escaping the chroot-jail e.g. cap_mknod.

Administration Scripts
Due to the fact that the various administration
scripts require access to each configured
compartment’s filesystem and that these
administration-scripts are called via the CGI-
interface of the administration Web-server, it is
the case that these scripts then cannot reside as a
normal compartment i.e. under /compt/<name>.

The approach currently taken is to enclose the
chroot-able environment of the administration
scripts around every configured compartment,
but to ensure that the environment is a strict
subset of the host’s filesystem. The natural
choice is to make the chroot-jail for the
administration scripts to have its root at /compt.

Integrating Applications
Since compartments exist as chroot-ed
environment under the /comp directory,
application-integration will require the usual
techniques used for ensuring that they work in a
chroot-ed environment. A common technique is
to prepare a cpio-archive of a minimally running
compartment, containing a minimal RPM-
database of installed software. One would
normally install the desired application on top of
this. In the case of applications in the form of
RPMs, one could perform these steps:

root@tlinux# chroot /compt/app1
root@tlinux# rpm -install <RPM-package-filename>
root@tlinux# [Change configuration files are required
 e.g. httpd.conf]
root@tlinux# [Create startup/shutdown scripts in
 /compt/app1]

Figure 5. Steps performed to install RPM-
packages in a compartment

The latter few steps may be integrated into the
RPM-install phase. Reductions in disk-space can
be achieved by inspection: selectively
uninstalling unused packages via the rpm-
command. Additional entries in the
compartment’s /dev-directory may be created if
required, but /dev is normally left pretty bare in
most cases. Further automation may be achieved
by providing a Web-based interface to the
process above to supply all the necessary
parameters for each type of application being
installed. No changes to the compiled binaries
are needed in general, unless one wishes to
install compartment-aware variants of such
applications.

Figure 6. Compartmented OpenMail 6.0 with Web front-end

Trusted Linux
Internet Gateway

OpenMail Server

SMTP/POP Server

Externally-Facing
Apache
Compartment

httpd

httpd

httpd

Internal OpenMail 6.0 Server Compartment

req.server

omslapd

omdrs

omdbmon

in.imap41d

xport.out

… …

Server processesPublic
Internet

Internal Network

Back-end

mailto:root@tlinux#
mailto:root@tlinux#
mailto:root@tlinux#
mailto:root@tlinux#

Example of Application Integration –
OpenMail 6.0

The OpenMail 6.0 distribution for Linux consists
of a large 160Mb+ archive of some unspecified
format, and an install-script ominstall. To install
OpenMail, we first chroot to an allocated bare-
bones inner-compartment:

root@tlinux# chroot /compt/omailin
root@tlinux# ominstall
root@tlinux# [wait for OpenMail install to complete
 naturally]
root@tlinux# [do additional configuration if
 required, e.g. setup mailnodes]

Since OpenMail 6.0 has a Web-based interface
which we wish to also install, we allocated
another bare-bones compartment (omailout), and
install an Apache HTTP-server to handle the
HTTP-queries.

root@tlinux# chroot /compt/omailout
root@tlinux# rpm –-install <apache-RPM-filename>
root@tlinux# [Configure Apache’s httpd.conf to handle
 CGI-requests as
 required by OpenMail’s installation
 instructions]

At this point we then have to install the CGI-
binaries that come with OpenMail 6.0 so that
they can be accessed by the Apache HTTP-
server. There are a couple of methods available:

• Install OpenMail again in omailout and
remove unnecessary portions e.g.
server-processes

• Copy the OpenMail CGI-binaries from
omailin, taking care to preserve
permissions and directory structure.

In either case, the CGI-binaries typically are
placed in the cgi-bin directory of the Apache
Web-server. If disk-space is not an issue, the
former approach is more brute-force and works
well. The latter method can be used if one needs
to be sure of exactly which binaries are to be
placed in the externally-facing omailout
compartment. Finally, we can start both
compartments:

root@tlinux# comp_start omailout omailin

Figure 6 shows the final result – the only
externally accessible processes are the Apache
HTTP daemons which communicate via internal
loopback to the internally-facing OpenMail
server processes. These can optionally
communicate with back-end servers.

Issues and Limitations

Capabilities in Linux
Capabilities do exist in Linux and most
subsystems do check for them when performing
operations that are considered to be privileged.
However, the assignment of such capabilities on
a per-user basis is not currently built-in into the
standard distributions although the run-time
propagation of capabilities from the init-process
itself appears to have been thought out. There
exist few tools to manipulate these capabilities
(the lcu-utility is an example of one) and the the
system include-files do not even include a
function prototype for sys_capset/capget3!

Given the embryonic nature of capabilities in
Linux, it is not possible to build a secure
platform relying on the sole use of these
capabilities for the execution of privileged
operations. Whilst kernel-level code can be made
to check for capabilities as opposed to zero-
UIDs, all user-space binaries (except for lcu)
have to remain unaware of this.

Handling IP fragments
It may be possible that IP fragments are received
with different originating compartment numbers.
In such a case, we should disallow the fragment
re-assembly to proceed with fragments of
differing compartment numbers. However, no
checks are currently performed to implement
this. The opposite happens when IP-fragments
are generated in response to excedding the
calculated MTU – each fragment inherits the
compartment number of the original outsized
packet.

Other Protocols
Support for various other network protocols
needs to be added e.g. IPX/SPX etc. The effect
of compartmentalisation on existing protocol
IGMP, GRE etc. needs testing.

Filesystem Protection
A more comprehensive method for filesystem
protection than chroot-jails needs to be
developed. There exists utilities to verify
ownership/permissions and MD5 hashes in the
style of FCDBs, but these have not been

3 Callers of the sys_capset/sys_capget system-
calls typically resort to the _syscall*() interface
to define equivalents to the
sys_capset/sys_capget system calls.

mailto:root@tlinux#
mailto:root@tlinux#
mailto:root@tlinux#
mailto:root@tlinux#
mailto:root@tlinux#
mailto:root@tlinux#
mailto:root@tlinux#
mailto:root@tlinux#

integrated into the current prototype. Moreoever,
they do not support the encoding of capabilities
on a per-inode basis as no changes to the inode-
structure have been made at this point. There
exists spare bits in the standard ext2 inode, but
any use of these will invariably clash with future
changes to ext2 (and ext3!).

Kernel Compatibility
The current prototype is based on the 2.4.0
kernel. It is expected to be available for
subsequent revisions when they become
available. The size of nature of the patches
required against the vanilla Linux source tree are
such that tracking newer kernel revisions is
relatively easy. There are no plans to back-port
the changes for the 2.2 series of kernels.

Unsupported Configurations
Certain features of the Linux kernel are not
supported, either because they bypass the kernel
entirely or because no proper
compartmentalization can be performed on them.
Examples include:

• Hardware assisted card-to-card bridging
• NAT and IP-Masquerading
• NFS server configurations

Summary
The Trusted Linux kernel implements
containment in a lightweight and flexible manner
that allows a variety of services to be hosted in a
secure manner. The enhancement of the vanilla
kernel with mandatory access controls tuned for
networked-applications such as web, mail and
application-servers makes it ideal as a secure
platform for an Internet gateway.

Application integration is relatively
straightforward, following the normal constraints
imposed by a chroot jail with the additional
requirements that the Trusted Linux kernel
provides itself. Relatively large binary-only
packages, such as OpenMail, have been
integrated without major difficulty.

	Trusted Linux : A Secure Platform for Hosting Compartmented Applications
	Introduction
	Containment
	Traditional Trusted OS approach to containment
	Our approach to containment

	Baseline Architecture
	Access Control Rules
	LNS Kernel Module
	LCU Command-line Utility

	General Kernel Modifications
	
	Networking

	Modified Networking Datatypes
	Propagation of struct csecinfo in IP networking
	Example Propagation

	Handling Loopback communications
	Dynamic Rules in TCP/IP
	Per-Compartment Routing

	Other Subsystems

	System Defaults
	
	Per-protocol Sockets
	Use of Compartment 0 as Unprivileged Default
	Default Kernel Threads
	Sealing Compartments Against Assumption of Root-identity

	Layering User-level Services
	
	Directory Layout
	Layout of a Typical Compartment
	Administration Scripts

	Integrating Applications
	Example of Application Integration – OpenMail 6.0

	Issues and Limitations
	
	Capabilities in Linux
	Handling IP fragments
	Other Protocols
	Filesystem Protection
	Kernel Compatibility
	Unsupported Configurations

	Summary

