

1 of 114

NAS in an HP Environment

Tony Shen

Sr. Consultant
SCSA, SCNA, OCPDBA

July 22, 2002

UNIX Services

Shell Information Technology International, Inc

2 of 114

Acknowledgment

This presentation was inspired, reviewed, and edited by James LeMaire, Jr., one of the
finest IT professionals at Shell. As a Sr. Consultant and an HP Focal Point, Jim has
worked on and is responsible for numerous high profile and mission critical HP system
projects at Shell. A couple of years ago, Jim introduced NAS technology into SITI by
putting it into a large HP-UX based Oracle database application landscape as the storage
solution. I was fortunate enough to work with Jim as part of the project team. The
implementation altered my view toward NAS for good. Like many other people in the IT
field, I didn’t believe NAS filers could be fast and robust enough to run heavy-duty
databases until I see it with my own eyes. That project ignited my interest in NAS. With
Jim’s help, I looked into NAS much more deeply than a casual NAS implementer would
do. The time spent in that regard resulted in, among other things, this presentation. I hope
this presentation will help you understand more about NAS and what it can do for your
IT. This paper, of course, wouldn’t be possible without Jim, without the encouragement
and support that I received from Natasha Pitanga, Team Manager of UNIX Primary
Support, and Williams Schwartz, Business Manager of UNIX Services as well as the
entire UNIX team at Shell. Thanks to Jim. Thanks to my UNIX team!

3 of 114

Contents

1. Introduction
2. Methodology
3. What is NAS
4. DAS Landscape
5. NAS Landscape
6. Server Requirement for NAS Landscape

a. OS Patches
b. Kernel Tuning
c. Network Interface Configuration
d. NFS Mount Options
e. NFS Client Tuning

7. Network Requirement for NAS Landscape
8. Network Throughput Testing
9. Oracle

a. Understanding Oracle
b. Oracle Storage Compatibility Program (OSCP)
c. Oracle Performance Tuning with NAS

10. High Availability for NAS
11. High Availability for Landscape Using NAS
12. Conclusion

4 of 114

Introduction

Storage technology has been undergoing many changes in recent years. One of the most
noticeable developments over the last five years is the remarkable growth of networked
storage (NS), including both Network Attached Storage (NAS) and Storage Area
Network (SAN). According to Gartner and other IT research firms, NS market grew from
$580 million in 1997 to $7 billion in 2001. The annual growth rate of the market over the
years was as high as over 200%. During that period, NAS growth rate outpaced that of
SAN. All major hardware vendors such as IBM, HP and Compaq, Dell, Network
Appliances, EMC, and Sun have jumped on the NAS bandwagon and are offering various
NAS products today. Among those vendors, Network Appliances is believed to lead in
NAS unit shipments and the storage giant EMC claims to have captured the largest
revenue share in NAS market in 2001.

Two forces drive the dynamic growth of NAS. One is the rapidly growing demand for
data storage raised by Internet centric new business models adopted by many companies.
Two is what NAS has to offer in meeting that ever increasing demand for storage, namely,
scalability, adaptability, centralization of data storage management, and above all, the
relatively low total cost of ownership (TCO) vs. traditional solutions.

This paper discusses how NAS can be used to benefit an HP-UX based landscape. A
landscape, in this discussion, is defined as a group of servers that support a particular
business mission in an enterprise environment. Furthermore, the landscape is a database-
centric server group that runs Relational Database Management System (RDBMS) as its
main application.

5 of 114

Methodology

The discussion focuses on topology design involving NAS.

The objective is to answer the following questions concerning NAS in a HP-UX
environment:

 What is NAS?
 What needs to be done to support NAS?
 What needs to be done to optimize NAS performance?
 What needs to be done to optimize Oracle performance when using NAS?
 How to build a High Availability (HA) NAS using HP technologies?
 How can Oracle 9i Real Application Clusters (RAC) enhance a HP landscape

with NAS?

In order to keep the discussion focused, we will limit ourselves to:

 Preparing HP servers
 NFS and NFS tuning
 Oracle and Oracle file system layout considerations
 Service Guard for Linux and Service Guard NFS for Linux from HP
 Oracle 9i Real Application Clusters

In the discussion, examples are given in order to illustrate the ideas when necessary. The
examples are presented as feasible practices rather than real implementation cases.
Nonetheless, what is put forth in this paper is completely based on published technical
information, white papers and research reports from major vendors and other well
established sources on NAS. Extensive research was conducted on various topics related
to NAS. References to relevant topics and certain amount of technical details are
provided in the appendixes at the end of this paper so as to facilitate reader’s further
investigation and verification when they are needed.

6 of 114

What is NAS?

NAS is a way of sharing storage resources at the file level over the network.

NAS provides file sharing over the network using NFS and CIFS protocols. Both
protocols run on top of TCP/IP protocol stack. NAS, therefore, is a network application
that fits into the top layer, or the Application Layer, of the TCP/IP Five-Layer Model.
TCP/IP’s dominance in computer networks makes NAS an attractive alternative to other
types of networked storage sharing solutions. At the same time, TCP/IP’s heavy overhead
limits NAS to compete in performance against certain networked storage technologies
such as SAN.

From hardware perspective, a NAS device is no more than a server appliance optimized
for file sharing. A NAS device typically consists of two parts: a head and a large storage
subsystem. The head is often an Intel Architecture (IA) based computer running a kernel
that is derived either from Linux and the like or from Windows NT/2000. IA gives NAS
a considerable cost advantage over competing technologies using proprietary hardware
because NAS devices can be easily built with inexpensive Intel processors and standard
components.

The storage subsystem of a NAS device is equally conventional. It uses the same types of
disk subsystem or disk arrays that direct attached storage (DAS) architecture uses.
Accordingly, interconnects between the head and the storage are rather traditional. NAS
storage interconnects fall into three categories:

• ATA/IDE for small NAS
• SCSI for mid-sized NAS
• FC-AL for enterprise-class NAS

NAS is primarily used in Ethernet networks, although the NAS application boundary is
starting to blur with NAS increasingly converging with SAN and using new network
technologies that may not always be Ethernet.

As an Ethernet-based, TCP/IP device, a NAS system is often equipped with one or more
network interfaces that conform to the following network media standards:

• IEEE 802.3z (1000BASE-X, 1000BASE-SX – Gigabit Ethernet over single-mode
or multimode fiber optical)

• IEEE 802.3ab (1000BASE-T – Gigabit Ethernet over Cat-5 UTP)
• IEEE 802.3u (100BASE-T – 100MB Ethernet over twisted pair copper)
• IEEE 802.3ae (10GBASE SR/SW, 10GBASE LR/LW, 10GBASE ER/EW,

10GBASE LX4 over fiber optical)

Among the standards listed above, IEEE 802.3z and IEEE 802.3ab are the most
commonly used ones by NAS. IEEE 802.3u is the minimum requirement by NAS. IEEE
802.3ae, while still in its nascent stage, represents an emerging technology that NAS can

7 of 114

use in order to be able to connect over high speed links such as Synchronous Optical
NETwork (SONET) to wide area networks (WAN).

NAS is bilingual. It supports both NFS for UNIX file sharing and CIFS for Windows file
sharing. Being able to allow concurrent access by both UNIX clients and Windows
clients to commonly shared file systems, NAS sits well in a mixed environment.

Finally Table 1 below gives you a glimpse of state of the art in NAS going enterprise.

8 of 114

Table 1 – Representative high-end NAS appliances

CHARACTERISTIC AUSPEX
NS3000

COMPAQ
e7000

EMC
CELERRA

IBM 300G NETAPP
F880

PROCOM
3000

VERITAS
SERVPOINT

Capacity supported
(maximum)

12TB 64TB 28TB 22TB 9TB 17TB Depends on
Sun server

Cache memory
(max per controller)

3GB 4GB 3GB 2GB 3GB 2GB Depends on
Sun server

Connectivity types Gigabit,
10/100

Ethernet,
ATM

Gigabit,
10/100

Ethernet

Gigabit,
10/100

Ethernet,
ATM,
FDDI

Gigabit,
10/100

Ethernet

Gigabit,
10/100

Ethernet,
ATM

Gigabit,
10/100

Ethernet

Depends on
Sun server

Protocols supported NFS,
CIFS, FTP

NFS,
CIFS,
NCP,

AppleTalk

NFS,
CIFS, FTP

NFS,
CIFS,
HTTP,

AppleTalk,
NCP

NFS,
CIFS

NFS,
CIFS

NFS, CIFS

Failover (cluster models
have 2x capacity, cache,
etc.)

Yes -
NS3000XA

model

Yes -
basic

Yes -
basic

Yes -
Model
G26

Yes -
F880C
model

Yes -
3600C
model

Clustered
via Sun
servers

File sharing Yes Yes Yes Yes Yes Yes Yes

Locking type implemented NFS style CIFS
style

NFS or
CIFS -
user's
choice

CIFS style NFS and
CIFS
styles

NFS style NFS style

FEATURES

PIT copy Yes Yes Yes Yes Yes Yes Yes

Remote copy Yes Host-
based

Yes No Yes Yes Yes

NEW TECHNOLOGY

DAFS No No No No No No No

TCP/IP accelerator Not
standard

Not
standard

Not
standard

Not
standard

Not
standard

Not
standard

Not standard

Metadata server option No No Yes (with
HighRoad)

Yes (with
HighRoad)

No No No

NAS Yes Yes Yes Yes No No No

Gateway option Yes Yes Yes Yes Yes No No

LDAP standard No No Yes No No Yes No

Other N/A Virtual
software
for file
system

expansion

Up to 14
NAS

controllers

N/A Aggreg.
software

with
Data

Fabric
Manager

Allows
block

access to
attached

disks

N/A

Source: NAS – More than just an appliance by Randy Kerns. Storage, Vol. 1 No. 5 July
2002

9 of 114

DAS Landscape

In order to have a simple start for our discussion, let’s have an HP-UX landscape without
NAS as depicted in Figure 1. Each server in the landscape has its own storage subsystem
directly attached to itself. Therefore, it is a DAS landscape. Possible choices for DAS
storage subsystems can be found in Appendix A.

Figure 1 - HP-UX DAS Landscape

In the landscape, three HP rp7410 servers are used with identical configurations. The
configuration is shown in Table 2.

Table 2 - HP RP7410 System Profile

Model HP RP7410
CPU PA8600 * 8
Memory 32GB
OS HP UX 11i
Internal Disks SCSI 18GB * 2

PROD
(RP7410)

Public LAN

DEVL
(RP7410)

QA
(RP7410)

10 of 114

Each of the three servers exports part of its file systems and cross-mounts NFS file
systems from each other. This way a certain degree of storage resources sharing is
achieved.

Each server runs one Oracle database instance. Three Oracle instances, PROD, DEVL,
and QA, exist in this landscape.

Oracle clients access the database servers via a 100BASE-T public LAN.

This landscape configuration has the following implications with respect to resource
sharing, performance and reliability:

1. Resource sharing and reliability – If an Oracle instance does not use any NFS
mounted file systems, it has two points of failure: the server on which it runs and
the DAS subsystem that is attached to the server. If an Oracle instance uses NFS
mounted file systems from another server, resource sharing increases from 0 to a
degree of 2, the points of failure increase from 2 to 4 – the host server, the host
DAS, the remote NFS server, the remote DAS. If an Oracle instance uses NFS
mounted file systems from the other two servers, storage resource sharing
increases from 0 to a degree of 3, the number of points of failure increases from 2
to 6 – the host server, the host DAS, the second server, the second DAS, the third
server, and the third DAS. Obviously, resource sharing goes against reliability. It
is a dilemma inherent in the design and it is impossible to overcome.

2. Performance - If the Oracle instances share storage resources via NFS, each
instance’s performance is impacted by the network traffic and disk I/O contention
that is bound to occur on both the local DAS and remote DAS subsystems. For
example, when QA is accessing a NFS file system on PROD, PROD is busy
serving Oracle PROD causing disk I/O to the underlying disks of the NFS file
systems, the contention will not only slow down QA but also PROD. To dedicate
the underlying disks to QA is not a sensible option because you would be much
better off by adding disks to QA’s local DAS to satisfy your needs.

3. Each system’s storage has to be managed separately, which adds administration
overhead. Disk fault tolerance such as RAID can only be implemented within
each DAS not across the DAS’s.

4. Network becomes a performance bottleneck – User processes that connect to
Oracle instances will contend for the limited bandwidth with NFS data traffic.
One user process can generate multiple NFS requests and responses from NFS
servers at any given point of time. User processes that run extended query and
updates can easily saturate the network when such processes multiply during peak
time. Without a high-speed network in place, sharing storage resources via NFS is
not recommended for disk I/O and file I/O intensive Oracle database application
at all.

11 of 114

NAS Landscape

How can NAS be used to address the DAS problems? Let’s change the design by
incorporating NAS and examine what differences NAS will bring to the landscape.

Figure 2 shows a revised, NAS based configuration for the landscape.

Figure 2 NAS-based Landscape

In this configuration, DAS is replaced by two NAS filers. One is F880 from Network
Appliance; the other is HP NAS 8000 from Hewlett Packard. Both filers and the three
rp7410 servers are on one Gigabit Ethernet private network. This private network needs

WAPP
(Proliant ML330)

PROD
(HP rp7410)

DEVL
(HP rp7410)

QA
(HP rp7410)

Gigabit Ethernet
Hub/Switch

Private
Network

FILER2
(HP NAS 8000)

FILER1
(NetApp F880)

Public LAN

12 of 114

to be an 802.3ab or 802.3z Ethernet or of a higher bandwidth so as to ensure sufficient
network throughput between the filers and servers.

The two NAS devices are similar in a number of ways. Table 3 below compares a few
features between the two filers.

Table 3 Comparison between NetApp F880 and HP NAS 8000

Features/Specs NetApp F880 HP NAS 8000
OS Kernel Free BSD Linux
Storage topology FC-AL FC-AL
Maximum storage capacity 9.0 TB 15.4 TB
Recommended Network
Interface

Gigabit Ethernet
(803.3ab/803.z)

Gigabit Ethernet
(803.3ab/803.z)

OS User Interface Ontap Command View
Snapshot feature sets Standard Optional (Business Copy)
Native bilingual support for
NFS and CIFS

Yes Yes

Sources: Network Appliances, Hewlett Packard

The three servers NFS mount file systems from the two filers as follows:

On PROD
/export/prod (local disk file system)
/data/filer1data (filer1:/vol/data)
/data/filer2data (filer2:/vol/data)

On DEVL
/export/devl (local disk file system)
/data/filer1data (filer1:/vol/data)
/data/filer2data (filer2:/vol/data)

On QA
/export/qa (local disk file system)
/data/filer1data (filer1:/vol/data)
/data/filer2data (filer2:/vol/data)

The introduction of NAS accords a number of benefits to the landscape.

• The data traffic is separated from user traffic, thus reducing contention on the
public network. The filers share their resources via a dedicated high speed
network. A certain level of performance is assured.

• The storage resource sharing is the default. All three servers have equal access to
the filers. Storage resources can be more centrally managed on the filers.

13 of 114

Separation of disk resources is reduced from the previous three DAS’s to two
filers, which allows better allocation and utilization of disk space as collective
resources. Further consolidation of disk resources on only one filer is always
possible.

• Scalability is enhanced. When business grows, it is easier to add disks to the filers
than adding disks to individual servers. The added resources can be made
available instantly to all three servers without hassle.

• It gives more flexibility to DBA to partition their databases. For example, Oracle
PROD database can be partitioned not only across multiple disk controller
channels within one filer but also between the two filers to further spread out disk
I/O. Similarly, disk I/O can be more easily managed on filers than on individual
servers. For instance, if it is so observed that DEVL and QA databases incur much
less disk I/O than PROD, DBA can adjust data file locations that involve both
DEVL and QA so that they use fewer disk channels. The released disk channels
on the filers can then be used for PROD to distribute her work load across more
evenly. Such adjustment would be very hard to do, if not impossible, in a DAS
landscape.

• It simplifies backup and restore because the data storage is consolidated.
Moreover, snapshot capability provided by filers equips DBA with new means to
perform online backup and database recovery. Better backup and restore
infrastructure weighs in favor of mission-critical databases.

• It enables the landscape to natively support non-UNIX clients such as Windows.
Concurrent NFS and CIFS access to the same file systems on one filer is
permissible. File locking mechanism is natively supported by the filers.

14 of 114

Server Requirement for NAS Landscape

As NAS brings benefits, it imposes certain requirements on HP-UX servers. A number of
server requirements ought to be met when implementing the NAS landscape in discussion.

These requirements are

o OS patches
o Kernel Configuration
o Network Interface Configuration
o NFS Client Configuration

Let’s take a look at each requirement in the following sections.

OS Patches

We recommend HP-UX 11i operating system for the servers becauase it has a
number of important enhancements that we need over its predecessors.

When using 11i, you need to install the OS patches listed below to make the
server ready to work with NAS. All patches are network related patches.

Since HP releases new patches almost every day. The patches listed below may
replaced by new ones. Always consult with HP for newest patch releases when
you are ready to start preparing your servers.

 Install OS Patch PHNE 25652. It is an NFS problem fix and performance

enhancement patch. It supersedes patches PHNE 24910 and PHNE 24035.
Unlike PHNE 24910, however, no special enabling procedure is required
when applying this patch.

 Install OS Patch PHNE 22962. This patch supersedes PHNE 21217. After
applying PHNE 22962, you may also apply the most recent patch PHNE
26250. Unlike PHNE 22962, PHNE is not a cumulative patch. In other words
it does not supercede PHNE 22962 entirely. These patches are to fix problems
associated with PCI 1000Base-T or HSC/PCI 1000Base-SX LAN Cards,
which are used on RP7410 server systems in this example.

PCI 1000Base-T LAN Card supports 802.3ab standard using Category 5 twisted
pair cable. HSC/PCI 1000Base-SX LAN Card supports 803.z standard using fiber
optical multimode cable.

For more details about how to use the cards, please consult “Using PCI 1000Base-
T and HSC/PCI 1000Base-SX (Gigabit Ethernet)” document provided by HP.

 Install Patch 26551 if you run HP UX 11i 64-bit, Service Guard, and Hyper

Fabric Cluster on the servers

15 of 114

Kernel Tuning

The kernel parameters listed in Table 4 below are the minimum kernel
requirements for Oracle9i. If you have previously tuned your kernel parameters to
levels equal to or higher than these values, continue to use the higher values.
Kernel changes require a system reboot.

In the table, NPROC is the number of user processes. It is determined by one of
the Oracle instance initialization parameter PROCESSES.

The PROCESSES initialization parameter determines the maximum number of
operating system processes that can be connected to Oracle instance concurrently.
The value of this parameter must be 6 or greater (5 for the background processes
plus 1 for each user process). For example, if you plan to have 50 concurrent
users, set this parameter to at least 55.

 Table 4 HP-UX 11i Recommended Kernel Parameters for Oracle 9i

Kernel Parameter Setting Purpose
KSI_ALLOC_MAX (NPROC * 8) Defines the system wide limit

of queued signal that can be
allocated.

MAXDSIZ 1073741824 bytes Refers to the maximum data
segment size for 32-bit systems.
Setting this value too low may
cause the processes to run out
of memory.

MAXDSIZ_64 2147483648 bytes Refers to the maximum data
segment size for 64-bit systems.
Setting this value too low may
cause the processes to run out
of memory.

MAXTSIZ 1073741824 bytes Equal to MAXDSIZ

MAXTSIZ_64 2147483648 bytes Equal to MAXTSIZ_64

MAXSSIZ 134217728 bytes Defines the maximum stack
segment size in bytes for 32-bit
systems.

MAXSSIZ_64 1073741824 Defines the maximum stack
segment size in bytes for 64-bit
systems.

MAXSWAPCHUNK
S

(available
memory)/2

Defines the maximum number
of swap chunks where

16 of 114

SWCHUNK is the swap chunk
size (1 KB blocks).
SWCHUNK is 2048 by
default.

MAXUPRC (NPROC + 2) Defines maximum number of
user processes.

MSGMAP (NPROC + 2) Defines the maximum number
of message map entries.

MSGMNI NPROC Defines the number of message
queue identifiers.

MSGSEG (NPROC * 4) Defines the number of segments
available for messages.

MSGTQL NPROC Defines the number of message
headers.

NCALLOUT (NPROC + 16) Defines the maximum number
of pending timeouts.

NCSIZE ((8 * NPROC +
2048) +
VX_NCSIZE)

Defines the Directory Name
Lookup Cache (DNLC) space
needed for inodes.
VX_NCSIZE is by default
1024.

NFILE (15 * NPROC +
2048)

Defines the maximum number
of open files.

NFLOCKS NPROC Defines the maximum number
of files locks available on the
system.

NINODE (8 * NPROC +
2048)

Defines the maximum number
of open inodes.

NKTHREAD (((NPROC * 7) /
4) + 16)

Defines the maximum number
of kernel threads supported by
the system.

NPROC 4096 Defines the maximum number
of processes.

SEMMAP ((NPROC * 2) +
2)

Defines the maximum number
of semaphore map entries.

SEMMNI (NPROC * 2) Defines the maximum number
of semaphore sets in the entire
system.

SEMMNS (NPROC * 2) * 2 Sets the number of semaphores

17 of 114

in the system. The default value
of SEMMNS is 128, which is,
in most cases, too low for
Oracle9 i software.

SEMMNU (NPROC - 4) Defines the number of
semaphore undo structures.

SEMVMX 32768 Defines the maximum value of
a semaphore.

SHMMAX Available physical
memory

Defines the maximum
allowable size of one shared
memory segment.
The SHMMAX setting should
be large enough to hold the
entire SGA in one shared
memory segment. A low setting
can cause creation of multiple
shared memory segments which
may lead to performance
degradation.

SHMMNI 512 Defines the maximum number
of shared memory segments in
the entire system.

SHMSEG 32 Defines the maximum number
of shared memory segments one
process can attach.

VPS_CEILING 64 Defines the maximum System-
Selected Page Size in
kilobytes.

MAX_THREAD_PR
OC

1024 When using MTS

MAXFILES 2048 When having multiple instances

Network Interface Configuration – Using Jumbo Frames

Each server has two network interfaces. One connects the server to the public
LAN. The second one connects between the server and a filer in the private
Gigabit Ethernet network. We use an HSC/PCI 1000-SX LAN card for each
server’s second interface. When configuring this network interface, it is necessary
to use Jumbo Frame to boost performance by setting MTU (Maximum Transfer

18 of 114

Unit) from a standard 1500 bytes to 9000 bytes. MTU being set to 9000 bytes is
commonly referred to as Jumbo Frames.

The LAN card configuration file is located at /etc/rc.config.d/hpgelanconf. The
settings in the file look like these:

HP_GELAN_INTERFACE_NAME[0]=lan1
HP_GELAN_STATION_ADDRESS[0]=
HP_GELAN_SPEED[0]=
HP_GELAN_MTU[0]=9000
HP_GELAN_FLOW_CONTROL[0]=1
HP_GELAN_AUTONEG[0]=1
HP_GELAN_SEND_COAL_TICKS[0]=1000
HP_GELAN_RECV_COAL_TICKS[0]=0
HP_GELAN_SEND_MAX_BUFS[0]=16
HP_GELAN_RECV_MAX_BUFS[0]=1

Please note that in the configuration, auto-negotiation is turned on. We’ll revisit
auto-negotiation issue later in our discussion.

You can use ‘lanadmin’ to configure these settings online. However, unlike using
this configuration file, online settings can’t survive a system boot.

When using Jumbo Frames, make sure your switch or hub used in the private
network connecting between your servers and NAS devices support Jumbo
Frames as well. Otherwise you have to use standard frames. If you use direct
connect topology, this condition does not apply.

NFS Client Mount Options

Each server is an NFS client to the NAS filers. On each NFS client, proper NFS
mount options have to be set in /etc/fstab file. On PROD, DEVL, and QA, the
/etc/fstab file needs to contain these entries:

filer1:/vol/data - /data/filer1data nfs - -
rw,bg,hard,intr,rsize=32768,wsize=32768,proto=udp,vers=3,suid

filer2:/vol/data - /data/filer2data nfs - -
rw,bg,hard,intr,rsize=32768,wsize=32768,proto=udp,vers=3,suid

Please note that each entry is one continuous line rather than two lines that appear
to be on this page.

The NFS mount options used in the /etc/fstab entries are:

19 of 114

• rw – allows NFS client read and write access
• bg – retries in background when connecting to NFS server
• hard – uses hard mount instead of soft mount. NFS supports two types of

mounts - hard mount and soft mount. If a mount is a hard mount, an NFS
request affecting any part of the mounted resource is issued repeatedly
until the request is satisfied (for example, the server crashes and comes
back up at a later time). When a mount is a soft mount, an NFS request
returns an error if it cannot be satisfied (for example, the server is down),
then quits. Since hard mount offers the desired client behavior for Oracle,
this option is always used.

• intr – allows user interruption
• rsize=32768 – Read buffer size (bytes). The default is 8192. Quadrupling

the default read buffer size is meant to improve read performance.
• wsize=32768 – Write buffer size (bytes). The default is 8192. Quadrupling

of the default write buffer size is intended to enhance write performance.
• proto=udp – Uses low-overhead UDP rather than high-overhead TCP.

This is the default.
• ver=3 – Uses NFS version 3. Both HP UX 11i and NetApp F880 and HP

NAS 8000 filers supports NFS Version 3.
• suid – Honors imported SUID and SGID execution permissions as they

are set in the remote filesystem. This option is often required by Oracle,
particularly for those file systems where Oracle executables reside.

NFS Client Tuning

In this section we will analyze NFS mechanism on the client before we actually
tune NFS on each HP rp7410 server.

NFS Daemons

NFS is a true “client/server” application, in order to obtain optimal NFS
performance, tuning needs to be done on both the server and the client. In
our case, the NFS server is NAS filer(s); the client is HP rp7410 server(s).

Table 5 lists the NFS daemons that run on the NAS filers (NFS Server)
and/or on the HP rp7410 servers (NFS Client).

Table 5 – NFS daemons

Daemon Does it run on
NFS Server?

Does it run on
NFS Client?

nfsd Y N

20 of 114

rpc.mountd Y N

biod N Y

rpc.lockd Y Y

rpc.statd Y Y

The tuning, therefore, involves properly configuring the daemons that run
on both sides. In this section, we focus on biod daemon configuration
since it is the primary NFS daemon that impacts the client (HP rp7410)
NFS performance most.

biods are implemented as user-space processes. They spend the majority
of their time, however, running in the kernel. Their sole purpose is to try
to increase the performance of remote file access by providing read-ahead
and write-behind semantics on the NFS client. In most cases they can
dramatically improve NFS read and write performance.

In HP-UX 11.0 the default number of biods launched at boot is 4. In 11i,
the number is increased by four-fold to 16.

“Read-Ahead and Write-Behind” by biods

When the client needs to read data from an NFS mounted file, the client
will first check its local buffer cache to see if the block of data is present
in the cache. If it is then the read is satisfied without generating an NFS
request. If the data is not present then an NFS READ call will be made to
retrieve this data. If no biods are running then the process requesting the
data will generate the NFS read call in its own process context.

If biod daemons are present then the client process will send the initial
read request in its own context through biods to the server. The client
process will then block future read requests to be handled by the biods that
it uses. The blocking mechanism is done in conjunction with rpc.lockd and
rpc.statd. During the block, the biods employed by the client process send
additional sequential reads to the server. Once the biods retrieve the data
from the serer, the data is cached in client’s buffer cache and the blocking
process is notified that the data is available. Because of the extra reads that
the biods sent on behalf of the client process, the cached data includes
more than what the client process originally asked for. The extra data is
obtained in hope that the client process may need it next time so that the
biods don’t have to send another read request to the server but letting the
buffer cache to satisfy the client process read request. This process is
called “read-ahead”.

21 of 114

When the client process needs to write data to an NFS mounted file, it will
write the data to the local buffer cache. It then generates a biod if no biods
are available to send the data from the buffer cache to the server. When
the biods that the client process uses are sending the data through NFS
WRITE calls to the server, the client process continues writing more data
to the buffer cache. The biods always write to the server after the client
process writes its data into the local buffer cache. This process is called
“write behind”. The client process only waits until the biods that it uses
finish their NFS writes when

• The local buffer cache is full

• The client process needs to flush, sync, or close the file

The biod “read ahead/write behind” semantics described above clearly
indicates that the number of biods has direct bearing on the client NFS
performance. When there are not enough biods to populate the local buffer
cache for sequential reads or the available biods can’t write the data from
the buffer cache to the NFS server quick enough for the client process to
continue its writes to the local buffer cache, it is beneficial to increase the
number of biods.

HP-UX 11i Enhancement for biods

On HP-UX 11.0, setting a high number of biods in order gain NFS
performance is not a good idea because the client’s read() and write()
paths use the global file system semaphore to protect many kernel data
structures and NFS I/O operations. According to Dave Olker, Systems
Network Solutions Lab of HP, whenever a biod processes a read or write
request it must acquire the file system semaphore, which effectively locks
out all other file system related operations on the system – not only just to
the NFS requests but also to requests for all file systems (i.e. VxFS, HFS,
NFS, CDFS, etc.). Therefore, if an 11.0 NFS client runs a large number of
biod daemons, the overhead involved with contending for and acquiring
the file system semaphore becomes detrimental to NFS and general file
system performance.

This file system semaphore contention issue is drastically reduced in 11i,
which means that an 11i client could potentially benefit running more
biods than an 11.0 client.

Determining the Right Number of biods

One thing that is very interesting to note from Dave Olker’s research is
that while you can set a high number of biods on HP-UX 11i without
worrying much about file system semaphore contention, if the number is
not set high enough to serve all requesting client processes, performance

22 of 114

will suffer rather than gain. That is because the available biods can serve
only a definite number of client process requests, including both read()
and write() request, at any given point of time. If the client requests
outnumber the biods, they have to wait for their turns. This “queuing”
effect will hurt the client NFS performance. Ironically, if there are no
biods available at the time, each client request will send NFS request on its
own to respective NFS servers without waiting, resulting in a higher
throughout.

Adjusting the number of biods may not produce a desired effect on NFS
performance when:

1. Client processes perform mainly non-sequential reads - When the
client read requests are primarily non-sequential and the odds that
next reads will hit any pre-cached data by biods are very low, the
“read aheads” by biods become unwanted overhead hurting
performance.

2. biods do not play a role in improving NFS performance when read
and write requests have to be performed synchronously. Oracle DB
Writer (DBWR), Redo Log Writer (LGWR), and Archive Log
Writer (ARC0) perform synchronous writes. (We will see how
those Oracle background processes work and how do they relate to
performance in Oracle Performance Tuning section)

How many biods should the NFS clients (rp7410s) run against the NFS
servers (NAS filers) in our landscape?

Recommendation

As a starting point, it is a good idea to set the number of biods equal to the
number of PROCESSES that you specified in your instance initialization
parameter files (pfiles). Then add 4 to the number allowing for a reserve
pool. That number should pretty much cover for the need by all concurrent
user processes and server processes. If you have multiple instances, the
number, of course, needs to be increased accordingly so as to cover the
biod requirement by all instances.

For example, in practice, setting the number of biods to 64 yields pretty
good performance for a server running one Oracle instance that supports
50 concurrent users.

Use tools for NFS performance analysis and trouble-shooting to observe
the actual performance when Oracle is running and adjust the number of
biods accordingly until you reach an optimal point.

23 of 114

The number of biods is configured via the NUM_NFSIOD variable in the
/etc/rc.config.d/nfsconf file.

The commonly used tools for NFS performance analysis and trouble-
shooting are nfsstat, tusc, and kgmon. Refer to your man page for how to
use those commands.

Appendix B provides more resources on NFS tuning issues.

24 of 114

Network Requirement for NAS Landscape

Autonegotiation

If you are using a switch, make sure the switch also provides support for jumbo
frames. Many even high-priced switches currently do not. Policy varies from
vendor to vendor.

Also note that auto-negotiate is turned on at the server host. The Gigabit Ethernet
adapter used in the filer does not allow you to turn off autonegotiation, hence you
should not attempt to do so on the host! Autonegotiation settings should always
be symmetrical between a filer, a host, and any switches they might be connected
to.

HP PCI/HSC GB LAN cards require autonegotiation.

Network Throughput Test

Network Appliance recommends running performance test using ‘dd’ and
‘sysstat’, an Ontap performance statistics utility to gauge the network throughput
between the filer and its NFS clients.

On PROD in our landscape, to test write operation with ‘dd’, use this command:
dd if=/dev/zero of=/data/filer1data/foo_out bs=32k count=16384

To test read operation from PROD:
dd if=/data/filer1data/foo_in of=/dev/null bs=32k

To observe the filer’s performance with two-second intervals when running write
test and read test one after another on PROD, type this command:

prod # rsh filer1 sysstat 2

To test mixed I/O, run the write and read tests simultaneously:

dd of=/data/filer1data/foo_out bs=32k count=16384
dd if=/data/filer1data/foo_in of=/dev/null bs=32k

Keep it in mind that when testing mixed I/O the traffic goes over the same mount
point on the same volume on the same filer supported by one Gigabit Ethernet
interface in the filer.

In the sysstat output, the column 'Net kB/s in' stands for the input from the
network into the filer in kilobytes per second. The numbers under this column are
for writes from PROD. The column 'Net kB/s out' stands for output from the filer

25 of 114

to the network in kilobytes per second. The numbers under this column are for
reads from the filer into PROD.

Fluctuation in value under these two columns of more than 50% over 2 iterations
can indicate a network problem.

Repeat the above test on DEVL and QA to see if the test results are consistent. If
not, it indicates a network problem.

This test procedure can be adapted to run on a NAS device such as HP NAS 8000
by substituting Ontap “sysstat” for NetApp with a corresponding performance
analysis utility or set of utilities to gather performance statistics. The utilities that
can be used for this purpose are:

top, vmstat, ps

In addition, various system performance monitoring tools for Linux are available
on the Internet. One package is ‘sysstat’ available from a Linux performance tools
web site at http://linuxperf.nl.linux.org/links.html . The package can be installed
as either a set of tar.gz files or as a RPM loadable module that includes sar, mpstat,
iostat, and sa tools.

NAS Filer Performance Test

The network throughput is a function of the network, the server hosts, and the
clients. Any non-performing component will affect the overall network
throughput. Therefore, when you test your NAS network, there are times when
you need to look into how the NAS filers are doing. When your network
throughput test yields less than satisfactory results and you suspect the NAS filers
may contribute more to those tarnished results, you may use “postmark” to
investigate the NAS filer’s performance.

Jeffery Katcher wrote “postmark” under contract to Network Appliances. The C
program is distributed under “Artistic License” without restrictions on copying,
adaptation, and use for test purposes like ours.

The program does the following:

• Offers a command line interface (CLI) to user to run it either interactively
or in a batch mode with a command file

• The command file shall contain valid commands that user wants it to
execute. If no arguments list is given in the command line as the command
file(s), the system will search the file .pmrc at the current directory by
default.

• Parses the commands read from the file line by line and terminates when it
encounters ‘quit’ command

26 of 114

• Prints “pm>” prompt when no “quit” is found at the end of the command
input file or no command file is given.

• Runs a set of file system operations and records the times each operation
takes. At the start, the program initializes the counters and generate a
random number as the seed. It then allocates buffer space for reads and
writes. It fills the allocated space with random data. The file system
operations that the program runs include creating files, reading each file
into the buffer, writing to each file from the buffer, creating subdirectories
under the current directory recursively, deleting files, deleting
subdirectories. It runs these operations in a random order instead of
sequentially. Time each operation as it goes. At the end, prints a report
showing the file system performance in response to these operations on
the filer.

The program’s source code can be found at Appendix C for the completeness of
this discussion.

27 of 114

Understanding Oracle

As the center piece in our landscape, Oracle performance is our primary concern. Using
NAS as the Oracle storage media introduces different issues for DBA and SA to consider
than using DAS. Although Oracle performance tuning is a huge topic way beyond our
scope, one thing is certain: how do you layout file systems for your Oracle with NAS
determines how your Oracle will perform to a quite large extent.

In this section, we will take a three-step approach to examining how we can make NAS
fit into Oracle requirement as far as file systems and disk I/O are concerned. First we will
need to understand Oracle’s architecture and its disk I/O behavior that the architecture
dictates. Secondly, we will learn about three file system layout recommendations based
on our understanding of Oracle. Last but not least, we will take a look at Oracle Storage
Compatibility Program and be aware of what OSCP means to you when you implement
NAS.

Oracle Architecture and Oracle Disk I/O Distribution

An Oracle database provides its information management services through an
Oracle instance. One Oracle instance manages one database. An Oracle instance
is a memory structure called System Global Area (SGA) plus a number of
background processes running on a host server. An Oracle instance running on a
host machine is often referred to as an Oracle database server. There can be
multiple instances managing multiple databases respectively running on a single
host machine.

Figure 3 on Page 21 shows Oracle architecture in a diagram that explains Oracle
instance and its components.

Oracle is a client/server application. Oracle instance constitutes the server.
Applications that use services provided by the instance are Oracle clients. There
are two kinds of Oracle clients, local clients and remote clients. Local clients are
those who run on the same host machine where the Oracle instance that they
connect to is running. Remote clients, on the other hand, are those who run on
different machines connecting to the Oracle instance through the network. A
client to Oracle instance is a user process.

Before a client can use a database managed by an Oracle instance, the client has
to start a session with the instance. The client sends a connection request to his
target instance and the instance responds to the request by spawning a server
process that authenticates and then allows the client to establish a session with the
instance. The server process manages the session, after it is successfully
established, until the session terminates.

28 of 114

During a session, the client sends two types of requests to the instance. One is
database query (read); the other is database update (write). The instance serves
these two types of requests by involving different processes, which cause different
disk I/O activities.

Oracle Reads

When the client sends a database query or a read request, the server
process responds. It first looks up the library cache, the data dictionary
cache and the data buffer in the SGA of the instance to see if the
information requested is already in there. If it is, the server process returns
the result to the user process without a disk read. If the server process
doesn’t find the cached results, it will perform a disk read to fetch the
information it needs from data files. The fetched results are cached in
SGA in anticipation that they may be requested again in future.

There are a number of areas database query performance can be tuned.
Those areas are:

1. DBA can adjust shared pool size so as to indirectly change library
cache and data dictionary cache sizes to improve performance

2. DBA can manipulate the data buffer size to optimize performance.

3. DBA can partition the query intensive table(s) across disks and
channels to reduce disk read contention.

4. System Administrator can use RAID 0, RAID 1, RAID 0+1, RAID
1+0 that offer better read performance in the storage subsystems.

5. Tune network performance

29 of 114

Figure 3 Oracle Architecture

 System Global Area (SGA)

Redo Log

Buffer

Data Buffer

Cache

Library
Cache

Data Dictionary
Cache

Shared Pool

 Database
Data files

Redo logs

Control
files

Archived
Logs

Parameter
Files

Password
File

Oracle Instance

PGA

PGA

User

User

Server

ServerNetwork

SMON DBWR PMON OthersARC0 LGWR

R
ol

lb
ac

k

Q
ue

ry

U
pd

at
e

Background Processes

CKPT

30 of 114

Oracle Writes

Things are more complicated when the instance serves a database update
or a write request. In database terms, DML (Data Manipulation Language)
is used to accomplish a database update. DML includes INSERT,
DELETE, UPDATE, and DROP statements in PL/SQL. Execution of
DML involves not only server process but also Redo Log Writer, Archive
Log Writer, Checkpoint, and most importantly, Database Writer processes.
Let’s inspect the role that each process plays in executing DML and
identify performance bottlenecks along the way.

1. Server process – When a client or user process requests to make a
change in the database by submitting a DML statement, the server
process responds by performing three things: 1) it looks up the data
buffer to see if the data that needs to be changed is already in there.
If it is not, the server process reads from data files into the data
buffer. A disk read is performed. 2) It records the changes it’s
about to make in the redo log buffer. 3) It makes changes in data
blocks and rollback blocks in the data buffer. Data blocks hold the
database updates. Rollback blocks keep the before change image
for undo or rollback when it is needed. The data blocks in the data
buffer that have been changed are called “dirty blocks” because
they are not the same as they were in the disk image. Up to this
point, all the changes that a server process has made are kept in
SGA. Nothing has been written to disk yet. It holds true for every
server process when it works with its respective client user process
and responds to a client write request. If the instance crashes at this
point, all the changes that server processes made in SGA will be
lost.

2. When user commits a change, Redo Log Writer (LGWR) writes
the changes that the server process recorded in the redo log buffer
out to online redo logs on disk. Unlike the server process, when
Log Writer writes, it writes to disk. Besides COMMIT event, Log
Writer writes out changes in the redo log buffer to online redo log
files when any of the following events occurs:

a. Redo log buffer is one third full;

b. When there is more than a megabyte of changes recorded in
the redo log buffer;

c. Before DB Writer writes modified blocks, including both
data blocks and rollback blocks, to data files. Database
Writer waits for Log Writer to complete its writes before it
starts its own disk write.

31 of 114

Because the redo is needed for recovery, Log Writer confirms
COMMIT only after the redo is successfully written to disk.
LGWR writes, therefore, are expensive synchronous disk
writes.

3. When archiving is enabled, Archive Log Writer (ARC0) archives
online redo log files when Log Writer performs a log switch. When
ARC0 performs the archiving, Log Writer waits until archiving
finishes. In a busy production database, there are brief moments
when DB Writer waits for Log Writer to finish online redo log
writes and Log Writer in turn waits for Archive Log Writer to
complete redo archive log writes. When waits like these occur,
performance suffers.

4. DB Writer writes the dirty blocks out from the data buffer to data
files from time to time. Occasionally DB Writer is delayed by Log
Writer as we explained previously. Other than that, how often DB
Writer writes to disks are determined by the following events, each
of which triggers DB Writer to perform an expensive synchronous
disk write:

a. The number of the dirty blocks reaches a threshold value;

b. A server process requests for free buffers;

c. Every 3 seconds (a timeout occurs)

d. A checkpoint occurs.

Keep it in mind, in NAS environment, when DBWR writes
data to disk, the database does not always get updated
immediately on the persistent media. The changes can be
cached in Non Volatile RAM (NVRAM) implemented in a
NAS filer. NVRAM caching is designed to improve disk
performance by making DBWR disk writes a little more
asynchronous.

5. Checkpoint is a process responsible for keeping the database in
sync with the instance data buffer.

As we can see, when an Oracle instance is active, most disk reads are performed
by server processes serving user process requests, most writes are done by Redo
Log Writer, DB Writer, Archive Log Writer if archiving is enabled, and
Checkpoint processes.

Table 6 shows the relationship between disk I/O and Oracle processes

32 of 114

Table 6 - Oracle Disk I/O

Process Disk Read Disk Write Disk File(s)

Server/User
Processes

Yes No Data Files

Redo Log Writer
(LGWR)

No Yes Online Redo Logs

Checkpoint No Yes Control Files

DB Writer
(DBWR)

No Yes Data Files

Archive Redo
Log Writer
(ARC0)

Yes Yes Archive Redo Log
Files

Instance
Initialization

Yes No Parameter Files,
Password File (if
external password file
is implemented)

Care needs to be taken in planning Oracle database file systems on NAS to avoid
disk contention between data files, redo log files, and archive redo log files if
archiving is to be enabled.

Moreover, the busy tables, i.e., those tables that are read and updated most often
such as Sales, Orders, and Inventory, and their associated indexes need to be
properly partitioned so as to spread out disk I/O activities across multiple disk
devices on multiple channels, or even multiple NAS filers in order to minimize
disk I/O contention.

Recommended File System Layout Designs for Oracle

There are three recommendations. Each emphasizes on a different priority. They are:

• The performance orientated – Aimed to maximize performance

• The management orientated – Aimed to simplify maintenance

• The balanced – Talk a middle way

33 of 114

The three approaches share one thing in common – Oracle Home
($ORACLE_HOME), i.e., the Oracle software, is installed on each rp7410 server
where each instance runs instead being installed on NAS.

A description for each design follows.

• Performance Oriented - Place the instance initialization files (pfiles), the control
files, and online redo log files, process log files, and user log files on each rp7410
server. Place datafiles and archive redo log files if archiving is enabled, on the
NAS filer. Placing the most frequently updated online redo log files on the server
helps performance but complicates backup and restore. Media recovery has to be
performed twice. Once on the NAS filer, once on the server. You must run NTP
to keep time in sync between the server and the NAS filer.

• Management Oriented – Place the instance initialization files (pfiles) on the server.
Place the control files, online redo log files, data files, archive redo log files if
archiving is enabled, process log files, user log files on the NAS filer. This
approach simplifies back and restore. Media recovery needs to be performed only
once on the NAS filer. NTP is high recommended to keep time in sync between
the NAS and the servers.

• Balanced Approach – Place the instance initialization files (pfiles), process log
files, user log files on the server. Place data files, online redo log files, and
archive redo log files if archiving is enabled, on the NAS filer. Media recovery
can be performed only once on the NAS filer without restoring process log files
and user log files on the server. DBA needs to be aware of the differences each
media recovery will make in his user log files and process log files. DBA also
needs to regularly back up those log files in order to prevent them to overflow the
limited disk space on the server. NTP is strongly recommended to keep time in
sync between the NAS and the servers.

Oracle Storage Compatibility Program (OSCP)

In response to increasing adoption of NAS as Oracle database storage option,
Oracle instituted Oracle Storage Compatibility Program in 1999 for NAS vendors
and the like to comply with Oracle standards. OSCP is an important compliance
document to know about when implementing NAS. OSCP let you know what
Oracle expects from NAS or if your NAS implementation lives up Oracle’s
expectations. When problems occur this knowledge will assist you in your
problem identification and resolution process.

OSCP specifies six areas for compliance. These six areas are

• Synchronous writes. All file caching must be write-through. When a write
issued by an Oracle database returns to Oracle, the written data must already

34 of 114

be on persistent media. This is critical for the consistency of the Oracle
database

• Hard-mount/soft-mount. One can hard mount or soft mount NFS. Both works
with Oracle database, with different error behaviors.

o Comment: With NAS, the best practice is for NFS client to use hard
mount. Please refer to Server Requirement - NFS Client Mount
Options on page 13 for explanation

• NVRAM. NVRAM rarely fails. But when it fails, the storage system must
behave so that (1) Oracle database never returns incorrect data to the user, and
(2) one can always recover the database to a consistent state

o Comment: Since NVRAM works as a hardware cache for disk reads
and disk writes and it can produce noticeable performance
improvement for a NAS device, many NAS vendors implement
NVRAM in their products. Both NetApp 880 and HP NAS 8000 are of
no exception in using NVRAM. NVRAM failure is often caused by a
run-down battery. Check with the NAS vendor to be fully aware of the
characteristics of NVRAM used in your NAS device and the repair
procedure when NVRAM does go down

• File locks. Oracle uses file locks to prevent user accidentally starting up a
second instance on the same node (in a single instance configuration). Thus
network storage system must implement file locks properly according to NFS
specifications.

• Double failures. The network storage system must be able to survive double
failures. For example, failure of the NFS server, followed by reboot of the
NFS server while NFS client fails.

• Stale cache. One common way to improve availability of Oracle database is
using the “fail safe” configuration. When one node running a single Oracle
instance fails, one immediately starts up another single Oracle instance on a
different node. The NFS/Storage system must make sure that second instance
never see the stale data.

Appendix D provides a full description of how to test compliance with NAS in the
above-listed areas.

35 of 114

High Availability for NAS

Along with the benefits that NAS brings, comes an issue that cannot be ignored for any
mission critical systems: NAS reliability. What impact will NAS make on its clients
when a NAS filer goes down?

The importance of this issue can be illustrated in the context of our NAS landscape.

Let’s decide the following:

1. The landscape relies upon two NAS filers for storage. One filer supports the file
systems for PROD, the other filer supports for DEVL and QA

2. When no system goes down and is running in good working order in the
landscape, the landscape is regarded to have 100% system availability to users.

3. When PROD is down, the landscape is considered to have lost 40% of system
availability.

4. When either DELV or QA system is down, the landscape is thought to have lost
30% availability.

Table 7 shows system availability in different scenarios.

Table 7 – NAS Landscape System Availability Matrix

System State PROD DEVL QA % Resources
available

Filer1
(NetApp
F880)

Down

Down Up Up 60%

Filer2
(NetApp
F880)

Down Up Down Down 40%

Filer1
(NetApp
F880) and
Filer2 (NAS
8000)

Down

Down Down Down 0%

PROD Down Down Up Up 60%

DEVL Down Up Down Up 70%

QA Down Up Up Down 70%

36 of 114

Average

(when one
system is
down)

 60%

(excluding both
filers are down)

While a DAS landscape availability based on comparable presumptions looks like this:

Table 8 – DAS Landscape System Availability Matrix

System State PROD DEVL QA % Resources
Available

PROD Down Down Up Up 60%

DEVL Down Up Down Up 70%

QA Down Up Up Down 70%

Average

(when one
system is
down)

 67%

As the tables reveal, the NAS-based landscape is more prone to loosing system
availability than a DAS landscape. The more you centralize the storage on NAS, the more
vulnerable the landscape will become.

One way to address the NAS availability issue is to make NAS highly available.

37 of 114

Table 9 lists a number of High Availability (HA) solutions available today.

Source: Business Continuity Solutions, HP Invent, Network Storage Solutions
Organization, March 2002

HP MC Service Guard for Linux (SG) and MC Service Guard NFS for Linux (SGN) (not
listed in the table) can be used to build a highly available NAS.

SG and SGN offer a number of advantages over other solutions:

• The software runs on standard IA hardware. No particular commercial NAS
devices are required.

• The software has HP support. Her sister, MC/SG for HP-UX, is a time-proven,
successful HA solution.

• SG for Linux scales to 2 or 4 nodes, depending on the disk technology used in
the HA cluster, flexible enough to satisfy most NAS requirement

38 of 114

Figure 4 shows a revised landscape using a HA NAS cluster built with two HP Net
Servers, SG, and SGN. The reason to replace NetApp F880 and HP NAS 8000 with Net
Servers as NAS storage is to highlight the Service Guard’s openness to standard
hardware. You can even replace HP Net Servers with any other comparable Linux
computers without relying upon any particular vendor. That’s the beauty of SG for Linux.
That’s the beauty of software being able to run on open standard hardware.

39 of 114

Figure 4 - Landscape using Service Guard for Linux Cluster

PROD
(HP rp7410)

DEVL
(HP rp7410)

QA
(HP rp7410)

Gigabit Ethernet
Hub

Private
Network

Public LAN

Shared Fast/Wide SCSI

Node1
(Net Server)

Node2
(Net Server)

Service Guard for Linux NFS Cluster

40 of 114

Before we go further, an understanding of what SG is and how it works is in order.

Service Guard for Linux

In network terms, there are three strategies to implement HA:

• IP Failover

• MAC Failover

• Dynamic DNS Configuration

SG for Linux is an HA using IP failover approach. It allows you to create high
availability clusters using HP Net Servers and other Intel Architecture (IA) based
computer systems running Red Hat Linux 7.1 or above.

A high availability computer system allows application services to continue in
spite of a hardware or software failure. High availability systems protect users
from software failures as well as from failure of a system processing unit (SPU),
disk, or local area network component. In the event that one component fails, the
redundant component takes over. SG and other high availability subsystems
coordinate the transfer of services between components.

A SG cluster is a networked grouping of HP Net servers known as nodes. The
cluster has sufficient redundancy of software and hardware so that a single point
of failure will not significantly disrupt the services that the cluster provides to
users. Application services (individual Linux processes, including NFS) are
grouped together in packages. In the event of a single service, node, network, or
other resource failure, SG will automatically transfer control of the package to
another node within the cluster, allowing services to continue with minimal
interruption.

Figure 5 shows a more detailed diagram of the SG cluster used in the landscape:

41 of 114

Figure 5 – SG Configuration Diagram

In the cluster, SG provides high availability through SPU redundancy, LAN
redundancy and disk redundancy.

SPU Redundancy

The cluster includes two systems identified as Node1 and Node2. Node1 is
assigned to run PackageA, which basically provide NFS support for

Giga Ethernet
Hub

PROD

DEVL

QA

PackgeA
/dev/pkga

PackgeB
/dev/pkgb

eth1 eth0 eth0 eth1

/dev/pkga
/dev/pkgb

mirror

/dev/pkgb
/dev/pkga

mirror

node1 node2

42 of 114

PROD. Node1 is the Primary Node for PackageA. When Node1 fails, the
control for PackageA is transferred to Node2. Node2 is Adoptive Node for
PackageA. Node2 is assigned to run PackageB, providing NFS support for
DEVL and QA. Node2 is Primary Node for PackageB. When Node2 fails,
the control of PackageB is transferred to Node1. Node1 is Adoptive Node
for PackageB. This service package transfer relationship between Node1
and Node2 is defined as “mutual failover”. Other relationships or
“policies” exist. They can be found in Appendix E.

LAN Redundancy

Each node has two network interfaces, eth0 and eth1. eth0 is an active
interface with a designated IP address bound to it, eth1 is a standby. When
both nodes are up and running in the cluster, IP address on eth0 in Node1
is 192.168.0.1. eth1 is not active. Eth0 in Node2 has IP address
192.168.0.2. eth1 in Node2 is not active. PROD accesses PackageA
running on Node1 via IP 192.168.0.1; DEVL and QA access PackageB
running on Node2 via IP 192.168.0.2.

When Node1 in the cluster fails, the failure triggers the failover process. In
the process, Node2 adopts IP 192.168.0.1 from Node1 onto its interface
eth1. The control of PackageA is transferred to Node2 and continues to
run on Node2. After failover, both eth0 and eth1 interfaces are active on
Node2 and both PackageA and PackgeB are running on Node2.
Resultantly, PROD will able to continue using PackageA via the same IP
address 192.168.0.1 without knowing it is now bound to eth1 on Node2.
No impact takes place on DEVL and QA that use PackageB.

When Node2 fails, PackageB gets transferred to Node1 in the same
fashion as described above. The end result is that DEVL and QA continue
using PackageB without knowing it is running on Node1. PROD is not
affected by the change at all.

Disk Redundancy

The disks are shared between the two nodes. Two sets of volume groups
are created using Linux Logical Volume Manager on the shared disks.
One set includes one volume group /dev/pkga, the other set includes two
volume groups /dev/pkgb_devl and /dev/pkgb_qa. Only one node can
access a given set of volume groups at a time. When one node fails, the
surving node will access the volume groups supported by the failed node
and continue providing the file system services with the volume groups it
has adopted. In addition, each volume group is mirrored for data
protection in the event of disk failure. The shared storage subsystem
configuration is to be discussed in more detail later.

43 of 114

The changes that occur during the cluster failover process are shown in
Figure 6 and Figure 7.

Figure 6 - Before Failover

The solid lines in the diagram indicate active interconnects.

PROD

QA

PackgeA
/dev/pkga

PackgeB
/dev/pkgb

eth1 eth0 eth0 eth1

/dev/pkga
/dev/pkgb

mirror

/dev/pkgb
/dev/pkga

mirror

DEVL

node1 node2

44 of 114

Figure 7 – After Failover

The solid lines in the diagram indicate active interconnects.

For a complete reference to SG for Linux, please consult with Managing
MC/ServiceGuard for Linux by HP, Manufacturing Part Number: B9903-90005.

PROD

QA

PackgeA
/dev/pkga

PackgeB
/dev/pkgb

eth1 eth0 eth0 eth1

/dev/pkga
/dev/pkgb

mirror

/dev/pkgb
/dev/pkga

mirror

DEVL

node1 node2

45 of 114

Shared Disk Subsystem Configuration for SG

SG for Linux requires use of Linux Logical Volume Manager (LVM) to build
required shared disk subsystem.

Linux LVM is very similar to HP-UX LVM. Table 10 compares a list of
commonly used commands to define LVM devices under Linux and HP-UX.

Table 10 - LVM Commands

Command Function Linux HP-UX
pvcreate Prepare disk device Y Y
vgcreate Create volume

group
Y Y

Vgscan List volume groups Y Y
lvcreate Create logical

volume
Y Y

vgchange Activate/deactivate
a volume group

Y Y

vgextend Add new disks to
existing volume
groups

Y Y

lvextend Extend logical
volumes

Y Y

vgcfgbackup Backup volume
group configuration

Y Y

vgcfgrestore Restore volume
group configuration

Y Y

One difference between Linux LVM and HP-UX LVM is in implementing
mirroring or RAID 1.

Under HP-UX, LVM mirroring is typically done by lvextend –m, which requires
MirrorDisk/UX module to be installed on your system. With lvextend –m, you
implement LVM mirroring between logical volumes within a volume group.
Mirroring between volume groups is not possible. If other levels of RAID are
desired, HP Auto Array or comparables are required.

Under Linux, you use Software RAID utility, also called Multiple Device (md)
utility, to create mirroring. Mirroring is typically implemented between volume
groups instead of logical volumes. In addition to RAID 1, the utility also allows
you to create RAID 0, 4, and 5. Software RAID is included in Red Hat Linux 7.1
and above. You can also obtain the package from most Linux web sites.

46 of 114

To better illustrate how to construct mirroring using Linux LVM, we use two
JBOD disk systems such as HP Disk System 2300 to build our shared disk
subsystem. HP DS 2300 features and specifications can be found in Appendix F.

We populate each JBOD with four (4) 36GB 10K rpm disks on one bus. The two
JBOD disk systems are connected to Node1 and Node2 using separate SCSI
channels. Each channel is terminated with Y-cable at each end to form a multiple
initiator SCSI bus.

Figure 8 below shows the configuration:

Figure 8 – SG Shared Disk Subsystem Configuration Diagram

In the diagram, a total of 8 disks are shared between Node1 and Node2. Those
disk devices are:

SCSI Channel 1: /dev/sdc, /dev/sdd, /dev/sde, /dev/sdf
SCSI Channel 2: /dev/sdg, /dev/sdh, /dev/sdi, /dev/sdj

The disks on two channels are mirrored as:

/dev/md0 = /dev/sdc, dev/sdg
/dev/md1 = /dev/sdd, /dev/sdh

PackageB

PackgeA

node1 node2

47 of 114

/dev/md2 = /dev/sde, /dev/sdi
/dev/md3 = /dev/sdf, /dev/sdj

Three volume groups are constructed using the above four mirrored devices. The
three VGs are:

/dev/pkga_vg
/dev/pkgb_vg1
/dev/pkgb_vg2

Three logical volumes are defined in each VG:

/dev/pkga_vg/lvol1 (44GB)
/dev/pkga_vg/lvol2 (8GB)
/dev/pkga_vg/lvol3 (8GB)
/dev/pkga_vg/lvol4 (8GB)
/dev/pkga_vg/lvol5 (4GB)

/dev/pkgb_vg1/lvol1 (22GB)
/dev/pkgb_vg1/lvol2 (4GB)
/dev/pkgb_vg1/lvol3 (4GB)
/dev/pkgb_vg1/lvol4 (4GB)
/dev/pkgb_vg1/lvol5 (2GB)

/dev/pkgb_vg2/lvol1 (22GB)
/dev/pkgb_vg2/lvol2 (4GB)
/dev/pkgb_vg2/lvol3 (4GB)
/dev/pkgb_vg2/lvol4 (4GB)
/dev/pkgb_vg2/lvol5 (2GB)

Furthermore, 15 file systems are created on the LVs listed above. Those file
systems and mount points are:

node1 # cat /etc/fstab
...
/dev/pkga_vg/lvol1 /vol/prod/data
/dev/pkga_vg/lvol2 /vol/prod/index
/dev/pkga_vg/lvol3 /vol/prod/log
/dev/pkga_vg/lvol4 /vol/prod/tmp
/dev/pkga_vg/lvol5 /vol/prod/adm

/dev/pkgb_vg1/lvol1 /vol/devl/data
/dev/pkgb_vg1/lvol2 /vol/devl/index
/dev/pkgb_vg1/lvol3 /vol/devl/log
/dev/pkgb_vg1/lvol4 /vol/devl/tmp
/dev/pkgb_vg1/lvol5 /vol/prod/adm

48 of 114

/dev/pkgb_vg2/lvol1 /vol/qa/data
/dev/pkgb_vg2/lvol2 /vol/qa/index
/dev/pkgb_vg2/lvol3 /vol/qa/log
/dev/pkgb_vg2/lvol4 /vol/qa/tmp
/dev/pkga_vg2/lvol5 /vol/prod/adm

On NFS clients, the NFS mount file systems are:

On PROD:
prod # cat /etc/fstab
...
node1:/vol/prod/data /prod/data
node1:/vol/prod/index /prod/index
node1:/vol/prod/log /prod/log
node1:/vol/prod/tmp /prod/tmp
node1:/vol/prod/adm /prod/adm

On DEVL:
devl # cat /etc/fstab
...
node2:/vol/devl/data /devl/data
node2:/vol/devl/index /devl/index
node2:/vol/devl/log /devl/log
node2:/vol/devl/tmp /devl/tmp
node2:/vol/devl/adm /prod/adm

On QA:
qa # cat /etc/fstab
...
node2:/vol/devl/data /devl/data
node2:/vol/devl/index /devl/index
node2:/vol/devl/log /devl/log
node2:/vol/devl/tmp /devl/tmp
node2:/vol/devl/adm /prod/adm

Note: The mount options are omitted for clarity.

To achieve the configuration illustrated as above, a certain procedure needs to be
followed.

1) Proceed on one node
2) Partition the disks
3) Verify physical volumes

49 of 114

4) Make md devices that mirror selected physical volumes in consideration
of load balancing

5) Construct volume groups with appropriate md devices
6) Create logical volumes within each volume group
7) Create file system on each logical volume
8) Mount file system and test the file system’s integrity
9) Unmount file system and deactivate volume groups
10) Back up VG configuration and copy the configuration information to the

other node
11) Back up file systems definition (/etc/fstab) and copy it to the other node
12) Import VG configuration
13) Activate shared VGs
14) Mount file systems
15) Test access to shared VGs
16) Deactivate shared VGs

Further details of how to execute the procedure can be found in Appendix G

Thus far, we have built the shared disk subsystem infrastructure required by SG
for Linux.

ServiceGuard NFS for Linux

With SG cluster put in place, we can install SGN to make the cluster a HA NAS.

As an add-on to SG for Linux, SGN consists of a set of separate shell scripts and
one binary file, providing the following functions on a SG cluster platform:

1. Group NFS server services into packages
2. Define primary node and adoptive node for each NFS package
3. Define failover relationship, i.e., mutual failover, multiple packages

failover, or cascading failover
4. Monitors the health of the NFS services on each node in the cluster
5. When a node fails, SG NFS on the node stops NFS services and transfers

the control of the NFS package(s) to an adoptive node. The halt process
includes but not limited to:

a. Unmounts file systems
b. Deactivates volume group or volume groups associated with the

NFS pakcage
c. Stops NFS server services and assists transfer relocatable IP

address to the adopitive node
6. On the adoptive node, it starts NFS services associated with the transfered

NFS package. The start process includes but not limited to:
a. Activate volume group or volume groups associated with the

package

50 of 114

b. Mount file systems
c. Export file systems
d. Assigns the adopted package IP address to a LAN interface
e. Synchronizes remote mount table
f. Starts providing NFS services for the transferred package

SGN installation procedure can be found in Appendix G.

Service Guard NFS for Linux Configuration

SGN is configured by editing configuration files deployed on both SG cluster
nodes. Table 11 lists the configuration files.

Table 11 – SGN Configuration Files

File Default

File Name
Sample
Name

Path

pkg.conf pkga.conf /usr/local/cmcluster/pkga/pkga.confPackage
Configuration
File

 pkgb.conf /usr/local/cmcluster/pkgb/pkgb.conf

pkg.cntl pkga.cntl /usr/local/cmcluster/pkga/pkga.cntl Package Control
Script pkgb.cntl /usr/local/cmcluster/pkgb/pkgb.cntl
NFS Control
Script

hanfs.sh hanfs.sh /usr/local/cmcluster/bin/hanfs.sh

A close examination of each file as configured to meet our SG Cluster NAS
requirement follows. Please note that only sections of each file that are pertaining
to those desired, user-definable parameters are listed.

pkga.conf (PackageA, on both nodes)

PACKAGE_NAME pkga
PACKAGE_TYPE FAILOVER
FAILOVER_POLICY CONFIGURED_NODE
FAILBACK_POLICY MANUAL
NODE_NAME node1
NODE_NAME node2
AUTO_RUN YES
NODE_FAIL_FAST_ENABLED NO
RUN_SCRIPT /usr/local/cluster/pkga/pkga.cntl
HALT_SCRIPT /usr/local/cluster/pkga/pkga.cntl
SERVICE_NAME nfsa.monitor
SUBNET 192.168.0.0

51 of 114

pkga.cntl (PackageA, on both nodes)

PATH=/sbin:/usr/bin:/usr/sbin:/etc:/bin:/usr/local/cmcluster/bin

RAIDTAB=”/usr/local/cmcluster/conf/raidtab.sg
RAIDSTART=”raidstart –c ${RAIDTAB}”
RAIDSTOP=”raidstop –c ${RAIDSTOP}”
VGCHANGE=”vgchange –a y”

MD[0]=/dev/md0
MD[1]=/dev/md1
VG[0]=/dev/pkga_vg

LV[0]=/dev/pkga_vg/lvol1; FS[0]=/vol/prod/data;
FS_MOUNT_OPT[0]=""
LV[1]=/dev/pkga_vg/lvol2; FS[1]=/vol/prod/index;
FS_MOUNT_OPT[1]=""
LV[2]=/dev/pkga_vg/lvol3; FS[2]=/vol/prod/log;
FS_MOUNT_OPT[2]=""
LV[3]=/dev/pkga_vg/lvol4; FS[3]=/vol/prod/tmp;
FS_MOUNT_OPT[3]=""
LV[4]=/dev/pkga_vg/lvol5; FS[4]=/vol/prod/adm;
FS_MOUNT_OPT[4]=""

IP[0]=192.168.0.1
SUBNET[0]=192.168.0.0

HA_NFS_SERVER=”yes”

pkgb.conf (PackageB, on both nodes)

PACKAGE_NAME pkgb
PACKAGE_TYPE FAILOVER
FAILOVER_POLICY CONFIGURED_NODE
FAILBACK_POLICY MANUAL
NODE_NAME node2
NODE_NAME node1
AUTO_RUN YES
NODE_FAIL_FAST_ENABLED NO
RUN_SCRIPT /usr/local/cluster/pkga/pkgb.cntl
HALT_SCRIPT /usr/local/cluster/pkga/pkgb.cntl
SERVICE_NAME nfsb.monitor
SUBNET 192.168.0.0

pkgb.cntl (PackageB, on both nodes)

52 of 114

 PATH=/sbin:/usr/bin:/usr/sbin:/etc:/bin:/usr/local/cmcluster/bin

RAIDTAB=”/usr/local/cmcluster/conf/raidtab.sg
RAIDSTART=”raidstart –c ${RAIDTAB}”
RAIDSTOP=”raidstop –c ${RAIDSTOP}”
VGCHANGE=”vgchange –a y”

MD[0]=/dev/md2
MD[1]=/dev/md3
VG[0]=/dev/pkgb_vg1
VG[1]=/dev/pkgb_vg2

LV[0]=/dev/pkgb_vg1/lvol1; FS[0]=/vol/devl/data;
FS_MOUNT_OPT[0]=""
LV[1]=/dev/pkgb_vg1/lvol2; FS[1]=/vol/devl/index;
FS_MOUNT_OPT[1]=""
LV[2]=/dev/pkgb_vg1/lvol3; FS[2]=/vol/devl/log;
FS_MOUNT_OPT[2]=""
LV[3]=/dev/pkgb_vg1/lvol4; FS[3]=/vol/devl/tmp;
FS_MOUNT_OPT[3]=""
LV[4]=/dev/pkgb_vg1/lvol5; FS[4]=/vol/devladm;
FS_MOUNT_OPT[4]=""

LV[5]=/dev/pkgb_vg2/lvol1; FS[5]=/vol/qa/data;
FS_MOUNT_OPT[0]=""
LV[6]=/dev/pkgb_vg2/lvol2; FS[6]=/vol/qa/index;
FS_MOUNT_OPT[1]=""
LV[7]=/dev/pkgb_vg2/lvol3; FS[7]=/vol/qa/log; FS_MOUNT_OPT[2]=""
LV[8]=/dev/pkgb_vg2/lvol4; FS[8]=/vol/qa/tmp;
FS_MOUNT_OPT[3]=""
LV[9]=/dev/pkgb_vg2/lvol5; FS[9]=/vol/qa/adm;
FS_MOUNT_OPT[4]=""

IP[0]=192.168.0.2
SUBNET[0]=192.168.0.0

HA_NFS_SERVER=”yes”

hanfs.sh (/usr/local/cmcluster/bin/hanfs.sh on Node1)

XFS[0]=“*:/vol/prod/data”
XFS[1]=“*:/vol/prod/index”
XFS[2]=“*:/vol/prod/log”
XFS[3]=“*:/vol/prod/tmp”

53 of 114

XFS[4]=“*:/vol/prod/adm”

NFS_SERVICE_NAME[0]=nfsa.monitor
NFS_SERVICE_CMD[0]=/usr/local/cmcluster/pkga/nfs.mon

hanfs.sh (/usr/local/cmcluster/bin/hanfs.sh on Node2)

XFS[0]=“*:/vol/devl/data”
XFS[1]=“*:/vol/devl/index”
XFS[2]=“*:/vol/devl/log”
XFS[3]=“*:/vol/devl/tmp”
XFS[4]=“*:/vol/devl/adm”

XFS[5]=“*:/vol/qa/data”
XFS[6]=“*:/vol/qa/index”
XFS[7]=“*:/vol/qa/log”
XFS[8]=“*:/vol/qa/tmp”
XFS[9]=“*:/vol/qa/adm”

NFS_SERVICE_NAME[0]=nfsb.monitor
NFS_SERVICE_CMD[0]=/usr/local/cmcluster/pkgb/nfs.mon

With DNS using local files, /etc/hosts on both node1 and node2 need to have
these entries:
…
192.168.0.1 node1
192.168.0.2 node2
…

Accordingly, /etc/nsswitch.conf file on both nodes needs to contain this entry:
…
hosts: files nisplus nis dns
…

54 of 114

The entire SGN configuration is summarized in Table 12.

Table 12 – SGN Configuration Summary

What is
configured

File Specifics

Failover logic Package
Configuration
File

 Package name
 Failover type
 Primary node, adoptive node(s)
 Failover and fallback policies, etc.

Shared disk
storage access
control

Package
Control Script

 Define volume groups, logical
volumes, and file systems associated
with a package.

 Activates volumes and mounts file
systems when starting a package;

 Deactivates volume groups and
unmounts file systems when stopping
a package

Exporting file
systems

NFS Control
script

 Define file systems to be exported.
 Specify whether NFS monitor is used

References to more details about how to configure SGN can be found in
Appendix G.

As a recap, thanks to MC/ServiceGuard for Linux and MC/ServiceGuard NFS for Linux
from HP, we can not only make NAS highly available to address reliability concerns for
mission critical systems but also build an High Availability NAS cluster with standard
hardware, avoiding the high cost that is often associated with HA solutions based on
proprietary hardware.

55 of 114

High Availability for Landscape

In the previous section, we discussed the feasibility of building a highly available NAS
for our landscape.

As ServiceGuard NFS for Linux being able to extend ServiceGuard for Linux in NFS
services, Oracle 9i Real Application Clusters (ORAC) supports ServiceGuard for HP-UX
and is able to extend the HA cluster in providing highly available database services.

Different from SGN, however, ORAC does lot more by introducing a whole new
dimension of HA for database services.

Let’s set certain parameters for our landscape before exploring what ORAC can do in
making the database services highly available.

1. We decide to cluster the three rp7410 servers with SG (for HP-UX). The three
servers become node1, node2, and node3 in the cluster.

2. We wrap the three Oracle instances PROD, DEVL, and QA in three packages.
3. We define multiple package failover policy between the nodes
4. We add two more network interface cards to each node allowing IP failover
5. We use HA NAS that we have just built for the shared storage that HP-UX SG

cluster requires [6]

Figure 9 shows the new, double HA enabled landscape.

Table 13 tabulates the Oracle instances, packages, and cluster nodes

Table 13- HP-UX SG Cluster Configuration

Instance Package Primary Node Adoptive Node Adoptive Node
PROD PKGA Node1 Node2 Node3
DEVL PKGB Node2 Node3 Node1
QA PKGC Node3 Node1 Node2

Keep in mind that with all the changes made the landscape still runs three Oracle
instances, namely, PROD, DEVL, and QA. No more than one SPU runs one instance in
normal circumstances. Instances may run on different nodes determined by TOC when
failover occurs. In the worst scenario one SPU has to run three instances when two nodes
have failed. For example, when Node1 fails, TOC transfers PackageA (PROD) to Node2
because Node2 is the adoptive node. When Node1 and Node2 both fail, both PackageA
and PackageB (DEVL) are transferred to Node3 because Node3 is the adoptive node for
both packages. Node3, thus, has to run all three packages including instances of PROD,
DEVL, and QA, for which it is the primary node. Just following the logic communicated
in the example given and the relationship shown in Table 12 you can figure out what will
happen to other packages in other scenarios.

56 of 114

Figure 9 – Double HA Clustered Landscape

Node2
(rp7410)

Private
Network

Public LAN

Linux SG Cluster for NAS

Node1
(Net Server)

Node2
(Net Server)

Node1
(rp7410)

Node3
(rp7410)

HP-UX SG Cluster

57 of 114

When ORAC is used on top of SG, it will form a virtual global database server for each
original instance, i.e., PROD, DEVL, or QA using all three cluster nodes. Each virtual
server consists of three instances running on three machines simultaneously, resembling
Oracle Parallel Server (OPS). This way, ORAC makes full use of all the computing
power from the entire cluster. When DEVL and QA are not busy, for instance, PROD
will automatically use more of the computing power available from all three nodes
instead of one.

More importantly, ORAC introduces Cache Fusion technology that OPS don’t have.
What Cache Fusion does is essentially substituting disk I/O with a global cache system in
serving as many user requests as possible.

ORAC ‘s ability to capitalize computing power in a cluster and bypass disk I/O is
something very desirable and helpful in boosting database performance in a NAS
environment.

Now let’s get up and close to see what ORAC is and how it works.

58 of 114

Oracle 9i Real Application Clusters (ORAC)

Oracle 9i supports HA with Oracle Real Applications Clusters (ORAC). ORAC is
included in Oracle 9i Enterprise Database edition. According to Oracle, ORAC
represents a breakthrough in database high availability technology.

Traditionally, there are three high availability database architectures:

• Federated databases

• Shared-nothing architecture

• Shared-disk architecture

Microsoft SQL Server uses Federated databases approach; IBM DB2 implements
Shared-nothing strategy; Oracle Parallel Server (OPS) is based on Shared-disk
architecture.

Different from the traditional HA architectures, ORAC use “Shared-Cache”
architecture. Cache Fusion is the core of this technology.

Figure 9 shows ORAC running in a three-node cluster.

ORAC runs in a four-layer model on the server side.

o At the top layer is database instance. Database instance runs on each node.
o In the second layer is the quorum mechanism and GCS (Global Cache

Services). Implemented in shared control file, the quorum mechanism
determines database failover. Parallel to the quorum mechanism is GCS.
What GCS does is mainly sharing cluster-wide caches for data access and
coordinating between local caches and remote caches. We’ll revisit GCS’s
role in ORAC in more details shortly.

o In the third layer lies the cluster ware. Oracle supplies its own cluster
management software Oracle Cluster Manager for Linux and Windows
platforms to do OS failover as well as database failover. In case of HP-UX,
it uses MC/ServiceGuard.

o At the bottom is the shared disk subsystem. The subsystem allows the
cluster nodes equal access to the storage media and the file systems that
the media supports. In here ORAC looks very much like its predecessor
Oracle Parallel Server (OPS) as of a shared disk architecture based cluster.

On the client side, TAF (Transparent Application Failover) is used to enhance
ORAC load-balance and fail-over. TAF allows each client to have redundant
network connections to more than one node. When failover occurs, TAF helps
client resume access to services much more quickly than otherwise. For more
details about TAF, please find references in Appendix H.

59 of 114

Figure 9 – Three-node Oracle 9i RAC Cluster

Oracle 9i RAC Cache Fusion Technology

Oracle’s Cache Fusion architecture is a new shared cache architecture that
provides e-business applications the benefits of both shared disk and shared
nothing databases without the drawbacks of the either architecture. It does so by
exploiting rapidly emerging disk storage and interconnect technologies, including
ones that we have been discussing in this paper. While Cache Fusion architecture
is revolutionary in an industry sense, it is a natural evolution of the Oracle Parallel
Server architecture. See Appendix I about OPS.

Oracle Real Applications Clusters with Cache Fusion architecture provides the
following key benefits to enterprise e-business application deployments:

• Flexible and effortless scalability for e-business applications: application
users can log onto a single virtual high performance cluster server. Adding

GCS

Cluster Ware

Quorum

DB Instance

TAF TAF TAFTAFTAF TAF

GCS

Cluster Ware

Quorum

DB Instance

GCS

Cluster Ware

Quorum

DB Instance

60 of 114

nodes to the database is easy and manual intervention is not required to
partition data when processor nodes are added or when business
requirements change. Cluster scalability for all applications out-of-the box
– without modification.

• A high availability solution than traditional cluster database architectures;
this architecture provides customers near continuous access to data with
minimal interruption by hardware and software component failures. The
system is resilient to multiple node failures and component failures are
masked from end-users.

• A single management entity; a single system image is preserved across the
cluster for all management operations. DBAs perform installation,
configuration, backup, upgrade, and monitoring functions once. Oracle
then automatically distributes the management functions to the appropriate
nodes. This means the DBA manages one virtual server.

• Cache Fusion preserves the investment that all Oracle customers have
already made in learning and exploiting Oracle for their e-business
applications; all the single node database functionality is preserved and
application clients connect to the database using the same standard Oracle
application interfaces.

Scalability and performance

E-business application users, or mid tier application server clients, connect
to the database by way of a virtual database server name. Oracle
automatically balances the user load among the multiple nodes on the
cluster. The ORAC database instances on the different nodes subscribe to
all or some subset of database services. This provides DBAs the flexibility
of choosing whether specific application clients that connect to a particular
database service can connect to some or all of the database nodes.]

While each node has a different physical internet protocol address,
application clients connect at a logical database service name level. The
clients are therefore not concerned with irrelevant issues such as multiple
addresses for the multiple server machines.

E-business can painlessly add processing capacity as they grow. The
Cache Fusion architecture immediately utilizes the CPU and memory
resources of the new node. DBAs do not need to manually re-partition
data. This benefit is a by-product of the architecture since transparent data
access is fundamental to Cache Fusion.

The Cache Fusion architecture automatically accomplishes the rapidly
changing e-business requirements and resulting workload changes. DBAs
also do not need to manually re-partition data based on the changed
workloads. ORAC dynamically reallocates database resources to optimally

61 of 114

utilize the cluster system resources with minimum disk I/O and low
latency communication among the nodes. This allows Real Application
Clusters to deliver increased application throughput and optimal response
time.

In traditional shared disk databases, synchronizing database resources
across the cluster database poses significant challenges with regard to
achieving cluster scalability. So how does Cache Fusion solve these
complex and age-old problems?

Cache Fusion Processing

There are primarily five key breakthroughs that make the Cache Fusion
architecture scalable.

• Utilizing the collective (fast) database caches of all the nodes in the

system to satisfy application requests to any one node.
• Removing (slow) disk operations from the critical path of inter-node

synchronization
• Greatly reducing the required number of messages for inter-node

synchronization
• Using scalable inter-node data block transfers that greatly benefit from

the above breakthroughs
• Exploiting low latency cluster interconnect protocols for both database

messages and data shipping (VIA)

For purposes of discussion, we divide these five breakthroughs into two
subtopics:

• The Global Cache Service management of the shared cache
• Efficient inter-node messaging and resource management

Global Cache Service Management of the Shared Cache

Traditional shared disk database system use disk I/O for synchronizing
data access across multiple nodes. Typically, when to or more nodes
contend for the same data block, the node that has a lock on the data block
writes it to disk before the other nodes can access the same data block.
This requires disk I/O that involves moving components; it is inherently
slow. It also requires synchronization in the form of messages that nodes
need to exchange to communicate about lock status. While inter-node
message communication can be performed more efficiently with a good
design and optimal implementation strategy, the costs of disk I/O for
synchronization pose significant challenges for scaling non-partitioned
workloads or high contention workloads on traditional shared disk
subsystems.

62 of 114

The Cache Fusion architecture overcomes this fundamental weakness in
traditional shared disk systems by utilizing the collective caches of all the
nodes in the cluster to satisfy database requests. The Global Cache Service
manages the status and transfer of data blocks across the buffer caches of
the instances. The GCS is tightly integrated with the buffer cache manager
to enable fast lookup of resource information in the Global Resource
Directory [RAC Resource Coordination]. This directory is distributed
across all instances and maintains the status information about resources
including any data blocks that require global coordination. Query requests
can now be satisfied by the local cache or any of the other caches. This
reduces disk I/O. Update operations do not require disk I/O for
synchronization since the local node can obtain the needed block directly
from any of the cluster database node caches. Expensive disk I/O are only
performed when none of the collective caches contain the necessary data
and when an update transaction performs a COMMIT operation that
requires disk write guarantees. This implementation effectively expands
the working set of the database cache and reduces disk I/O to dramatically
speed up database operation. No doubt, this cache-based implementation
is particularly helpful in improving performance in NAS.

Using our three-node cluster example depicted in Figure 6, let’s take a
look at four specific types of cross-node contention for data and how
Cache Fusion addresses each of them.

1. Read/read – user on node 1 wants to read a block that user on node
2 has recently read

2. Read/write – user on node 1 wants to read a block that user on
node 2 has recently updated

3. Write/read – user on node 1 wants to update a block that user on
node 2 has recently read

4. Write/write – user on node 1 wants to update a block that user on
node 2 has recently updated

5. Consistent read – user on node 1 wants to read a block that user on
node 2 has recently read but user on node 3 is updating

The read/read case typically requires little or no coordination, depending
the on specific database implementation. In a traditional shared disk
implementation the request by the user on node 1 will be satisfied either
via local cache access or by way of disk read operations. In the Cache
Fusion implementation, the read request may be served by any of the
caches in the cluster database where the order of access preference is local
cache, remote cache, and finally disk I/O. If the query request is served by
a remote cache, the block is transferred across the high speed cluster
interconnect from one node’s cache to another and expensive disk I/O is
avoided.

63 of 114

Both the read/write and write/write cases, in which a user on node 1
updates the block, coordination between the instances become necessary
so that the block being read is a read consistent image (for read/write) and
the block being updated preserves data integrity (for write/write). In both
cases, the node that holds the initially updated data block ships the block
to the requesting node across the high speed cluster interconnect and
avoids expensive disk I/O for read. It does so this with full recovery
capabilities.

In the case of the write/read case, node 1 wants to update a block that’s
already read and cached by a remote instance or node 2. An update
operation typically involves reading the relevant block into memory and
then writing the updated block back to disk. In this scenario disk I/O for
read is avoided and performance is increased as the block is shipped from
the cache of node 2 into the cache of node 1.

In the case of serving a consistent read request from a block that has been
recently read by a remote instance and yet is being updated by another
remote instance, GCS relies upon assignment of resource modes and roles
in the global resource dictionary to coordinate the task.

Dynamic Remastering of Resources

The GCS tightly integrated with the buffer cache enables the database to
automatically adapt and migrate resources in the Global Resource
Directory to a node that establishes a frequent access pattern for a
particular data set. Dynamic resource remastering provides the key benefit
of greatly increasing the likelihood of local cache access without
additional IPC traffic. This is a dramatic improvement over manual
partitioning and provides efficiencies in the Cache Fusion architecture by
reducing both the number of resource-related inter-node messages and
data block transfers across the cluster interconnect. Dynamic remastering
works for data that has clear access patterns established, in other words, a
set of data is most often accessed by database clients connecting to a
particular node. The buffer cache implements the policy that determines
when dynamic remastering should be invoked based on observed access
patterns. This improves e-business application response by providing local
resource management. Furthermore, it reduces the frequency of inter-node
communications for synchronization.

By replacing slow and expensive disk I/O with fast cache access in serving most
database requests, ORAC can significantly improve overall performance in a
cluster using NAS as shared data storage subsystem.

64 of 114

Conclusion

Through our discussion, we have seen how NAS can be used in an HP landscape as a
cost-effective, easy to implement, easy to manage, and easy to scale storage solution.
With HP high availability technology and Oracle Real Application Clusters you can make
NAS solutions reliable and efficient enough to support most demanding mission critical
applications.

In today’s bottom-line economy, enterprises have to gather as much business intelligence
as they can, record as much business activities as they can, and analyze market trends
using as much historical data as they can. Business operations require immediate and
constant access to information. Disaster prevention and recovery require multiple data
backups and replication to multiple sites. Data warehouse, data farm, and data mart have
to be large enough to serve and flexible enough to adapt to ever changing business needs.
All of these activities demand for dynamic data storage. To meet the ever growing data
storage demand, buyers have to balance the cost and the quantity and quality. The cost
will have to include the cost to operate storage solutions with existing staff resources as
much as they can. It is in this environment NAS comes to offer what we want:

• Low cost delivery using open source software and standard hardware
• Easy management by attaching to networks and “plug and play”
• High scalability
• Reasonable performance, which can be enhanced in various ways
• Heterogeneous system support

High availability is one area where NAS will continue to develop and mature. Network
Appliances reported two Oracle 9i Real Application Clusters certified solutions with
NetApp F880 this year is such an example (See Appendix J for details). R&D resources
are being spent in easing NAS network performance bottleneck. Virtual Interface
Architecture (VIA) being developed in open source community and Direct Access File
System (DAFS) developed by Network Appliances are results of these efforts. Both
bypass TCP/IP allowing more direct connect between networked resources.

NAS market is expected to exceed $10 billion in one year or two. We will certainly see
rapid growth on NAS applications in HP environment as well.

65 of 114

Appendix A – HP Storage Options for DAS

Product Type Description
DS2300 JBOD http://www.hp.com/pr

oducts1/storage/produ
cts/disk_arrays/disksys
tems/index.html

DS2405 2GB FC-AL http://www.hp.com/pr
oducts1/storage/produ
cts/disk_arrays/disksys
tems/ds2405/index.ht
ml

VA7100 Disk Array http://www.hp.com/pr
oducts1/storage/produ
cts/disk_arrays/midran
ge/va7100/index.html

VA7400 Disk Array http://www.hp.com/pr
oducts1/storage/produ
cts/disk_arrays/midran
ge/va7400/index.html

VA7410 Disk Array http://www.hp.com/pr
oducts1/storage/produ
cts/disk_arrays/midran
ge/va7410/index.html

66 of 114

Appendix B – NFS Tuning

NFS Performance Tuning for HPUX 11/11i by Dave Olker, 2001, HP Network Research Lab. -
http://docs.hp.com/hpux/onlinedocs/netcom/NFS_perf_tuning_hpux110_11i.pdf

67 of 114

Appendix C – POSTMARK Source Code

/*
Written by Jeffrey Katcher under contract to Network Appliance.
Copyright (C) 1997-2001
Network Appliance, Inc.

This code has been successfully compiled and run by Network
Appliance on various platforms, including Solaris 2 on an Ultra-170,
and Windows NT on a Compaq ProLiant. However, this PostMark source
code is distributed under the Artistic License appended to the end
of this file. As such, no support is provided. However, please report
any errors to the author, Jeffrey Katcher <katcher@netcom.com>, or to
Andy Watson <watson@netapp.com>.

Versions:
1.00 - Original release - 8/17/97

1.01 - Fixed endless loop on EOF,
 Divide by zero when file_size_high=file_size_low - 10/29/97
 (Thanks to Chuck Murnane)

1.1 - Added new commands to distribute work across multiple directories
 and/or file systems and multiple work subdirectories.

 Changed set location command (+,-) to allow file systems &
weights
 Added set subdirectories command and code to distribute work
across
 multiple subdirectories
 Added file redirect to show and run commands
 Improved help system - 4/8/98

1.11 - Fixed unfortunate problem where read_file opens in append mode
thus
 avoiding actual reads. (Thanks to Kent Peacock)

1.12 - Changed bytes read and written to float. Hopefully this will
avoid
 overflow when very large file sizes are used.

1.13 - Added terse report option allowing results to be easily included
in
 other things. (Thanks to Walter Wong)
 Also tweaked help code to allow partial matches

1.14 - Automatically stop run if work files are depleted

1.5 - It was pointed out by many (most recently Michael Flaster) that
the
 pseudo-random number generator was more pseudo than random.
After
 a review of the literature and extensive benchmarking, I've
replaced
 the previous PRNG with the Mersenne Twister. While an excellent
PRNG,

68 of 114

 it retains much of the performance of the previous implementation.
 URL: http://www.math.keio.ac.jp/~matumoto/emt.html
 Also changed MB definition to 1024KB, tweaked show command
*/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include <fcntl.h>

#ifdef _WIN32
#include <io.h>
#include <direct.h>

#define GETWD(x) getcwd(x,MAX_LINE)
#define MKDIR(x) mkdir(x)
#define SEPARATOR "\\"
#else
extern char *getwd();

#define GETWD(x) getwd(x)
#define MKDIR(x) mkdir(x,0700)
#define SEPARATOR "/"
#endif

#define MAX_LINE 255
#define MAX_FILENAME 80

#define KILOBYTE 1024
#define MEGABYTE (KILOBYTE*KILOBYTE)

#define PROMPT "pm>"

typedef struct { /* ADT for table of CLI commands */
 char *name; /* name of command */
 int (*func)(); /* pointer to callback function */
 char *help; /* descriptive help string */
} cmd;

extern int cli_set_size();
extern int cli_set_number();
extern int cli_set_seed();
extern int cli_set_transactions();
extern int cli_set_location();
extern int cli_set_subdirs();
extern int cli_set_read();
extern int cli_set_write();
extern int cli_set_buffering();
extern int cli_set_bias_read();
extern int cli_set_bias_create();
extern int cli_set_report();

extern int cli_run();
extern int cli_show();
extern int cli_help();
extern int cli_quit();

69 of 114

cmd command_list[]={ /* table of CLI commands */
 {"set size",cli_set_size,"Sets low and high bounds of files"},
 {"set number",cli_set_number,"Sets number of simultaneous files"},
 {"set seed",cli_set_seed,"Sets seed for random number generator"},
 {"set transactions",cli_set_transactions,"Sets number of
transactions"},
 {"set location",cli_set_location,"Sets location of working files"},
 {"set subdirectories",cli_set_subdirs,"Sets number of
subdirectories"},
 {"set read",cli_set_read,"Sets read block size"},
 {"set write",cli_set_write,"Sets write block size"},
 {"set buffering",cli_set_buffering,"Sets usage of buffered I/O"},
 {"set bias read",cli_set_bias_read,
 "Sets the chance of choosing read over append"},
 {"set bias create",cli_set_bias_create,
 "Sets the chance of choosing create over delete"},
 {"set report",cli_set_report,"Choose verbose or terse report
format"},
 {"run",cli_run,"Runs one iteration of benchmark"},
 {"show",cli_show,"Displays current configuration"},
 {"help",cli_help,"Prints out available commands"},
 {"quit",cli_quit,"Exit program"},
 NULL
};

extern void verbose_report();
extern void terse_report();
void (*reports[])()={verbose_report,terse_report};

/* Counters */
int files_created; /* number of files created */
int files_deleted; /* number of files deleted */
int files_read; /* number of files read */
int files_appended; /* number of files appended */
float bytes_written; /* number of bytes written to files */
float bytes_read; /* number of bytes read from files */

/* Configurable Parameters */
int file_size_low=500;
int file_size_high=10000; /* file size: fixed or random within
range */
int simultaneous=500; /* simultaneous files */
int seed=42; /* random number generator seed */
int transactions=500; /* number of transactions */
int subdirectories=0; /* Number of subdirectories */
int read_block_size=512; /* I/O block sizes */
int write_block_size=512;
int bias_read=5; /* chance of picking read over append
*/
int bias_create=5; /* chance of picking create over delete
*/
int buffered_io=1; /* use C library buffered I/O */
int report=0; /* 0=verbose, 1=terse report format */

/* Working Storage */
char *file_source; /* pointer to buffer of random text */

70 of 114

typedef struct {
 char name[MAX_FILENAME+1]; /* name of individual file */
 int size; /* current size of file, 0 = unused file
slot */
} file_entry;

file_entry *file_table; /* table of files in use */
int file_allocated; /* pointer to last allocated slot in file_table
*/

typedef struct file_system_struct {
 file_entry system;
 struct file_system_struct *next,*prev;
} file_system;

file_system *file_systems; /* table of file systems/directories to use
*/
int file_system_weight; /* sum of weights for all file systems */
int file_system_count; /* number of configured file systems */
char **location_index; /* weighted index of file systems */

char *read_buffer; /* temporary space for reading file data into */

#define RND(x) ((x>0)?(genrand() % (x)):0)
extern unsigned long genrand();
extern void sgenrand();

/* converts integer values to byte/kilobyte/megabyte strings */
char *scale(i)
int i;
{
 static char buffer[MAX_LINE]; /* storage for current conversion */

 if (i/MEGABYTE)
 sprintf(buffer,"%.2f megabytes",(float)i/MEGABYTE);
 else
 if (i/KILOBYTE)
 sprintf(buffer,"%.2f kilobytes",(float)i/KILOBYTE);
 else
 sprintf(buffer,"%d bytes",i);

 return(buffer);
}

/* converts float values to byte/kilobyte/megabyte strings */
char *scalef(i)
float i;
{
 static char buffer[MAX_LINE]; /* storage for current conversion */

 if (i/(float)MEGABYTE>1)
 sprintf(buffer,"%.2f megabytes",i/(float)MEGABYTE);
 else
 if (i/(float)KILOBYTE)
 sprintf(buffer,"%.2f kilobytes",i/(float)KILOBYTE);
 else

71 of 114

 sprintf(buffer,"%f bytes",i);

 return(buffer);
}

/* UI callback for 'set size' command - sets range of file sizes */
int cli_set_size(param)
char *param; /* remainder of command line */
{
 char *token;
 int size;

 if (param && (size=atoi(param))>0)
 {
 file_size_low=size;
 if ((token=strchr(param,' ')) && (size=atoi(token))>0 &&
 size>=file_size_low)
 file_size_high=size;
 else
 file_size_high=file_size_low;
 }
 else
 fprintf(stderr,"Error: no file size low or high bounds
specified\n");

 return(1);
}

/* UI callback for 'set number' command - sets number of files to
create */
int cli_set_number(param)
char *param; /* remainder of command line */
{
 int size;

 if (param && (size=atoi(param))>0)
 simultaneous=size;
 else
 fprintf(stderr,"Error: no file number specified\n");

 return(1);
}

/* UI callback for 'set seed' command - initial value for random number
gen */
int cli_set_seed(param)
char *param; /* remainder of command line */
{
 int size;

 if (param && (size=atoi(param))>0)
 seed=size;
 else
 fprintf(stderr,"Error: no random number seed specified\n");

 return(1);
}

72 of 114

/* UI callback for 'set transactions' - configure number of
transactions */
int cli_set_transactions(param)
char *param; /* remainder of command line */
{
 int size;

 if (param && (size=atoi(param))>0)
 transactions=size;
 else
 fprintf(stderr,"Error: no transactions specified\n");

 return(1);
}

int parse_weight(params)
char *params;
{
 int weight=1;
 char *split;

 if (split=strrchr(params,' '))
 {
 *split='\0';
 if ((weight=atoi(split+1))<=0)
 {
 fprintf(stderr,"Error: ignoring invalid weight
'%s'\n",split+1);
 weight=1;
 }
 }

 return(weight);
}

void add_location(params,weight)
char *params;
int weight;
{
 file_system *new_file_system;

 if (new_file_system=(file_system *)calloc(1,sizeof(file_system)))
 {
 strcpy(new_file_system->system.name,params);
 new_file_system->system.size=weight;

 if (file_systems)
 {

 new_file_system->prev=file_systems->prev;
 file_systems->prev->next=new_file_system;
 file_systems->prev=new_file_system;
 }
 else
 {
 new_file_system->prev=new_file_system;

73 of 114

 file_systems=new_file_system;
 }

 file_system_weight+=weight;
 file_system_count++;
 }
}

void delete_location(loc_name)
char *loc_name;
{
 file_system *traverse;

 for (traverse=file_systems; traverse; traverse=traverse->next)
 if (!strcmp(traverse->system.name,loc_name))
 {
 file_system_weight-=traverse->system.size;
 file_system_count--;

 if (file_systems->prev==file_systems)
 {
 free(file_systems);
 file_systems=NULL;
 }
 else
 {
 if (file_systems->prev==traverse)
 file_systems->prev=traverse->prev;

 if (traverse==file_systems)
 file_systems=file_systems->next;
 else
 traverse->prev->next=traverse->next;

 if (traverse->next)
 traverse->next->prev=traverse->prev;

 free(traverse);
 }

 break;
 }

 if (!traverse)
 fprintf(stderr,"Error: cannot find location '%s'\n",loc_name);
}

void delete_locations()
{
 file_system *next;

 while (file_systems)
 {
 next=file_systems->next;
 free(file_systems);
 file_systems=next;
 }

74 of 114

 file_system_weight=0;
 file_system_count=0;
}

/* UI callback for 'set location' - configure current working directory
*/
int cli_set_location(param)
char *param; /* remainder of command line */
{
 if (param)
 {
 switch (*param)
 {
 case '+': /* add location to list */
 add_location(param+1,parse_weight(param+1));
 break;

 case '-': /* remove location from list */
 delete_location(param+1);
 break;

 default:
 delete_locations();
 add_location(param,parse_weight(param));
 }
 }
 else
 fprintf(stderr,"Error: no directory name specified\n");

 return(1);
}

/* UI callback for 'set subdirectories' - configure number of
subdirectories */
int cli_set_subdirs(param)
char *param; /* remainder of command line */
{
 int subdirs;

 if (param && (subdirs=atoi(param))>=0)
 subdirectories=subdirs;
 else
 fprintf(stderr,"Error: invalid number of subdirectories
specified\n");

 return(1);
}

/* UI callback for 'set read' - configure read block size (integer) */
int cli_set_read(param)
char *param; /* remainder of command line */
{
 int size;

 if (param && (size=atoi(param))>0)
 read_block_size=size;

75 of 114

 else
 fprintf(stderr,"Error: no block size specified\n");

 return(1);
}

/* UI callback for 'set write' - configure write block size (integer)
*/
int cli_set_write(param)
char *param; /* remainder of command line */
{
 int size;

 if (param && (size=atoi(param))>0)
 write_block_size=size;
 else
 fprintf(stderr,"Error: no block size specified\n");

 return(1);
}

/* UI callback for 'set buffering' - sets buffering mode on or off
 - true = buffered I/O (default), false = raw I/O */
int cli_set_buffering(param)
char *param; /* remainder of command line */
{
 if (param && (!strcmp(param,"true") || !strcmp(param,"false")))
 buffered_io=(!strcmp(param,"true"))?1:0;
 else
 fprintf(stderr,"Error: no buffering mode (true/false)
specified\n");

 return(1);
}

/* UI callback for 'set bias read' - sets probability of read vs.
append */
int cli_set_bias_read(param)
char *param; /* remainder of command line */
{
 int value;

 if (param && (value=atoi(param))>=-1 && value<=10)
 bias_read=value;
 else
 fprintf(stderr,
 "Error: no bias specified (0-10 for greater chance,-1 to
disable)\n");

 return(1);
}

/* UI callback for 'set bias create' - sets probability of create vs.
delete */
int cli_set_bias_create(param)
char *param; /* remainder of command line */

76 of 114

{
 int value;

 if (param && (value=atoi(param))>=-1 && value<=10)
 bias_create=value;
 else
 fprintf(stderr,
 "Error: no bias specified (0-10 for greater chance,-1 to
disable)\n");

 return(1);
}

/* UI callback for 'set report' - chooses verbose or terse report
formats */
int cli_set_report(param)
char *param; /* remainder of command line */
{
 int match=0;

 if (param)
 {
 if (!strcmp(param,"verbose"))
 report=0;
 else
 if (!strcmp(param,"terse"))
 report=1;
 else
 match=-1;
 }

 if (!param || match==-1)
 fprintf(stderr,"Error: either 'verbose' or 'terse' required\n");

 return(1);
}

/* populate file source buffer with 'size' bytes of readable randomness
*/
char *initialize_file_source(size)
int size; /* number of bytes of junk to create */
{
 char *new_source;
 int i;

 if ((new_source=(char *)malloc(size))==NULL) /* allocate buffer */
 fprintf(stderr,"Error: failed to allocate source file of size
%d\n",size);
 else
 for (i=0; i<size; i++) /* file buffer with junk */
 new_source[i]=32+RND(95);

 return(new_source);
}

/* returns differences in times -
 1 second is the minimum to avoid divide by zero errors */

77 of 114

time_t diff_time(t1,t0)
time_t t1;
time_t t0;
{
 return((t1-=t0)?t1:1);
}

/* prints out results from running transactions */
void
verbose_report(fp,end_time,start_time,t_end_time,t_start_time,deleted)
FILE *fp;
time_t end_time,start_time,t_end_time,t_start_time; /* timers from run
*/
int deleted; /* files deleted back-to-back */
{
 time_t elapsed,t_elapsed;
 int interval;

 elapsed=diff_time(end_time,start_time);
 t_elapsed=diff_time(t_end_time,t_start_time);

 fprintf(fp,"Time:\n");
 fprintf(fp,"\t%d seconds total\n",elapsed);
 fprintf(fp,"\t%d seconds of transactions (%d per
second)\n",t_elapsed,
 transactions/t_elapsed);

 fprintf(fp,"\nFiles:\n");
 fprintf(fp,"\t%d created (%d per second)\n",files_created,
 files_created/elapsed);

 interval=diff_time(t_start_time,start_time);
 fprintf(fp,"\t\tCreation alone: %d files (%d per
second)\n",simultaneous,
 simultaneous/interval);
 fprintf(fp,"\t\tMixed with transactions: %d files (%d per second)\n",
 files_created-simultaneous,(files_created-
simultaneous)/t_elapsed);
 fprintf(fp,"\t%d read (%d per
second)\n",files_read,files_read/t_elapsed);
 fprintf(fp,"\t%d appended (%d per second)\n",files_appended,
 files_appended/t_elapsed);
 fprintf(fp,"\t%d deleted (%d per second)\n",files_created,
 files_created/elapsed);

 interval=diff_time(end_time,t_end_time);
 fprintf(fp,"\t\tDeletion alone: %d files (%d per second)\n",deleted,
 deleted/interval);
 fprintf(fp,"\t\tMixed with transactions: %d files (%d per second)\n",
 files_deleted-deleted,(files_deleted-deleted)/t_elapsed);

 fprintf(fp,"\nData:\n");
 fprintf(fp,"\t%s read ",scalef(bytes_read));
 fprintf(fp,"(%s per second)\n",scalef(bytes_read/(float)elapsed));
 fprintf(fp,"\t%s written ",scalef(bytes_written));
 fprintf(fp,"(%s per second)\n",scalef(bytes_written/(float)elapsed));
}

78 of 114

void
terse_report(fp,end_time,start_time,t_end_time,t_start_time,deleted)
FILE *fp;
time_t end_time,start_time,t_end_time,t_start_time; /* timers from run
*/
int deleted; /* files deleted back-to-back */
{
 time_t elapsed,t_elapsed;
 int interval;

 elapsed=diff_time(end_time,start_time);
 t_elapsed=diff_time(t_end_time,t_start_time);
 interval=diff_time(t_start_time,start_time);

 fprintf(fp,"%d %d %.2f ", elapsed, t_elapsed,
 (float)transactions/t_elapsed);
 fprintf(fp, "%.2f %.2f %.2f ", (float)files_created/elapsed,
 (float)simultaneous/interval,
 (float)(files_created-simultaneous)/t_elapsed);
 fprintf(fp, "%.2f %.2f ", (float)files_read/t_elapsed,
 (float)files_appended/t_elapsed);
 fprintf(fp, "%.2f %.2f %.2f ", (float)files_created/elapsed,
 (float)deleted/interval,
 (float)(files_deleted-deleted)/t_elapsed);
 fprintf(fp, "%.2f %.2f\n", (float)bytes_read/elapsed,
 (float)bytes_written/elapsed);
}

/* returns file_table entry of unallocated file
 - if not at end of table, then return next entry
 - else search table for gaps */
int find_free_file()
{
 int i;

 if (file_allocated<simultaneous<<1 &&
file_table[file_allocated].size==0)
 return(file_allocated++);
 else /* search entire table for holes */
 for (i=0; i<simultaneous<<1; i++)
 if (file_table[i].size==0)
 {
 file_allocated=i;
 return(file_allocated++);
 }

 return(-1); /* return -1 only if no free files found */
}

/* write 'size' bytes to file 'fd' using unbuffered I/O */
void write_blocks(fd,size)
int fd;
int size; /* bytes to write to file */
{
 int offset=0; /* offset into file */
 int i;

79 of 114

 /* write even blocks */
 for (i=size; i>=write_block_size;
 i-=write_block_size,offset+=write_block_size)
 write(fd,file_source+offset,write_block_size);

 write(fd,file_source+offset,i); /* write remainder */

 bytes_written+=size; /* update counter */
}

/* write 'size' bytes to file 'fp' using buffered I/O */
void fwrite_blocks(fp,size)
FILE *fp;
int size; /* bytes to write to file */
{
 int offset=0; /* offset into file */
 int i;

 /* write even blocks */
 for (i=size; i>=write_block_size;
 i-=write_block_size,offset+=write_block_size)
 fwrite(file_source+offset,write_block_size,1,fp);

 fwrite(file_source+offset,i,1,fp); /* write remainder */

 bytes_written+=size; /* update counter */
}

void create_file_name(dest)
char *dest;
{
 char conversion[MAX_LINE+1];

 *dest='\0';
 if (file_system_count)
 {
 strcat(dest,

location_index[(file_system_count==1)?0:RND(file_system_weight)]);
 strcat(dest,SEPARATOR);
 }

 if (subdirectories>1)
 {
 sprintf(conversion,"s%d%s",RND(subdirectories),SEPARATOR);
 strcat(dest,conversion);
 }

 sprintf(conversion,"%d",++files_created);
 strcat(dest,conversion);
}

/* creates new file of specified length and fills it with data */
void create_file(buffered)
int buffered; /* 1=buffered I/O (default), 0=unbuffered I/O */
{

80 of 114

 FILE *fp=NULL;
 int fd=-1;
 int free_file; /* file_table slot for new file */

 if ((free_file=find_free_file())!=-1) /* if file space is available
*/
 { /* decide on name and initial length */
 create_file_name(file_table[free_file].name);

 file_table[free_file].size=
 file_size_low+RND(file_size_high-file_size_low);

 if (buffered)
 fp=fopen(file_table[free_file].name,"w");
 else
 fd=open(file_table[free_file].name,O_RDWR|O_CREAT,0644);

 if (fp || fd!=-1)
 {
 if (buffered)
 {
 fwrite_blocks(fp,file_table[free_file].size);
 fclose(fp);
 }
 else
 {
 write_blocks(fd,file_table[free_file].size);
 close(fd);
 }
 }
 else
 fprintf(stderr,"Error: cannot open '%s' for writing\n",
 file_table[free_file].name);
 }
}

/* deletes specified file from disk and file_table */
void delete_file(number)
int number;
{
 if (file_table[number].size)
 {
 if (remove(file_table[number].name))
 fprintf(stderr,"Error: Cannot delete
'%s'\n",file_table[number].name);
 else
 { /* reset entry in file_table and update counter */
 file_table[number].size=0;
 files_deleted++;
 }
 }
}

/* reads entire specified file into temporary buffer */
void read_file(number,buffered)
int number; /* number of file to read (from file_table) */
int buffered; /* 1=buffered I/O (default), 0=unbuffered I/O */

81 of 114

{
 FILE *fp=NULL;
 int fd=-1;
 int i;

 if (buffered)
 fp=fopen(file_table[number].name,"r");
 else
 fd=open(file_table[number].name,O_RDONLY,0644);

 if (fp || fd!=-1)
 { /* read as many blocks as possible then read the remainder */
 if (buffered)
 {
 for (i=file_table[number].size; i>=read_block_size; i-
=read_block_size)
 fread(read_buffer,read_block_size,1,fp);

 fread(read_buffer,i,1,fp);

 fclose(fp);
 }
 else
 {
 for (i=file_table[number].size; i>=read_block_size; i-
=read_block_size)
 read(fd,read_buffer,read_block_size);

 read(fd,read_buffer,i);

 close(fd);
 }

 /* increment counters to record transaction */
 bytes_read+=file_table[number].size;
 files_read++;
 }
 else
 fprintf(stderr,"Error: cannot open '%s' for reading\n",
 file_table[number].name);
}

/* appends random data to a chosen file up to the maximum configured
length */
void append_file(number,buffered)
int number; /* number of file (from file_table) to append date to */
int buffered; /* 1=buffered I/O (default), 0=unbuffered I/O */
{
 FILE *fp=NULL;
 int fd=-1;
 int block; /* size of data to append */

 if (file_table[number].size<file_size_high)
 {
 if (buffered)
 fp=fopen(file_table[number].name,"a");

82 of 114

 else
 fd=open(file_table[number].name,O_RDWR|O_APPEND,0644);

 if ((fp || fd!=-1) && file_table[number].size<file_size_high)
 {
 block=RND(file_size_high-file_table[number].size)+1;

 if (buffered)
 {
 fwrite_blocks(fp,block);
 fclose(fp);
 }
 else
 {
 write_blocks(fd,block);
 close(fd);
 }

 file_table[number].size+=block;
 files_appended++;
 }
 else
 fprintf(stderr,"Error: cannot open '%s' for append\n",
 file_table[number].name);
 }
}

/* finds and returns the offset of a file that is in use from the
file_table */
int find_used_file() /* only called after files are created */
{
 int used_file;

 while (file_table[used_file=RND(simultaneous<<1)].size==0)
 ;

 return(used_file);
}

/* reset global counters - done before each test run */
void reset_counters()
{
 files_created=0;
 files_deleted=0;
 files_read=0;
 files_appended=0;
 bytes_written=0;
 bytes_read=0;
}

/* perform the configured number of file transactions
 - a transaction consisted of either a read or append and either a
 create or delete all chosen at random */
int run_transactions(buffered)
int buffered; /* 1=buffered I/O (default), 0=unbuffered I/O */
{
 int percent; /* one tenth of the specified transactions */

83 of 114

 int i;

 percent=transactions/10;
 for (i=0; i<transactions; i++)
 {
 if (files_created==files_deleted)
 {
 printf("out of files!\n");
 printf("For this workload, either increase the number of files
or\n");
 printf("decrease the number of transactions.\n");
 break;
 }

 if (bias_read!=-1) /* if read/append not locked out... */
 {
 if (RND(10)<bias_read) /* read file */
 read_file(find_used_file(),buffered);
 else /* append file */
 append_file(find_used_file(),buffered);
 }

 if (bias_create!=-1) /* if create/delete not locked out... */
 {
 if (RND(10)<bias_create) /* create file */
 create_file(buffered);
 else /* delete file */
 delete_file(find_used_file());
 }

 if ((i % percent)==0) /* if another tenth of the work is
done...*/
 {
 putchar('.'); /* print progress indicator */
 fflush(stdout);
 }
 }

 return(transactions-i);
}

char **build_location_index(list,weight)
file_system *list;
int weight;
{
 char **index;
 int count;
 int i=0;

 if ((index=(char **)calloc(1,weight*sizeof(char *)))==NULL)
 fprintf(stderr,"Error: cannot build weighted index of
locations\n");
 else
 for (; list; list=list->next)
 for (count=0; count<list->system.size; count++)
 index[i++]=list->system.name;

84 of 114

 return(index);
}

void create_subdirectories(dir_list,base_dir,subdirs)
file_system *dir_list;
char *base_dir;
int subdirs;
{
 char dir_name[MAX_LINE+1]; /* buffer holding subdirectory names */
 char save_dir[MAX_LINE+1];
 int i;

 if (dir_list)
 {
 for (; dir_list; dir_list=dir_list->next)
 create_subdirectories(NULL,dir_list->system.name,subdirs);
 }
 else
 {
 if (base_dir)
 sprintf(save_dir,"%s%s",base_dir,SEPARATOR);
 else
 *save_dir='\0';

 for (i=0; i<subdirs; i++)
 {
 sprintf(dir_name,"%ss%d",save_dir,i);
 MKDIR(dir_name);
 }
 }
}

void delete_subdirectories(dir_list,base_dir,subdirs)
file_system *dir_list;
char *base_dir;
int subdirs;
{
 char dir_name[MAX_LINE+1]; /* buffer holding subdirectory names */
 char save_dir[MAX_LINE+1];
 int i;

 if (dir_list)
 {
 for (; dir_list; dir_list=dir_list->next)
 delete_subdirectories(NULL,dir_list->system.name,subdirs);
 }
 else
 {
 if (base_dir)
 sprintf(save_dir,"%s%s",base_dir,SEPARATOR);
 else
 *save_dir='\0';

 for (i=0; i<subdirs; i++)
 {
 sprintf(dir_name,"%ss%d",save_dir,i);
 rmdir(dir_name);

85 of 114

 }
 }
}

/* CLI callback for 'run' - benchmark execution loop */
int cli_run(param) /* none */
char *param; /* unused */
{
 time_t start_time,t_start_time,t_end_time,end_time; /* elapsed
timers */
 int delete_base; /* snapshot of deleted files counter */
 FILE *fp=NULL; /* file descriptor for directing output */
 int incomplete;
 int i; /* generic iterator */

 reset_counters(); /* reset counters before each run */

 sgenrand(seed); /* initialize random number generator */

 /* allocate file space and fill with junk */
 file_source=initialize_file_source(file_size_high<<1);

 /* allocate read buffer */
 read_buffer=(char *)malloc(read_block_size);

 /* allocate table of files at 2 x simultaneous files */
 file_allocated=0;
 if ((file_table=(file_entry
*)calloc(simultaneous<<1,sizeof(file_entry)))==
 NULL)
 fprintf(stderr,"Error: Failed to allocate table for %d files\n",
 simultaneous<<1);

 if (file_system_count>0)

location_index=build_location_index(file_systems,file_system_weight);

 /* create subdirectories if necessary */
 if (subdirectories>1)
 {
 printf("Creating subdirectories...");
 fflush(stdout);
 create_subdirectories(file_systems,NULL,subdirectories);
 printf("Done\n");
 }

 time(&start_time); /* store start time */

 /* create files in specified directory until simultaneous number */
 printf("Creating files...");
 fflush(stdout);
 for (i=0; i<simultaneous; i++)
 create_file(buffered_io);
 printf("Done\n");

 printf("Performing transactions");
 fflush(stdout);

86 of 114

 time(&t_start_time);
 incomplete=run_transactions(buffered_io);
 time(&t_end_time);
 if (!incomplete)
 printf("Done\n");

 /* delete remaining files */
 printf("Deleting files...");
 fflush(stdout);
 delete_base=files_deleted;
 for (i=0; i<simultaneous<<1; i++)
 delete_file(i);
 printf("Done\n");

 /* print end time and difference, transaction numbers */
 time(&end_time);

 /* delete previously created subdirectories */
 if (subdirectories>1)
 {
 printf("Deleting subdirectories...");
 fflush(stdout);
 delete_subdirectories(file_systems,NULL,subdirectories);
 printf("Done\n");
 }

 if (location_index)
 {
 free(location_index);
 location_index=NULL;
 }

 if (param)
 if ((fp=fopen(param,"a"))==NULL)
 fprintf(stderr,"Error: Cannot direct output to file
'%s'\n",param);

 if (!fp)
 fp=stdout;

 if (!incomplete)
 reports[report](fp,end_time,start_time,t_end_time,t_start_time,
 files_deleted-delete_base);

 if (param && fp!=stdout)
 fclose(fp);

 /* free resources allocated for this run */
 free(file_table);
 free(read_buffer);
 free(file_source);

 return(1); /* return 1 unless exit requested, then return 0 */
}

/* CLI callback for 'show' - print values of configuration variables */
int cli_show(param)

87 of 114

char *param; /* optional: name of output file */
{
 char current_dir[MAX_LINE+1]; /* buffer containing working directory
*/
 file_system *traverse;
 FILE *fp=NULL; /* file descriptor for directing output */

 if (param)
 if ((fp=fopen(param,"a"))==NULL)
 fprintf(stderr,"Error: Cannot direct output to file
'%s'\n",param);

 if (!fp)
 fp=stdout;

 fprintf(fp,"Current configuration is:\n");
 fprintf(fp,"The base number of files is %d\n",simultaneous);
 fprintf(fp,"Transactions: %d\n",transactions);

 if (file_size_low!=file_size_high)
 {
 fprintf(fp,"Files range between %s ",scale(file_size_low));
 fprintf(fp,"and %s in size\n",scale(file_size_high));
 }
 else
 fprintf(fp,"Files are %s in size\n",scale(file_size_low));

 fprintf(fp,"Working director%s:
%s\n",(file_system_count>1)?"ies":"y",
 (file_system_count==0)?GETWD(current_dir):"");

 for (traverse=file_systems; traverse; traverse=traverse->next)
 printf("\t%s (weight=%d)\n",traverse->system.name,traverse-
>system.size);

 if (subdirectories>0)
 fprintf(fp,"%d subdirector%s will be used\n",subdirectories,
 (subdirectories==1)?"y":"ies");

 fprintf(fp,"Block sizes are: read=%s, ",scale(read_block_size));
 fprintf(fp,"write=%s\n",scale(write_block_size));
 fprintf(fp,"Biases are: read/append=%d,
create/delete=%d\n",bias_read,
 bias_create);
 fprintf(fp,"%ssing Unix buffered file I/O\n",buffered_io?"U":"Not
u");
 fprintf(fp,"Random number generator seed is %d\n",seed);

 fprintf(fp,"Report format is %s.\n",report?"terse":"verbose");

 if (param && fp!=stdout)
 fclose(fp);

 return(1); /* return 1 unless exit requested, then return 0 */
}

/* CLI callback for 'quit' - returns 0 causing UI to exit */

88 of 114

int cli_quit(param) /* none */
char *param; /* unused */
{
 return(0); /* return 1 unless exit requested, then return 0 */
}

/* CLI callback for 'help' - prints help strings from command_list */
int cli_help(param)
char *param; /* optional: specific command to get help for */
{
 int n=0; /* number of matching items */
 int i; /* traversal variable for command table */
 int len;

 if (param && (len=strlen(param))>0) /* if a command is specified...
*/
 for (i=0; command_list[i].name; i++) /* walk command table */
 if (!strncmp(command_list[i].name,param,len))
 {
 printf("%s -
%s\n",command_list[i].name,command_list[i].help);
 n++;
 }

 if (!param || !n)
 for (i=0; command_list[i].name; i++) /* traverse command table */
 printf("%s - %s\n",command_list[i].name,command_list[i].help);

 return(1); /* return 1 unless exit requested, then return 0 */
}

/* read CLI line from user, translate aliases if any, return fgets
status */
char *cli_read_line(buffer,size)
char *buffer; /* empty input line */
int size;
{
 char *result;

 printf("%s",PROMPT); /* print prompt */
 fflush(stdout); /* force prompt to print */
 if (result=fgets(buffer,size,stdin)) /* read line safely */
 {
 buffer[strlen(buffer)-1]='\0'; /* delete final CR */
 if (!strcmp(buffer,"?")) /* translate aliases */
 strcpy(buffer,"help");
 if (!strcmp(buffer,"exit"))
 strcpy(buffer,"quit");
 }

 return(result); /* return success of fgets */
}

/* parse CLI input line */
int cli_parse_line(buffer)
char *buffer; /* line of user input */
{

89 of 114

 int result=1; /* default return status */
 int len; /* length of parsed command */
 int i; /* traversal variable for command table */

 if (*buffer=='!') /* check for shell escape */
 system((strlen(buffer)>1)?buffer+1:getenv("SHELL"));
 else
 {
 for (i=0; command_list[i].name; i++) /* walk command table */
 if (!strncmp(command_list[i].name,buffer,
 len=strlen(command_list[i].name)))
 { /* if command matches... */
 result=(command_list[i].func)
 (((int)strlen(buffer)>len)?buffer+len+1:NULL);
 break; /* call function and pass remainder of line as
parameter */
 }

 if (!command_list[i].name) /* if no commands were called... */
 printf("Eh?\n"); /* tribute to Canadian diction */
 }

 return(result); /* return 1 unless exit requested, then return 0 */
}

/* read config file if present and process it line by line
 - if 'quit' is in file then function returns 0 */
int read_config_file(filename,buffer)
char *filename; /* file name of config file */
char *buffer; /* temp storage for each line read from file */
{
 int result=1; /* default exit value - proceed with UI */
 FILE *fp;

 if (fp=fopen(filename,"r")) /* open config file */
 {
 printf("Reading configuration from file '%s'\n",filename);
 while (fgets(buffer,MAX_LINE,fp) && result) /* read lines until
'quit' */
 {
 buffer[strlen(buffer)-1]='\0'; /* delete final CR */
 result=cli_parse_line(buffer); /* process line as typed in */
 }

 fclose(fp);
 }

 return(result);
}

/* main function - reads config files then enters get line/parse line
loop */
main(argc,argv)
int argc;
char *argv[];
{
 char buffer[MAX_LINE+1]; /* storage for input command line */

90 of 114

 printf("PostMark v1.5 : 3/27/01\n");
 if (read_config_file((argc==2)?argv[1]:".pmrc",buffer))
 while (cli_read_line(buffer,MAX_LINE) && cli_parse_line(buffer))
 ;
}

/*

 The "Artistic License"

 Preamble

The intent of this document is to state the conditions under which a
Package may be copied, such that the Copyright Holder maintains some
semblance of artistic control over the development of the package,
while giving the users of the package the right to use and distribute
the Package in a more-or-less customary fashion, plus the right to make
reasonable modifications.

Definitions:

 "Package" refers to the collection of files distributed by the
 Copyright Holder, and derivatives of that collection of files
 created through textual modification.

 "Standard Version" refers to such a Package if it has not been
 modified, or has been modified in accordance with the wishes
 of the Copyright Holder as specified below.

 "Copyright Holder" is whoever is named in the copyright or
 copyrights for the package.

 "You" is you, if you're thinking about copying or distributing
 this Package.

 "Reasonable copying fee" is whatever you can justify on the
 basis of media cost, duplication charges, time of people
involved,
 and so on. (You will not be required to justify it to the
 Copyright Holder, but only to the computing community at large
 as a market that must bear the fee.)

 "Freely Available" means that no fee is charged for the item
 itself, though there may be fees involved in handling the item.
 It also means that recipients of the item may redistribute it
 under the same conditions they received it.

1. You may make and give away verbatim copies of the source form of the
Standard Version of this Package without restriction, provided that you
duplicate all of the original copyright notices and associated
disclaimers.

2. You may apply bug fixes, portability fixes and other modifications
derived from the Public Domain or from the Copyright Holder. A Package
modified in such a way shall still be considered the Standard Version.

91 of 114

3. You may otherwise modify your copy of this Package in any way,
provided
that you insert a prominent notice in each changed file stating how and
when you changed that file, and provided that you do at least ONE of
the
following:

 a) place your modifications in the Public Domain or otherwise make
them
 Freely Available, such as by posting said modifications to Usenet
or
 an equivalent medium, or placing the modifications on a major
archive
 site such as uunet.uu.net, or by allowing the Copyright Holder to
include
 your modifications in the Standard Version of the Package.

 b) use the modified Package only within your corporation or
organization.

 c) rename any non-standard executables so the names do not conflict
 with standard executables, which must also be provided, and provide
 a separate manual page for each non-standard executable that
clearly
 documents how it differs from the Standard Version.

 d) make other distribution arrangements with the Copyright Holder.

4. You may distribute the programs of this Package in object code or
executable form, provided that you do at least ONE of the following:

 a) distribute a Standard Version of the executables and library
files,
 together with instructions (in the manual page or equivalent) on
where
 to get the Standard Version.

 b) accompany the distribution with the machine-readable source of
 the Package with your modifications.

 c) give non-standard executables non-standard names, and clearly
 document the differences in manual pages (or equivalent), together
 with instructions on where to get the Standard Version.

 d) make other distribution arrangements with the Copyright Holder.

5. You may charge a reasonable copying fee for any distribution of this
Package. You may charge any fee you choose for support of this
Package. You may not charge a fee for this Package itself. However,
you may distribute this Package in aggregate with other (possibly
commercial) programs as part of a larger (possibly commercial) software
distribution provided that you do not advertise this Package as a
product of your own. You may embed this Package's interpreter within
an executable of yours (by linking); this shall be construed as a mere
form of aggregation, provided that the complete Standard Version of the
interpreter is so embedded.

92 of 114

6. The scripts and library files supplied as input to or produced as
output from the programs of this Package do not automatically fall
under the copyright of this Package, but belong to whomever generated
them, and may be sold commercially, and may be aggregated with this
Package. If such scripts or library files are aggregated with this
Package via the so-called "undump" or "unexec" methods of producing a
binary executable image, then distribution of such an image shall
neither be construed as a distribution of this Package nor shall it
fall under the restrictions of Paragraphs 3 and 4, provided that you do
not represent such an executable image as a Standard Version of this
Package.

7. C subroutines (or comparably compiled subroutines in other
languages) supplied by you and linked into this Package in order to
emulate subroutines and variables of the language defined by this
Package shall not be considered part of this Package, but are the
equivalent of input as in Paragraph 6, provided these subroutines do
not change the language in any way that would cause it to fail the
regression tests for the language.

8. Aggregation of this Package with a commercial distribution is always
permitted provided that the use of this Package is embedded; that is,
when no overt attempt is made to make this Package's interfaces visible
to the end user of the commercial distribution. Such use shall not be
construed as a distribution of this Package.

9. The name of the Copyright Holder may not be used to endorse or
promote
products derived from this software without specific prior written
permission.

10. THIS PACKAGE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

 The End

*/

/* A C-program for MT19937: Integer version (1999/10/28) */
/* genrand() generates one pseudorandom unsigned integer (32bit) */
/* which is uniformly distributed among 0 to 2^32-1 for each */
/* call. sgenrand(seed) sets initial values to the working area */
/* of 624 words. Before genrand(), sgenrand(seed) must be */
/* called once. (seed is any 32-bit integer.) */
/* Coded by Takuji Nishimura, considering the suggestions by */
/* Topher Cooper and Marc Rieffel in July-Aug. 1997. */

/* This library is free software; you can redistribute it and/or */
/* modify it under the terms of the GNU Library General Public */
/* License as published by the Free Software Foundation; either */
/* version 2 of the License, or (at your option) any later */
/* version. */
/* This library is distributed in the hope that it will be useful, */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. */

93 of 114

/* See the GNU Library General Public License for more details. */
/* You should have received a copy of the GNU Library General */
/* Public License along with this library; if not, write to the */
/* Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA */
/* 02111-1307 USA */

/* Copyright (C) 1997, 1999 Makoto Matsumoto and Takuji Nishimura. */
/* Any feedback is very welcome. For any question, comments, */
/* see http://www.math.keio.ac.jp/matumoto/emt.html or email */
/* matumoto@math.keio.ac.jp */

/* REFERENCE */
/* M. Matsumoto and T. Nishimura, */
/* "Mersenne Twister: A 623-Dimensionally Equidistributed Uniform */
/* Pseudo-Random Number Generator", */
/* ACM Transactions on Modeling and Computer Simulation, */
/* Vol. 8, No. 1, January 1998, pp 3--30. */

/* Period parameters */
#define N 624
#define M 397
#define MATRIX_A 0x9908b0df /* constant vector a */
#define UPPER_MASK 0x80000000 /* most significant w-r bits */
#define LOWER_MASK 0x7fffffff /* least significant r bits */

/* Tempering parameters */
#define TEMPERING_MASK_B 0x9d2c5680
#define TEMPERING_MASK_C 0xefc60000
#define TEMPERING_SHIFT_U(y) (y >> 11)
#define TEMPERING_SHIFT_S(y) (y << 7)
#define TEMPERING_SHIFT_T(y) (y << 15)
#define TEMPERING_SHIFT_L(y) (y >> 18)

static unsigned long mt[N]; /* the array for the state vector */
static int mti=N+1; /* mti==N+1 means mt[N] is not initialized */

/* Initializing the array with a seed */
void
sgenrand(seed)
 unsigned long seed;
{
 int i;

 for (i=0;i<N;i++) {
 mt[i] = seed & 0xffff0000;
 seed = 69069 * seed + 1;
 mt[i] |= (seed & 0xffff0000) >> 16;
 seed = 69069 * seed + 1;
 }
 mti = N;
}

/* Initialization by "sgenrand()" is an example. Theoretically, */
/* there are 2^19937-1 possible states as an intial state. */
/* This function allows to choose any of 2^19937-1 ones. */
/* Essential bits in "seed_array[]" is following 19937 bits: */
/* (seed_array[0]&UPPER_MASK), seed_array[1], ..., seed_array[N-1]. */

94 of 114

/* (seed_array[0]&LOWER_MASK) is discarded. */
/* Theoretically, */
/* (seed_array[0]&UPPER_MASK), seed_array[1], ..., seed_array[N-1] */
/* can take any values except all zeros. */
void
lsgenrand(seed_array)
 unsigned long seed_array[];
 /* the length of seed_array[] must be at least N */
{
 int i;

 for (i=0;i<N;i++)
 mt[i] = seed_array[i];
 mti=N;
}

unsigned long
genrand()
{
 unsigned long y;
 static unsigned long mag01[2]={0x0, MATRIX_A};
 /* mag01[x] = x * MATRIX_A for x=0,1 */

 if (mti >= N) { /* generate N words at one time */
 int kk;

 if (mti == N+1) /* if sgenrand() has not been called, */
 sgenrand(4357); /* a default initial seed is used */

 for (kk=0;kk<N-M;kk++) {
 y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
 mt[kk] = mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1];
 }
 for (;kk<N-1;kk++) {
 y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
 mt[kk] = mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1];
 }
 y = (mt[N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK);
 mt[N-1] = mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1];

 mti = 0;
 }

 y = mt[mti++];
 y ^= TEMPERING_SHIFT_U(y);
 y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B;
 y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C;
 y ^= TEMPERING_SHIFT_L(y);

 return y;
}

95 of 114

Appendix D - OSCP Testing Procedure

Tests Environment

The Oracle Storage system certification test SDK comes typically with a tar file.
Various directories are created after one untars the tar file. For the fault injection
tests, you must place $ORALE_HOME/dbs, $ORALCE_HOME/rdbms/log on
the network storage system. Almost all the tests below places the database
datafiles, logfiles, and control files on the network storage system. Only one test
requires placing some database datafiles on the local disk of the NFS client where
Oracle instance runs.

Most tests described below follow a 3 step scenario: (1) start an intensive
database workload by running test tknfsutil, (2) cause a physical failure by a
person, such as powering off the NFS server, (3) validate that the database
survived the failure.

To start the intensive database workload, issue command “sdk_runqa nfs
scenario-1”. This workload includes changing some database tables while
maintaining some invariant. This test runs by self for 2 hours. You may terminate
the test any time by simply shutdown abort the instance.

You may validate the integrity of the database either after the test has been
terminated, or while the test is running.

1. startup database if it is not up already

2. SVRMGR> connect sys/knl_test7 as sysdba

3. SVRMGR> set SERVEROUTPUT ON

4. SVRMGR> execute checkIntegrity();

The PL/SQL routine checkIntegrity() outputs the following to the screen:

 Integrity check succeeded

 Most recent update: Mar 12, 1999, 5:60:45

If the invariant is no longer true, which means he database is no longer consistent,
checkIntegrity() outputs the following to the screen:

 Integrity check failed

 Most recent update: Mar 12, 1999, 5:60:45

96 of 114

OSCP Tests

Synchronous writes

This test assumes that Oracle runs on a machine separate from the network file
server. It requires some database data files to be placed on the local disk of the
NFS client where Oracle runs. The integrity of Oracle database relies on the fact
that Oracle follows the “log ahead” protocol – the redo for a change must be on
persistent media first before the change itself can be on persistent media. Thus, if
write is not synchronous, the following test may fail. The steps are as follows:

1. Make sure no Oracle instance is up. Use NFS hard mount.

2. Run test tknfsutil2 by issuing command “sdk_runqa nfs scenario-2 dbs_dir-
/your/dbs/directory”

3. Power off the network file server.

4. Shutdown Oracle via shutdown abort.

5. Restart the network file server, and restart Oracle. Make sure Oracle can
complete crash recovery and restart successfully. If not, this test fails.

6. Run checkIntegrity(). If it succeeds, this test passes. Otherwise this test fails.

The test above should be repeated at least 5 times. One should only consider that
this test passed when all the runs succeed.

Hard-mount/Soft-mount

Either NFS hard-mount or soft-mount works with Oracle. The two different
modes cause different behavior. If hard mount is used, Oracle should stay up
while NFS server is down; it simply stalls. Because the I/O made by Oracle do not
have timeout, Oracle should be able to continue from where it stalled once NFS is
working again. If soft mount is used, Oracle may crash because of I/O error if the
network file is down.

To test hard mount, perform the following steps:

1. Start the work load by running test tknfsutil.

2. Manually cause faults to bring NFS down. This can be done by power-off
the server, or disconnect the network cable.

3. Restore NFS by either rebooting the server or connect the network cable.

4. Make sure Oracle does not crash, and it can continue once NFS is restored.

97 of 114

5. Start a session, connect as “sys/knl_test7 as sysdba”, run checkIntegrity().
The check must succeed. Observe the most recent updated time printed by
chckIntegrity(). This time should be after the NFS has been restored.

To test soft mount, perform the following:

1. Start the work load by running test tknnfsutil.

2. Manually cause faults to bring down NFS. This can be done by power-off
the server, or disconnect network cable. Oracle should crash after seeing
I/O error.

3. Restart Oracle instance. Make sure Oracle can complete crash recovery
and restart successfully.

4. Run checkIntegrity(). It must succeed.

NVRAM

If the NVRAM for the filer fails, the user in general must assume the whole
network file server has been damaged, and must restore a backup of all the
database files on the network file server, and perform database media recovery.

There are two ways to get around this problem.

(1) mirror NVRAMs

(2) Guarantee that the filer will appear to be at a consistent state at some point
in the past.

In this document, we will call the latter mechanism the “snapshot” mechanism.

If the snapshot mechanism is implemented, the user may avoid restoring all the
files on the filer. However, one must put Oracle control files, log files, and all
datafiles on the same filer. The log archived before the NVRAM failure must not
be mixed with the logs archived after the NVRAM failure. In general, one should
take a full database backup after the NVRAM failure, and discard the logs
archived before the NVRAM failure. Note that, in this approach, some committed
transactions may be lost in case NVRAM fails.

The issues associated with NVRAMs are as follows:

When all NVRAMs fail, the storage system must somehow bring down the Oracle
instance, regardless of whether the “snapshot” mechanism is implemented. This is
necessary to make sure (1) stale data is not returned to Oracle, and (2) Oracle’s

98 of 114

buffer cache will not mix current database blocks with previous storage system
“snapshots”. The storage system can bring down the Oracle instance in two ways:
(1) the storage system may return I/O errors to all I/O requests directed to the filer
immediately after the NVRAM fails. These I/O error will bring down the Oracle
instance. (2) the storage system may simply stops returning any I/O requests after
NVRAM fails, causing Oracle to either hang (hard mount) or abort after I/O
timeout (soft mount). In the second case, a database administrator must shutdown
abort the hanging instance.

The storage system must somehow inform the user (database administrator) that
all NVRAMs have failed, regardless of whether “snapshot” mechanism is
implemented. This is necessary so that, in case the snapshot mechanism is not
implemented, the database administrator knows that he or she must restore all
database file on the network storage system and perform media recovery. In case
snapshot mechanism is implemented, the database administrator must also be
informed because some committed transactions may be lost as a result of going to
previous “snapshots”.

When installing a new NVRAM, there should be a way to clear the contents of the
new NVRAM, so that the new NVRAM will not bring old unrelated data to the
storage system.

NVRAM Test 1: Make sure NVRAM failure bring down Oracle instance

This test assumes that, after all NVRAM fails, all I/O are expected to return I/O
errors.

1. Make sure Oracle instance is not up. Test both hard mount and soft mount.

2. Start Oracle instance

3. Start a workload by running test tknfsutil1.

4. Cause all NVRAM to fail.

5. Make sure that Oracle instance is down immediately after the NVRAM
failure because of I/O errors.

NVRAM Test 2: Make sure NVRAM failure causes Oracle instance to hang

This test assumes that, after all NVRAM fails, the network storage system will
stop responding to any I/O requests.

1. Make sure Oracle instance is not up. Use hard mount.

2. Start Oracle.

3. Start a workload by running test tknfsutil2.

99 of 114

4. Start a server manager session, connect as “sys/knl_test7 as sysdba”

5. Cause all NVRAM to fail.

6. In the user session, type the following command:

 Select * from nfs_vnram_failure;

7. Make sure no data is returned. You may then shutdown abort the instance.
Make sure that succeeds

Table nfs_nvram_failure is not manipulated in test tknfsutil2. Thus its data can
not possibly in the buffer cache of the Oracle instance. If the select returned any
data, it must come from the disk of the network storage system. These data can
potentially be false.

NVRAM Test 3: Test the “snapshot” mechanism

This test checks if the “snapshot” mechanism can bring the database to a previous
consistent state.

1. Perform either NVRAM test 1 or NVRAM test 2. Make sure NVRAM
failure either brings down the instance or stops the instance.

2. Make sure the instance is not up.

3. Enable network storage system to go to a previous “snapshot”.

4. Start up the instance. Connect as user “sys/knl_test7 as sysdba”

5. Run checkIntegrity(). This test fails if checkIntegrity() outputs “fail”.

6. Compare the most recent update time printed out ny checkIntegrity() with
the current system time. Make sure the difference is within a reasonable
limit. (All transactions after the most recent update time is lost.)

NVRAM Test 4: Installing new NVRAMs

1. Perform either NVRAM test 1 r NVRAM test 2. Make sure NVRAM
failure either brings down the instance or stops the instance.

2. Make sure the instance is not up.

3. Install a different NVRAM.

4. Start up the instance. Connect as user “sys/knl_test7 as sysdba”

5. Run checkIntegrity(). Make sure it succeeds.

100 of 114

File Locks

The steps of this test are as follows:

1. Make sure no Oracle instance is up. Use NFS hard mount.

2. Run test tknfsutil by issuing command “sdk_runqa nfs scenario=3”

3. Power off the filer. One should see that the Oracle instance simply stalls
waiting for NFS to respond.

4. Power of the filer. One should see that the test continues to run.

5. Attempt to start a second Oracle instance by issuing command “sdk_runqa
nfs scenario=3”. This attempt should fail.

Oracle uses file locks to prevent user from starting a second instance in an non-
OPS (Oracle Parallel Server) configuration. If file locks are not preserved across
network file server failures, the above test may fail.

Double Failures

Double Failure Test 1: Two Server failures

1. Start the work load by running test tknfsutil1. Use hard mount.

2. Power off the filer

3. Power on the filer

4. While the filer is rebooting and contacting NFS clients, power off the filer
again.

5. Power on the filer and make sure Oracle continues without errors.

6. Start a session. Connect as “sys/knl_test7 as sysdba”. Run checkIntegrity().
Make sure it succeeds.

Repeat this test for at least 3 times.

Double Failure Test 2: Server failure followed by a client failure while the server
is rebooting

101 of 114

1. Start the work load by running test tknfsutil1. Use hard mount.

2. Power off the filer

3. Power on the filer

4. While the filer is rebooting and contacting NFS clients, poer off the NFS
client machine on which Oracle runs.

5. Reboot the machine and restart Oracle. Make sure Oracle can complete
crash recovery and restart successfully.

6. Connect as “sys/knl_test7 as sysdba”. Run checkIntegrity(). Make sure it
succeeds.

Repeat this test for at least 3 times.

Stale Cache

A NFS implementation may have a write-through cache on a NFS client. When
Oracle is shut down on the client, the network file server must make sure that
Oracle does not fetch stale cache blocks when it restarts on the same node.

To test this, set up two machines that are connected to the filer.

1. Start Oracle on one machine by running the command “sdk_runqa nfs
scenario=4 machine=1”.

2. Start Oracle on the second machine by running the command “sdk_runqa
nfs scenario=4 machine=2”.

3. Restart Oracle on the first machine. Make sure you see the changes made
on the second machine

4. Run the following command from the second machine:

 Select * from nfs_stale_cache;

If you see the value “machine 2” then your test has passed, otherwise you are
seeing value from a stale cache.

102 of 114

Appendix E – MC/ServiceGuard for Linux

1. Getting Started with MC/ServiceGuard for Linux -
http://docs.hp.com/linux/pdf/B9903-90006.pdf

2. Managing MC/ServiceGuard for Linux - http://docs.hp.com/linux/pdf/B9903-
90005.pdf

103 of 114

Appendix F - HP DS 2300

DS 2300 Features:

 Disk array type – JOBD
 Interconnect – Ultra-160
 Max disks – 14
 Ports – Two (2) 68-ping VHDCI ports per bus-controller

card
 Redundant power supply
 Supports – MC/Service Guard, MSCS (Microsoft Cluster Services)

Source:
http://www.hp.com/products1/storage/products/disk_arrays/disksystems/ds2300/index.ht
ml

104 of 114

Appendix G – MC/ServiceGuard for Linux

Managing MC/ServiceGuard NFS for Linux - http://docs.hp.com/linux/pdf/T1442-
90002.pdf

105 of 114

Appendix H – Oracle 9i Real Application Clusters References

1. Oracle 9i RAC on HP-UX -
http://otn.oracle.com/products/oracle9i/htdocs/9iRAChp.html#54

2. Oracle 9i RAC Cache Fusion Delivers Scalability, An Oracle White Paper by
Sohan DeMel, February 2002 -
http://otn.oracle.com/products/oracle9i/pdf/cache_fusion_rel2.pdf

3. Oracle 9i DBA Guide Release 2 (9.2) -
http://docs.oracle.com/cd_a97630/server.920/a96521/create.htm#998107

106 of 114

Appendix I

1. Oracle Parallel Server and Windows 2000 Advanced Server on IBM Netfinity -
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg245449.pdf

2. Oracle Parallel Processing By Tushar Mahapatra, Sanjay Mishra, August
2000 ISBN 1-56592-701-X

107 of 114

Appendix J

Network Appliances Certified ORAC Configuration 1

Oracle 9i RAC on Compaq Proliant Servers Running Linux 7 and F880

The configuration presented here is based on the Oracle9i RAC certification environment specified by
Oracle and Network Appliance.

The above figure illustrates a typical configuration of Oracle9i RAC with a Netapp filer. The Intel boxes
used in this configuration are from Compaq (model DL580R01). This is a scalable configuration and
allows the user to scale horizontally and internally in terms of processor, memory, and storage.

As shown in the network diagram, we recommend that you dedicate a private network connection between
the Oracle9i RAC servers and the filer. This is accomplished using a dedicated Gigabit network (with a
Gigabit switch) to the filer. A dedicated network connection is beneficial for the following reasons:

• In a 9i RAC environment it is important to eliminate any contentions and latencies.
• By providing a separate network, security is ensured.

The cluster interconnect is used to monitor the heartbeat of the two servers in the cluster. This is a typical
configuration that can be deployed in a customer's environment.

108 of 114

Cluster Components

Cluster Nodes

• 2 * 2-way 900 MHz, 2GB RAM Compaq Proliant DL580 Servers
• 2 * Intel III Gigabit Ethernet NICs (for cluster interconnect)
• 2 * Intel III Gigabit Ethernet NICs (for Network Appliance filer I/O)

Storage Infrastructure

• 1 * Network Appliance 880 filer with Data ONTAP™ 6.1.2R3
• 1 * 4/8 port Gigabit switch
• 1 * Gigabit NIC in the filer
• 1 or more disk shelves based on the disk space requirements

Software Requirements
(For both the nodes in the participating cluster unless specified otherwise)

• Red Hat Linux 7.1, kernel 2.4.9-31
• Oracle9i, release 9.0.1 with Real Application Cluster license
• Oracle9i - 9.0.1.3 patch set
• Intel III Gigabit Ethernet driver for the Gigabit NICs

Source: Network Appliances - http://www.netapp.com/tech_library/3164.html

109 of 114

Network Appliances Certified ORAC Configuration 2

Oracle 9i RAC on Fujitsu Primepower Servers running Solaris 8 and F880

The configuration presented here is based on the Oracle9i RAC certification environment specified by
Oracle and Network Appliance.

The above figure illustrates a typical configuration of Oracle9i RAC with a Netapp filer and Fujitsu-
Siemens computers. This is a scalable configuration and allows the user to scale horizontally and internally
in terms of processor, memory, and storage.

As shown in the network diagram, we recommend that you dedicate a private network connection between
the Oracle9i RAC servers and the filer. This is accomplished using a dedicated Gigabit network (with a
Gigabit switch) to the filer. A dedicated network connection is beneficial for the following reasons:

• In a 9i RAC environment it is important to eliminate any contentions and latencies.
• By providing a separate network, security is ensured.

The cluster interconnect is used to monitor the heartbeat of the two servers in the cluster. This is a typical
configuration that can be deployed in a customer's environment.

Cluster Components

110 of 114

Cluster Nodes

• 2 * Fujitsu Primepower Servers
• 2 * Sun Gigabit Ethernet NICs (for cluster interconnect)
• 2 * Sun Gigabit Ethernet NICs (for Network Appliance filer I/O)

Storage Infrastructure

• 1 * Network Appliance 8XX filer with Data ONTAP™ 6.1.R1
• 1 * 4/8 port Gigabit switch
• 1 * Gigabit NIC in the filer
• 1 or more disk shelves based on the disk space requirements

Software Requirements
(For both the nodes in the participating cluster unless specified otherwise.)

• Solaris 8 with the latest version of kernel patches described below:
o 108813-08 SunOS 5.8: Sun Gigabit Ethernet 3.0
o 108806-08 SunOS 5.8: Sun Quad FastEthernet qfe driver
o 108528-13 SunOS 5.8: kernel update patch
o 108727-14 SunOS 5.8: /kernel/fs/nfs and /kernel/fs/sparcv9/nfs patch

• PRIMECLUSTER 4.0 or higher
o CF V4.0A
o PAS V4.0A
o RMS V4.0A (required logically for node elimination; no interface dependency)

• Oracle 9i, release 9.0.1 with Real Application Cluster license
• Fujitsu PRIMECLUSTER RAC package for Oracle 9.0.1
• Sun Gigabit Ethernet-3.0 driver for the Gigabit NICs

Source: Network Appliances - http://www.netapp.com/tech_library/3165.html

111 of 114

References

1. Oracle9i for UNIX: HP/UX 11.0 and 11i Best Practices with a NetApp® Filer -
http://www.netapp.com/tech_library/3146.html#1.

2. Oracle7 for UNIX: Backup and Recovery Using a NetApp Filer -
http://www.netapp.com/tech_library/3036.html

3. Oracle8i/Oracle8 for UNIX: Backup and Recovery Using a NetApp Filer -
http://www.netapp.com/tech_library/3049.html

4. Oracle9i for UNIX: Backup and Recovery Using a NetApp Filer -
http://www.netapp.com/tech_library/3130.html

5. Oracle8/Oracle8i for UNIX: Integrating with a Network Appliance Filer -
http://www.netapp.com/tech_library/3047.html#3.2.

6. Architecting a Gigabit SAN for Database Application Environments -
http://www.netapp.com/tech_library/3112.html#2.

7. Oracle8 for UNIX: Integrating with a NetApp Cluster -
http://www.netapp.com/tech_library/3046.html

8. Oracle9i for UNIX: Integrating with a Network Appliance Filer -
http://www.netapp.com/tech_library/3129.html

9. Oracle8 for UNIX: Providing Disaster Recovery with NetApp SnapMirror Technology -
http://www.netapp.com/tech_library/3057.html#4.1.

10. Cisco Systems and Network Appliance:
Network-Attached Storage Solutions - http://www.netapp.com/tech_library/3121.html#3

11. Using PCI-1000-BaseT and HSC/PCI-1000-Base SX (Gigabit Ethernet) -
http://docs.hp.com/hpux/pdf/J1643-90010.pdf

12. Managing MC/ServiceGuard NFS for HP 9000 - http://docs.hp.com/hpux/pdf/B5140-
90011.pdf

13. NFS Performance tuning for HPUX 11/11i -
http://docs.hp.com/hpux/onlinedocs/netcom/NFS_perf_tuning_hpux110_11i.pdf

14. PCI Gigabit Ethernet Performance -
http://docs.hp.com/hpux/onlinedocs/netcom/gbe_perf_final.pdf

15. Boosting Server-to-server Gigabit Throughout with Jumbo Frames -
http://docs.hp.com/hpux/onlinedocs/netcom/jumbo_final.pdf

16. INPUT Study: NAS Delivers Lower TCO -
http://www.netapp.com/partners/oracle/NAS_DeliversLowerTCOthanSAN.pdf

17. INPUT Study: Database Storage Solutions – A Competitive Study of TCO -
http://www.netapp.com/tech_library/ftp/3102.pdf

18. NAD Market Trend by Chris Conner - http://www.garpinvestor.com/nas.htm
19. EMC Leads in NAS Revenue Share -

http://www.emc.com/news/press_releases/view.jsp?id=1266
20. Industry report confirms EMC leads in NAS revenue share -

http://biz.yahoo.com/bw/020514/142288_3.html
21. Sun joins NAS market - http://www.itworld.com/Comp/3761/ITW924/
22. Gartner Dataquest Report on storage market 2001 -

http://www.enterprisestorageforum.com/industrynews/article/0,,1291_1166681,00
.html

23. NAS market poised for dynamic growth by Dataquest, May 2000 -
http://www.businesssolutionsmag.com/Articles/2000_05_15/00051502.htm

24. NAS – Procom 1999 Annual Report -
http://www.procom.com/company/investor/reports/Procom99AR.pdf

112 of 114

25. NAS market 2 billion in 2000 and expected to exceed 10 billion in 2004 -
http://www.instat.com/pr/2000/ln0005ms_pr.htm

26. Oracle Usage Guide for Sun StorEdge N8600 Filer -
http://www.sun.com.au/products/storage/hardware/nas/pdf/n8600_oracle_usage_g
uide.pdf

27. Compaq Storage White Papers -
http://www.compaq.com/storage/whitepapers.html

28. Trade Report: SAN+NAS, April 2002 -
http://www.asia.cnet.com/itmanager/tech/0,39006407,39027064,00.htm

29. SAN+NAS Winter Group Report for EMC -
http://www.emc.com/pdf/products/celerra_file_server/highroad_winter_wp.pdf

30. EMC and Cisco NAS Solution -
http://www.emc.com/partnersalliances/pdf/emc_cisco_network.pdf

31. EMC: Oracle 8 with Celerra Filer over NFS -
http://www.emc.com/products/product_pdfs/wp/celerra/oracle8_cfs_nfs.pdf

32. Oracle Storage Compatibility Program (OSCP) White Papers -
http://technet.oracle.com/deploy/availability/htdocs/oscp_papers.html#Oracle_OS
CP

33. Administrating Oracle 9i on UNIX -
http://otn.oracle.com/docs/products/oracle9i/doc_library/release2/unix.920/a9729
7/ch1_admin.htm#i46647

34. NFS soft and hard mount - http://tclug.linux.org.tw/docs/ClientServer/tsld014.htm
35. NFS Mount – Soft and Hard mount -

http://ou800doc.caldera.com/NET_nfs/nfsT.mount_cmd.html
36. NFS FS Advanced Mount Options -

http://osr5doc.ca.caldera.com:457/NetAdminG/nfsD.nfsmount.html
37. Oracle 9i Fail Safe - http://otn.oracle.com/tech/windows/failsafe/content.html
38. Oracle Fail Safe on Compaq Proliant, 1998 -

ftp://ftp.compaq.com/pub/supportinformation/papers/ecg050998.pdf
39. Commercial HA Software for Linux - http://linux-ha.org/commercial.html
40. Network Failover Strategies - http://linux-ha.org/failover/
41. Linux HA Heartbeat - http://linux-ha.org/comm/heartbeat-overview.html
42. Service Guard Commands -

http://www.introcomp.co.uk/hpux/service_guard_commands.html
43. HP Business Continuity Solutions -

http://h40056.www4.hp.com/storage/3_business_continuity.pdf
44. HP-UX 11i Single System Availability - http://www.hp-

bg.com/pdf/Giga_HP_UX11i_1.pdf
45. HP Storage for Oracle and SAP -

http://h40056.www4.hp.com/storage/4_solution_for_key_application.pdf
46. HP 1000Base-SX Product Tour -

http://techsolutions.hp.com/dir_gigabit_external/training/a492456a.html
47. HP SureStore Virtula Array 7100 - http://www.rand.at/artikel/ts-

news/hp_surestore/VA%207100.pdf
48. Compaq SAN -

http://www.compaq.com/products/storageworks/msa1000/index.html

113 of 114

49. Compaq NAS -
http://www.compaq.com/products/storageworks/b3000/index.html

50. Linux LVM Howto - http://www.sistina.com/lvm_howtos/lvm_howto.pdf
51. Sistina GFS Howto - http://www.sistina.com/gfs_howtos/gfs_howto.pdf
52. Edge Serving with Sistina’s GFS -

http://www.sistina.com/EdgeServingSistinasGFS.pdf
53. Oracle 9i Installation Guide -

http://www.sistina.com/EdgeServingSistinasGFS.pdf
54. Building Highly Available Database Servers Using Oracle Real Application

Clusters, Jack Cai, Oracle White Paper, Oracle, 2001 – RAC_Availability.pdf
55. Linux Software RAID – http://www.linuxdoc.org/HOWTO/Software-RAID-

HOWTO.html
56. RAC vs. Microsoft – RACvsMicrosoft.pdf
57. Techincal Comparison of Oracle 9i Real Application Clusters vs. IBM DB2 UDB

EEE v7.2, An Oracle White Paper February 2002 by Sashikanth Chandrasekaran
& Bill Kehoe – http://otn.oracle.com/deploy/performance/pdf/ibm_db2.pdf

58. HP-UX disk Setup Using sdsadmin -
http://www.dubois.ws/people/paul/sdsadmin.html

59. Oracle 9i RAC on HP-UX -
http://otn.oracle.com/products/oracle9i/htdocs/9iRAChp.html#54

60. Oracle 9i RAC Cache Fusion Delivers Scalability, An Oracle White Paper by
Sohan DeMel, February 2002 -
http://otn.oracle.com/products/oracle9i/pdf/cache_fusion_rel2.pdf

61. Linux DPT Hardware RAID How-to BY Ram Samudrala, February 2002 -
http://www.ram.org/computing/linux/dpt_raid.html

62. HP Disk System 2300 -
http://www.hp.com/products1/storage/products/disk_arrays/disksystems/ds2300/i
nfolibrary/ds2300.pdf

63. LVM for Linux by Heinz Mauelshagen -
http://www.nondot.org/sabre/os/files/Partitions/LVM.PDF

64. LVM Question LV MAX 255.99GB - http://lists.suse.com/archive/suse-
axp/2000-Mar/0130.html

65. Linux XFS Filesystem by SGI - http://oss.sgi.com/projects/xfs/
66. JFS for Linux by IBM - http://oss.software.ibm.com/jfs/
67. Design and implementation of Second Extended Filesystem in Linux by Remy

Card et al - http://e2fsprogs.sourceforge.net/ext2intro.html
68. Test of Six Linux File Systems - http://aurora.zemris.fer.hr/filesystems/
69. Filesystems Howto by Martin Hinner -

http://www.tldp.org/HOWTO/Filesystems-HOWTO.html
70. Using the ext3 filesystem in 2.4 kernels -

http://www.zip.com.au/~akpm/linux/ext3/ext3-usage.html
71. Linux Ext3 Howto by Rajesh Fowkar -

http://www.symonds.net/~rajesh/howto/ext3/toc.html
72. NAS Serial Benchmark Performance -

http://www.nersc.gov/research/FTG/pcp/performance.html

114 of 114

73. M-VIA – A High Performance Modular VIA for Linux -
http://www.nersc.gov/research/FTG/via/

74. M-VIA FAQ - http://www.nersc.gov/research/FTG/via/faq.html#q1
75. An implementation and Analysis of the Virtual Interface Architecture by Philip

Buonadonna, Andrew Geweke, David Culler, 1998 -
http://www.supercomp.org/sc98/TechPapers/sc98_FullAbstracts/Buonadonna893/
INDEX.HTM

76. Oracle 9i RAC Installation with NetApp Filer on Fujitsu-Siemens Primepower
(Solaris 8) http://www.netapp.com/tech_library/3165.html

77. Oracle 9i RAC Installation with NetApp Filer in Linux Environment -
http://www.netapp.com/tech_library/3164.html

78. Oracle 9i Database Online Documentation -
http://docs.oracle.com/cd_a97630/index.htm

79. IEEE 802.3ae – 10GB Ethernet -
http://www.ethermanage.com/ethernet/10gig.html

80. [6] Oracle 9i DBA Guide Release 2 (9.2) -
http://docs.oracle.com/cd_a97630/server.920/a96521/create.htm#998107

81. Linux Performance Tuning Tools - http://linuxperf.nl.linux.org/links.html

