Lab Solutions

HP Linux Administration for Experienced HP-UX Administrators

Lab Solutions

HP Linux Administration for Experienced HP-UX Administrators

HP World/Interex 2002

Linux System Maintenance Basics

Red Hat Linux 7.2

12–1. LAB: RedHat RPM Software Package Management

Directions

In this lab, you are going to learn how to install software using the RedHat Package Manager.

1)
Use the rpm command to find out how many packages are on your system. Display the names of all the packages. Create a file named /root/rpms.out listing all the names of the RPM software installed on your system.

rpm -qa|wc -l

rpm -qa|less

rpm -qa >/root/rpms.out

2)
Use the rpm command to discover which packages owns the /etc/passwd and /etc/hosts files and the /var/named directory.

rpm -qf /etc/passwd

rpm -qf /etc/hosts

rpm -qf /var/named

3)
Use the rpm command to query the bind RPM package for general package information including version and description. List all of the files that the bind RPM package installed on your Linux system and then relist only the configuration files for this package with extended file RPM metadata information (use -- dump). Display the comprehensive change (log) information for the bind RPM package.

rpm -qi bind

rpm -ql bind

rpm -qlc --dump bind|less

rpm -q --changelog bind|less

4)
Use the rpm command to remove the bind RPM package from the system. If a dependency error message is returned, try to remove the package anyway by finding an rpm option that will ignore any pending dependencies preventing the package removal. Confirm that the package was successfully removed.

rpm -e bind

(fails)

rpm -e --nodeps bind

(succeeds)

rpm -qi bind

5)
Use the rpm command to install the bind RPM package from the RedHat installation CDs (CD #1) to your system. Confirm that the package was successfully installed.

mount -t iso9660 /dev/cdrom /mnt/cdrom

cd /mnt/cdrom/RedHat/RPMS

rpm -ivh bind-9.1.3-4.i386.rpm

rpm -qi bind

umount /mnt/cdrom

17–1. LAB: Configuring TCP Wrappers on Linux

Directions

Learn how to configure the TCP wrapper on a Linux system. Working with a partner, configure the TCP wrapper and then test the TCP wrapper’s functionality.

1)
Test that the xinetd daemon is running and will reply to a telnet session request by logging in to your partner’s system using the telnet command and then exit off your partner’s system.

telnet <Partner’s Hostname or IP Address>

Trying <Partner’s IP Address>...

Connected to <Partner’s Hostname> (<Partner’s IP Address>).

Escape character is '^]'.

Red Hat Linux release 7.2 (Enigma)

Kernel 2.4.7-10 on an i686

login: root

Password: <hplinux>

Last login: <DATE> from <Partner’s Hostname>

Linux Kickstart-Installed Red Hat Linux 7.2 <DATE>

exit

2)
Configure the TCP wrapper to deny ALL TCP-wrapped services from ALL hosts across the network. Test your partner’s TCP wrapper by trying to connect to your partner’s system using the telnet command. Did your telnet session succeed? (No)

vi /etc/hosts.deny

#

hosts.deny This file describes the names of the hosts

which are *not* allowed to use the local INET

services, as decided by the '/usr/sbin/tcpd'

server.

#

The portmap line is redundant, but it is left to remind you

that the new secure portmap uses hosts.deny and hosts.allow.

In particular, you should know that NFS uses portmap!

ALL:ALL

telnet <Partner’s Hostname or IP Address>

Trying <Partner’s IP Address>...

Connected to <Partner’s Hostname> (<Partner’s IP Address>).

Escape character is '^]'.

Connection closed by foreign host.

3)
Configure the TCP wrapper to allow the TCP-wrapped telnet service from your partner’s system across the network. (To determine the name of the TCP-wrapped server daemon use the grep command on the /etc/xinetd.d/telnet file searching for the pattern “server”.) Test your partner’s TCP wrapper again by trying to connect to your partner’s system using the telnet command. Did your telnet session succeed? (Yes)

grep server /etc/xinetd.d/telnet

description: The telnet server serves telnet sessions;

 server = /usr/sbin/in.telnetd

vi /etc/hosts.allow

#

hosts.allow This file describes the names of the hosts

which are allowed to use the local INET

services, as decided by the '/usr/sbin/tcpd'

server.

#

in.telnetd:<Partner’s IP Address>

telnet <Partner’s Hostname or IP Address>

Trying <Partner’s IP Address>...

Connected to <Partner’s Hostname> (<Partner’s IP Address>).

Escape character is '^]'.

Red Hat Linux release 7.2 (Enigma)

Kernel 2.4.7-10 on an i686

login: root

Password: <hplinux>

Last login: <DATE> from <Partner’s Hostname>

Linux Kickstart-Installed Red Hat Linux 7.2 <DATE>

exit

4)
Although the TCP wrapper is usually associated with the server processes spawned by the xinetd daemon, other daemon processes use the TCP wrapper as well. Discover and then locate the server daemon executable that hosts a ssh client connection (look in the SEE ALSO portion of the ssh man page for a section 8 server daemon – sshd(8)) and examine the ASCII contents of that binary file using the strings command piping its output to the grep command to search for the word “hosts”. If the files “/etc/hosts.allow” and “/etc/hosts.deny” appear in the output, the sshd daemon uses the TCP wrapper as well. Does the sshd daemon use the TCP wrapper? (Yes) Does the named daemon use the TCP wrapper? (No)

man ssh

which sshd

/usr/sbin/sshd

strings /usr/sbin/sshd|grep hosts

.

/etc/hosts.allow

/etc/hosts.deny

.

which named

/usr/sbin/named

strings /usr/sbin/named|grep hosts

5)
Examine the contents of the Linux manual page for the TCP wrapper using the man command on the /etc/hosts.allow or /etc/hosts.deny argument (either argument will take you to the same man page). Notice the multitude of file syntax options that can be used to configure the TCP wrapper in either file.

man hosts.allow

19–1. LAB: Configuring IPTables on Linux

Directions

In this lab, you will learn how to configure iptables, the IP packet filter. The iptables firewall tool is used to configure, maintain and inspect the tables of IP packet filter rules managed by the Linux kernel.

1)
Before configuring iptables, turn off the ipchains firewall tool using the chkconfig command with the --del option so that the two don’t conflict with one another.

chkconfig --list|grep -e iptables -e ipchains

ipchains 0:off 1:off 2:on 3:on 4:on 5:on 6:off

iptables 0:off 1:off 2:on 3:on 4:on 5:on 6:off

chkconfig --del ipchains

chkconfig --list|grep -e iptables -e ipchains

ipchains 0:off 1:off 2:off 3:off 4:off 5:off 6:off

iptables 0:off 1:off 2:on 3:on 4:on 5:on 6:off

2)
Load the ip_tables dynamic kernel module into kernel memory with the modprobe command to check to see if the kernel is ready to use iptables. List the current chains (lists) of filter rules configured for iptables using the iptables -L command.

modprobe ip_tables

lsmod

iptables -L

Chain INPUT (policy ACCEPT)

target prot opt source destination

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

3)
Define a rule for the INPUT chain to DENY any and all access from your partner’s IP address. Examine the iptables chains of rules again and then ask your partner to ping your system. Delete the rule from the INPUT chain.

iptables -A INPUT -s <Partner’s IP Address> -j DROP

iptables -L

Chain INPUT (policy ACCEPT)

target prot opt source destination

DROP all -- <Partner’s Hostname> anywhere

ping <My IP Address>

(from Partner’s machine)

iptables -D INPUT 1

4)
Define a rule for the INPUT chain to DENY all TCP-based access from your partner’s IP address. Examine the iptables chains of rules again and then ask your partner to ping, telnet and then ssh to your system. Delete the rule from the INPUT chain.

iptables -A INPUT -s <Partner’s IP Address> -p tcp -j DROP

iptables -L

Chain INPUT (policy ACCEPT)

target prot opt source destination

DROP tcp -- <Partner’s Hostname> anywhere

ping <My IP Address>

(from Partner’s machine)

telnet <My IP Address>

(from Partner’s machine)

ssh <My IP Address>

(from Partner’s machine)

iptables -D INPUT 1

5)
Define a rule for the INPUT chain to DENY all TCP-based access except for ssh from your partner’s IP address. Examine the iptables chains of rules again and then ask your partner to ftp, telnet and then ssh to your system. Save the current set of rules to a file named /etc/sysconfig/iptables by running the service utility with the iptables save argument. Reboot the system to verify that the iptables rules are reapplied. Delete the rule from the INPUT chain and remove the /etc/sysconfig/iptables file.

iptables -A INPUT -s <Partner’s IP Address> -p tcp \

--dport ! 22-j DROP

iptables -L

Chain INPUT (policy ACCEPT)

target prot opt source destination

DROP tcp -- <Partner’s Hostname> anywhere tcp dpt:ssh

ftp <My IP Address>

(from Partner’s machine)

telnet <My IP Address>

(from Partner’s machine)

ssh <My IP Address>

(from Partner’s machine)

service iptables save

cat /etc/sysconfig/iptables

reboot

iptables -L

Chain INPUT (policy ACCEPT)

target prot opt source destination

DROP tcp -- <Partner’s Hostname> anywhere tcp dpt:ssh

iptables -D INPUT 1

rm /etc/sysconfig/iptables

19–2. LAB: Securing Switch User (su) Attempts to root with PAM

Directions

In this lab, you will learn how to configure the Pluggable Authentication Modules (PAM) to block su command access to the root user unless that user is a member of the UNIX group wheel found in the /etc/group file.

1)
Login as root to the Ctrl + Alt + F2 virtual console and create two users called yeswheel and nowheel with passwords of “yeswheel” and “nowheel”, respectively, using the useradd command. Assign the yeswheel user to the wheel group in the /etc/group file using the usermod command. Login as yeswheel to the Ctrl + Alt + F1 virtual console and login as nowheel to the Ctrl + Alt + F3 virtual console and then have both users do a switch user to root using the su command. Confirm that both users’ UIDs have changed to root’s UID using the id command and then logout of both su session as root using the exit command. Verify the current UID again using the id command.

useradd yeswheel

passwd yeswheel

usermod -G wheel yeswheel

useradd nowheel

passwd nowheel

Login: yeswheel

Password: yeswheel

$ id

$ su

(succeeds)

Password: hplinux

id

exit

$ id

Login: nowheel

Password: nowheel

$ id

$ su

(succeeds)

Password: hplinux

id

exit

$ id

2)
Move back to the login as root on the Ctrl + Alt + F2 virtual console and modify the /etc/pam.d/su file by uncommenting the following line dealing with the pam_wheel.so module:

auth required /lib/security/pam_wheel.so use_uid

vi /etc/pam.d/su

.

auth required /lib/security/pam_wheel.so use_uid

.

3)
Move back to the login as yeswheel on the Ctrl + Alt + F1 virtual console and then do a switch user to root using the su command again. Were you successful? (Yes) Did the user yeswheel need to provide a password? (Yes) Move back to the login as nowheel on the Ctrl + Alt + F3 virtual console and then do a switch user to root using the su command again. Were you successful? (No)

Login: yeswheel

Password: yeswheel

$ id

$ su

(succeeds)

Password: hplinux

id

exit

$ id

Login: nowheel

Password: nowheel

$ id

$ su

(fails)

Password: hplinux

Su: incorrect password

4)
Move back to the login as root on the Ctrl + Alt + F2 virtual console and modify the /etc/pam.d/su file by uncommenting the following line dealing with the pam_wheel.so module:

auth sufficient /lib/security/pam_wheel.so trust use_uid

vi /etc/pam.d/su

.

auth sufficient /lib/security/pam_wheel.so trust use_uid

.

5)
Move back to the login as yeswheel on the Ctrl + Alt + F1 virtual console and then do a switch user to root using the su command again. Were you successful? (Yes) Did the user yeswheel need to provide a password? (No)

Login: yeswheel

Password: yeswheel

$ id

$ su

(succeeds)

id

exit

$ id

19–3. LAB: Securing Resource Limits with PAM

Directions

In this lab, you will learn how to configure the Pluggable Authentication Modules (PAM) to limit resources allocated to a user by preventing that user from logging in to the system after that user has accomplished a certain number of logins.

1)
Edit the /etc/security/limits.conf file by adding the following line to the file:

nowheel - maxlogins 2

vi /etc/security/limits.conf

.

nowheel - maxlogins 2
2)
Edit the /etc/pam.d/login file by adding the following line to the file:

session required /lib/security/pam_limits.so

vi /etc/pam.d/login

.

session required /lib/security/pam_limits.so
3)
Login as the nowheel user to as many Ctrl + Alt + F# virtual consoles as you can until you receive an error. How many times was the nowheel user allowed to login to the system? (Three?!?)

4)
Learn more about PAM modules by exploring the Linux-PAM System Administrators’ Guide by opening the /usr/share/doc/pam‑0.75/html/pam.html file with an HTML browser.

netscape /usr/share/doc/pam-0.75/html/pam.html &

 OR

mozilla /usr/share/doc/pam-0.75/html/pam.html &

20–1. LAB: Creating a Linux Recovery Boot Disk

Directions

In this lab, you will learn how to create a Linux recovery boot disk.

1)
Create a Linux recovery boot disk by inserting a floppy disk into the drive and then run the mkbootdisk command.

mkbootdisk –-device /dev/fd0 <version>

2)
Destroy (overwrite) your Master Boot Record (MBR) by executing the following command:

dd if=/boot/chain.b of=/dev/hd@ bs=64 count=1

 OR

dd if=/boot/chain.b of=/dev/sd@ bs=64 count=1

3)
Reboot your system without the recovery boot disk to confirm the MBR corruption.

reboot

4)
Boot your system off of the recovery boot disk and restore the MBR. Reboot the system. Does the system successfully boot? (No)

dd if=/boot/boot.0300 of=/dev/hd@ bs=64 count=1

 OR

dd if=/boot/boot.0800 of=/dev/sd@ bs=64 count=1

reboot

5)
Boot your system off of the recovery boot disk again and apply the LILO boot loader configuration to the restored MBR. Reboot the system. Does the system successfully boot? (Yes)

lilo -v

reboot

1-1
U2794S A.00
http://education.hp.com

© 2002 Hewlett-Packard Company

1-12
http://education.hp.com
U2794S A.00

© 2002 Hewlett-Packard Company

1-11
U2794S A.00
http://education.hp.com

© 2002 Hewlett-Packard Company

