
Trusted Linux:Trusted Linux:
A Secure Platform for HostingA Secure Platform for Hosting
 Com partm ented Applications Com partm ented Applications

Tse Huong ChooTse Huong Choo
Hewlett Packard Laboratories 2001Hewlett Packard Laboratories 2001

Page 2

Trusted Linux: ContentsTrusted Linux: Contents

!! Usage Scenario & Major FeaturesUsage Scenario & Major Features

!! Kernel Changes ExplainedKernel Changes Explained

!! Access Control ChecksAccess Control Checks

!! Filesystem Protection MechanismsFilesystem Protection Mechanisms

!! Application Integration - Legacy Java AppApplication Integration - Legacy Java App
• Approach Taken
• Various Configurations Explained

!! SummarySummary

Page 3

Trusted Linux - UsesTrusted Linux - Uses

!! Usage ScenarioUsage Scenario
• Internet Gateway Systems
• Secure Platform for Hosting Multiple Network Services

!! ExamplesExamples
• Front-end Web server farms
• HTTP-fronted legacy applications residing on back-end servers
• Classic INSIDE/OUTSIDE configurations

!! Platform SupportPlatform Support
• Based on Linux for IA-32, optimised for SMP-capable systems
• Mandatory Security properties
• Binary compatibility with existing software
• Pre-packaged compartment-aware applications provided

Page 4

Building Containm entBuilding Containm ent

!! Options available for containment OSOptions available for containment OS
• Tradeoff between direct kernel changes/performance and maintainability
• In the end, kernel changes proved relatively minor

Trusted Linux
V1

Kernel modifications to
several subsystems

No kernel modifications
whatsoever

Synchronous state Asynchronous state (garbage collecting required)

Interrupts, TCP
timers etc

Interrupts, TCP
timers etc

fork/vfork/clone
& execve

fork/vfork/clone
& execve

do_exit
(SIGSEGV etc)

do_exit
(SIGSEGV etc)…

Trusted Linux
V2

…

increasing source changes

Trusted Linux V3 – possible range

123

Page 5

M ajor FeaturesM ajor Features

!! Kernel changes fall into 2 categories:Kernel changes fall into 2 categories:
• hooks - access-control callouts placed thoughout kernel
• lns.o - kernel module which implements the decision function

 into which the hooks call into

Process M gm t
UID / Cap
Handling

AF_INET AF_UNIX

SysV IPC Exec / binfm t

Process M gm t
UID / Cap
Handling

AF_INET AF_UNIX

SysV IPC Exec / binfm t

lns.olns.o

hook

hook

hook

hook hook

hook

Page 6

Effect of ChangesEffect of Changes

!! Kernel resources (individual variables) are taggedKernel resources (individual variables) are tagged

process

process

process

kernel

process

process

process

file ipc

file

socketipc

socket

ipc
kernel

process

Vanilla Linux Trusted Linux

file

socket

ipc

socket

file
socket

ipcsocket

file

ipc

socket

socket

file

Page 7

Trusted Linux New DatatypeTrusted Linux New Datatype

!! Custom datatype to hold tagCustom datatype to hold tag
• tag is a 32-bit scalar value (unsigned long on i386)
• tags can be copied around without resource management
• tags are cheap to use / destroy

!! Tag applied to various kernel datatypesTag applied to various kernel datatypes
• struct socket, struct sock, struct task_struct, struct sk_buff, etc.

Default initialisation value

Notes

Enclosing struct allows room
for expansion

Page 8

Exam ple M odification (struct sk_buff)Exam ple M odification (struct sk_buff)

!! A struct sk_buff used throughout networking codeA struct sk_buff used throughout networking code
• In IPV4, it represents an individual IP packet (or fragment)
• In UNIX domain sockets, it is an individual message buffer
• In NIC device drivers, sk_buffs represent an entire frame

…

Page 9

Exam ple M odification (skb_clone)Exam ple M odification (skb_clone)

!! skb_clone() serves to make copies of sk_buffsskb_clone() serves to make copies of sk_buffs
• tag needs to be propagated when sk_buffs are cloned

…

Page 10

Typical Access Control CheckTypical Access Control Check

!! Packet delivery (TCP)Packet delivery (TCP)
• Single decision function - cnet_lookup_rule()

Additional data from contextAdditional data from contextContext under which check is
performed
Context under which check is
performed

…
csecinfo of sourcecsecinfo of source csecinfo of destinationcsecinfo of destination

Page 11

Program m ing Idiom sProgram m ing Idiom s

!! Datatype splicing is commonDatatype splicing is common
• memcpy() of portions of structs across different types busts type-checking
• Example:

struct tcp_tw_bucket (TIME_WAIT bucket for closing sockets)
struct sock (socket representation in kernel)

void some_function(…, struct sock *sk, …) {
 struct tcp_tw_bucket *tw = (struct tcp_tw_bucket) sk;

!! Lifetime of variables must be trackedLifetime of variables must be tracked
• Ensure CSI_INVALID_SL is assigned when variables initially created
• Variable deallocation is non-issue: scalar tags need not be deallocated
• Examples:

struct sk_buff - alloc_skb() / sk_buff.c
struct sock - sk_alloc() / sock.c

Both types share common
members at the front of each
struct

Both types share common
members at the front of each
struct

!!!

Page 12

Filesystem ProtectionFilesystem Protection

!! Desired semanticsDesired semantics
• Operates on a per-compartment basis
• Makes rest of filesystem inaccessible outside allocated portion, in case chroot

fails

!! ManagebilityManagebility
• Per-file specifications are too bulky
• Some precedence ordering required to secure ‘default’ cases

!! Focus on typical application behaviour & requirementsFocus on typical application behaviour & requirements
• Application specific logfiles typically reside in a subdirectory
• Configuration files are read-only, often clustered together
• Some form of content overwrite protection whilst allowing content update from

another compartment

Page 13

Filesystem Protection M echanism sFilesystem Protection M echanism s

!! Rules specifying access-control on a per-compartmentRules specifying access-control on a per-compartment
basisbasis
• Format: [COMPARTMENT] [PATH] [ATTR-BITS]
• e.g WEB1 /compt/WEB1/apache/logs append

 WEB1 /compt/WEB1/apache/htdocs readonly
 WEB1 /compt/WEB1/ read-write
 WEB1 / no-access

Meaning:
 Append-only to access_log, error_log ssl_* logfiles
 Content protection against attempted overwrite via buffer overflow
 General access within the allocated space for this compartment
 No access whatsoever outside /compt/WEB1

111

222

333

444

111

222

333

444

Page 14

Exam ple Application Integration - 1Exam ple Application Integration - 1

!! Assume legacy Java Servlet/JSP application Assume legacy Java Servlet/JSP application –– JAPP JAPP
• Java Authorisation Server using RMI

!! Approach taken:Approach taken:
• Hide from external probing as many components as possible
• Factor out as much potentially untrusted code as possible

from direct external access
• Separate groups of components into clearly defined process &

communication boundaries
• Hide sensitive application-configuration files from public access
• Prevent the hosted services from accessing each others configuration files

and those of the JAPP components
• No source-code changes to JAPP if possible

Page 15

Exam ple Application Integration - 2Exam ple Application Integration - 2

!! Standard ConfigurationStandard Configuration
• This is the configuration one might use on a non-compartment system e.g. on

standard Linux. All processes and RMI objects are potentially directly
accessible.

• There is litte protection against a buffer-overflow attack in the HTTP-server
leading to root-equivalent access.

*: Trivially true, since the entire system is considered a single compartment

 Hidden from
External Access

Levels of Indirection
from direct access

Component present in
external compartment

HTTP-Server No 0 (direct) Yes*

JAPP Servlet No 0 Yes*

RMI Registry No 0 Yes*

JAPP Server Objects No 0 Yes*

Services Individually Separate No

HTTP-Server can gain root Yes

Page 16

Exam ple Application Integration – 3aExam ple Application Integration – 3a

!! 3+X Configuration3+X Configuration
• Configuration is straightforward
• Single rule allowing access via tcp/80 for remote clients
• Rules connecting

Java Web server + Servlets
RMI Registry
JAPP Authorisation Server

RMI RegistryRMI Registry

JAPP
Authorization Server

JAPP
Authorization Server

JavaWebServer (JWS)
+

JAPP Servlet
components

JavaWebServer (JWS)
+

JAPP Servlet
components

Services

Externally Facing (publicly
accessible)

tcp/80

Page 17

Exam ple Application Integration – 3bExam ple Application Integration – 3b

!! 3+X Configuration3+X Configuration
• Advantage of hiding the connection points of the RMI server-objects from

external access
• Externally-facing compartment also sealed against root transitions as a general

precaution
• Avoid possiblity of getting root in externally-facing compartments

 Hidden from
External
Access

Levels of
Indirection from
direct access

Component present
in external
compartment

HTTP-Server No 0 (direct) Yes

JAPP Servlet No 0 (direct) Yes

RMI Registry Yes 1 No

JAPP Server
Objects

Yes 1 No

Services Individually Separate Yes

HTTP-Server can gain root No

RMI RegistryRMI Registry

JAPP
Authorization Server

JAPP
Authorization Server

JavaWebServer (JWS)
+

JAPP Servlet
components

JavaWebServer (JWS)
+

JAPP Servlet
components

Services

Externally Facing (publicly
accessible)

tcp/80

Page 18

Exam ple Application Integration – 4aExam ple Application Integration – 4a

!! 4+X Configuration - 4+X Configuration - Tighten previous configurationTighten previous configuration
• Observation: too much potentially untrusted code resides

in one externally-facing compartment
• Possible to factor out more code from the single external compartment

into another separate internal compartments
• Use out-of-process servlet container, connected by single rule

RMI RegistryRMI Registry

JAPP
Authorization Server

JAPP
Authorization Server

Apache Web ServerApache Web Server
Services

Externally Facing

tcp/80

Jakarta + JAPP Servlet
Components

Jakarta + JAPP Servlet
Components

Page 19

Exam ple Application Integration – 4bExam ple Application Integration – 4b

!! 4+X Configuration4+X Configuration
• Web-server compartment running substantially fewer pieces of code
• Note that the back-end RMI objects are now twice-removed from

external-access where previously only once-removed

4+X Configuration4+X Configuration
 Hidden from

External
Access

Levels of
Indirection from
direct access

Component present
in external
compartment

HTTP-Server No 0 (direct) Yes

JAPP Servlet Yes 1 No

RMI Registry Yes 2 No

JAPP Server
Objects

Yes 2 No

Services Individually Separate Yes

HTTP-Server can gain root No

RMI RegistryRMI Registry

JAPP
Authorization Server

JAPP
Authorization Server

Apache Web ServerApache Web Server
Services

Externally Facing

tcp/80

Jakarta + JAPP Servlet
Components

Jakarta + JAPP Servlet
Components

Page 20

Sum m arySum m ary

!! Principle UsesPrinciple Uses
• Secure gateway systems
• Web-fronted applications requiring access to relatively unprotected back-end

servers

!! Platform SupportPlatform Support
• Targeted at Linux IA-32 SMP systems
• Layered installation on top of well known distributions
• Binary compatibility whilst gaining additional mandatory security properties

!! Application Integration Using Trusted LinuxApplication Integration Using Trusted Linux
• Factor out as much code that is directly accessible
• Define communications boundaries
• Define interfaces as narrowly as possible
• Use chroot/restricted filesystems to reduce accessibility of configuration files

