rusted i

A Secure Platiermifer Hosting
Compartmenited Applications

Iise Huong Cheo
Hewlett PackardiLaboratores; 2004

rusted Linue: Contents

Usage Scenario & Major Features
m Kernel Changes Explained

m Access Control Checks

m Filesystem Protection Mechanisms

m Application Integration - Legacy Java App

» Approach Taken
» Various Configurations Explained

® Summary

Page

Trusted LCinux - Uses

Usage Scenario

* Internet Gateway Systems
» Secure Platform for Hosting Multiple Network Services

m Examples

 Front-end Web server farms
 HTTP-fronted legacy applications residing on back-end servers
* Classic INSIDE/OUTSIDE configurations

m Platform Support

» Based on Linux for 1A-32, optimised for SMP-capable systems
* Mandatory Security properties

* Binary compatibility with existing software

* Pre-packaged compartment-aware applications provided

Page 3

BUldime Containment

Kernel modifications to
several subsystems

m Options available for containment OS

» Tradeoff between direct kernel changes/performance and maintainability
* In the end, kernel changes proved relatively minor

No kernel modifications
whatsoever

Trusted Linux

Trusted Linux

Trusted Linux V3 — possible range

V2

V1

Interrupts, TCP
timers etc

‘fork/vfork/clone
& execve

do_exit
(SIGSEGV etc)

\-

)

Synchronous state

increasing source changes

Asynchronous state (garbage collecting required)

Page 4

Majer Eeatures

* hooks
°|Ins.o

- access-control callouts placed thoughout kernel
- kernel module which implements the decision function

Into which the hooks call into

m Kernel changes fall into 2 categories:

UID / Cap

Process Mgmt Handling

AF_INET AF_UNIX
SysV IPC Exec / binfmt

UID / Cap
Process Mgmt/ Handling
hook ’ hook)
AF_UNIX
AF_INET U L
ook __» hook _»
SysV IPC Exec / binfmt

hoo\k)

hook

Ins.o

Page 5

Efifiect ot Chianges

procey DTOCGSS)

m Kernel resources (individual variables) are tagged

process)

kernel

socket ~ socket

_)»

socket
f|Ie file

_ file =
ipc . ~——— socket
ipc

process

process

socket

file

Lt

ipc

LLL

pI’OCESS

\kﬂ f"e)’
x

\f"‘j socket

ookt J e J

kernel

process

Vanilla Linux

Trusted Linux

Page 6

Iriusted Cipux-New: Datatype

m Custom datatype to hold tag

e tag is a 32-bit scalar value (unsigned long on i386)
* tags can be copied around without resource management
e tags are cheap to use / destroy

#define CSI_INVALID_SL RGN

typedef struct _csecinfo {
unzigned long =1
I czecinfo?

m Tag applied to various kernel datatypes

Notes

Default initialisation value

Enclosing struct allows room
for expansion

» struct socket, struct sock, struct task_struct, struct sk_buff, etc.

Page 7

(Examplie VMiedification (Struct Sk i)

m A struct sk_buff used throughout networking code

 In IPV4, it represents an individual IP packet (or fragment)
 In UNIX domain sockets, it is an individual message buffer
 In NIC device drivers, sk_buffs represent an entire frame

struct sk_buff {

Eiﬁﬁ&p sk_buFf * nexts
[struct =k_buff * preu:

struct sk_buff_head % list:
struct sock ®=k *
struct timeval stamp?

#ifdef COMFIG_MET_SCHED
__u52 to_index?
#endif

#ifdef | ASPER

czecinfo CcEil
#endif

5

Page 8

(ExamplerViodification (Skisr clene)

m skb_clone() serves to make copies of sk_buffs

* tag needs to be propagated when sk_buffs are cloned

struct sk_buff *skb_clonelstruct sk_buff *skb, int ofp_mask)
d
struct sk_buff *n:

h = zkb_head_from_pool():

ik (In) {
n = kmem_cache_alloc{skbuff_head_cache, afp_mask):
if (In)

. return NULL:

#ifdef CASPER

h—+csi = skb->csi:
#endif

return n:

Page 9

Typicall Access Controlf Check

m Packet delivery (TCP)

* Single decision function - cnet_lookup_rule()

#ifdef CASPER
int tep_wd_do_rcwistruct sock *sk, struct sk_buff #skb)

2
csecinfo of source csecinfo of destination
if{ lenet_lookup_rulel &skb—>ecsi, &sk-2esi, RTC_TCP_RCY, skb)3
1
ifi skb)
kfree_skb{skbj:
return 0@
¥
return top_wd_do_rev_stubisk, skb)
T
#endif

Context under which check is Additional data from context
performed

Page 10

Progranmming ldioms

m Datatype splicing iIs common

* memcpy() of portions of structs across different types busts type-checking

* Example:
struct tcp_tw_bucket (TIME_WAIT bucket for closing sockets) Both types share common
o members at the front of each
struct sock (socket representation in kernel) S

void some_function(..., struct sock *sk, ...) {
struct tcp_tw_bucket *tw = (struct tcp_tw_bucket) sk; 0

m Lifetime of variables must be tracked

e Ensure CSI_INVALID_SL is assigned when variables initially created
* Variable deallocation is non-issue: scalar tags need not be deallocated

« Examples:
struct sk_buff - alloc_skb() / sk_buff.c
struct sock - sk alloc() / sock.c

Page 11

Ellesystem Protection

Desired semantics

» Operates on a per-compartment basis

» Makes rest of filesystem inaccessible outside allocated portion, in case chroot
fails

m Managebility

* Per-file specifications are too bulky
» Some precedence ordering required to secure ‘default’ cases

m Focus on typical application behaviour & requirements

 Application specific logfiles typically reside in a subdirectory
» Configuration files are read-only, often clustered together

« Some form of content overwrite protection whilst allowing content update from
another compartment

Page 12

Ellesystem: Protection Mechanisms

®m Rules specifying access-control on a per-compartment

basis
e Format: [COMPARTMENT] [PATH] [ATTR-BITS]
e.g @ WEBL /compt/WEB1/apache/logs append
© WwEB1 /compt/WEB1/apache/htdocs readonly
© WwEB1L /compt/WEB1/ read-write
O \WEB1 / no-access
Meaning:

® Append-only to access_log, error_log ssl_* logfiles

© Content protection against attempted overwrite via buffer overflow
© General access within the allocated space for this compartment
o No access whatsoever outside /compt/WEB1

Page 13

ExanmplerApplication: Integration: - 1

m Assume legacy Java Servlet/JSP application — JAPP

e Java Authorisation Server using RMI

m Approach taken:

» Hide from external probing as many components as possible

e Factor out as much potentially untrusted code as possible
from direct external access

e Separate groups of components into clearly defined process &
communication boundaries

* Hide sensitive application-configuration files from public access

* Prevent the hosted services from accessing each others configuration files
and those of the JAPP components

* No source-code changes to JAPP if possible

Page 14

ExanmplerApplication Integration = 2

m Standard Configuration

e This is the configuration one might use on a non-compartment system e.g. on

standard Linux. All processes and RMI objects are potentially directly
accessible.

* There is litte protection against a buffer-overflow attack in the HTTP-server
leading to root-equivalent access.

Hidden from
External Access

Levels of Indirection Component present in

from direct access

external compartment

HTTP-Server

No 0 (direct) Yes*
JAPP Servlet No 0 Yes*
RMI Registry No 0 Yes*
JAPP Server Objects No 0 Yes*

Services Individually Separate

HTTP-Server can gain root

*: Trivially true, since the entire system is considered a single compartment

Page 15

Example Application’ Integratien — sa

m 3+X Configuration

 Configuration is straightforward
* Single rule allowing access via tcp/80 for remote clients

* Rules connecting
Java Web server + Servlets
RMI Registry
JAPP Authorisation Server

Services |,
JavaWebServer (JWS)
+
JAPP Servlet
tcp/80 — components RMI Registry
JAPP
L Authorization Server
: S
Externally Facing (publicly
accessible)

Page 16

Example Application Integratien — sl

m 3+X Configuration
» Advantage of hiding the connection points of the RMI server-objects from
external access

 Externally-facing compartment also sealed against root transitions as a general
precaution

» Avoid possiblity of getting root in externally-facing compartments

Hidden from Levels of Component present envices
External Indirection from in external Javawebserver (IWS) B
Access direct access compartment aneP Seret
tcp/g0 — components
HTTP-Server No 0 (direct) Yes
Aumoriz‘]:t::z Server
q Externally Facing (publicly
JAPP Servlet No 0 (direct) Yes accessble
RMI Registry Yes 1 No
JAPP Server Yes 1 No
Objects
Services Individually Separate
HTTP-Server can gain root

Page 17

Example Application’ Integratien — 4a

Externally Facing

» Observation: too much potentially untrusted code resides
In one externally-facing compartment

 Possible to factor out more code from the single external compartment
Into another separate internal compartments

» Use out-of-process servlet container, connected by single rule

m 4+X Configuration - Tighten previous configuration

tcp/80 —

Apache Web Server

Services

RMI Registry

Jakarta + JAPP Servlet
Components

JAPP
Authorization Server

Page 18

Example Application Integratien — 419

m 4+X Configuration

» Web-server compartment running substantially fewer pieces of code

* Note that the back-end RMI objects are now twice-removed from
external-access where previously only once-removed

Hidden from Levels of Component present -, - ET":'Z?”"Q
External Indirection from in external ’ —
Access direct access compartment
HTTP-Server No 0 (direct) Yes
JAPP Servlet Yes 1 No
RMI Registry Yes 2 No
JAPP Server Yes 2 No
Objects
Services Individually Separate
HTTP-Server can gain root

Page 19

SUmmany.

Principle Uses

* Secure gateway systems

» Web-fronted applications requiring access to relatively unprotected back-end
servers

m Platform Support

e Targeted at Linux 1A-32 SMP systems
 Layered installation on top of well known distributions
 Binary compatibility whilst gaining additional mandatory security properties

m Application Integration Using Trusted Linux

 Factor out as much code that is directly accessible

» Define communications boundaries

 Define interfaces as narrowly as possible

» Use chroot/restricted filesystems to reduce accessibility of configuration files

Page 20

