
07/30/2002

1

1

HP-UX Network Performance
Tuning and Application
Troubleshooting Tools

Pat Kilfoyle
Systems Support Engineer

Hewlett-Packard Co.
3380 146th Place SE
Bellevue, WA 98007

Email: pat_kilfoyle@hp.com

Presented by:

Patrick Kilfoyle, Systems Support Engineer pat_kilfoyle@hp.com

Hewlett-Packard Co.
3380 146th Place SE
Bellevue, WA 98007

07/30/2002

2

2

Purpose

• Describe some common problems seen at the link,
transport, and application layers.

• Describe the tools used to isolate network problems at
the link, IP/UDP/TCP transport, and application levels
and detail their useful features.

• Describe methodologies that most quickly narrow down
the scope of a network application problem…which tools
first and why.

• Review real-world case studies illustrating the tools and
methodologies described

The discussions will be limited to UDP/TCP/IP protocols over Ethernet
(10/100/1000 BT/SX) network topologies, with some limited mention of FDDI.

The methodologies used within the HP Crisis Management Team are “Emergency
room triage” approaches to isolate and stabilize an escalated site. The fine tuning is
left as an exercise for the consultants.

Many of the tools mentioned have features that lend themselves to problem isolation
in many different layers. A detailed description of the tools and features will help
the user understand which tools are of value in various situations.

07/30/2002

3

3

Agenda
• Link layer

– Common problems
• Tools and Methodologies

– Detailed description of tools
• IP/UDP/TCP layer

– Common problems
• Tools and Methodologies

– Detailed description of tools
• NFS client and server subsystem

– Got a few days?…a brief summary then
• Socket/Application layer issues and tools

– Common problems
• Tools and Methodologies

– Detailed description of tools
• Case studies

– Peeling the onions

Link layer tools:
lanscan
lanadmin
linkloop
ndd
analyzers
nettl tracing and logging
switch statistics
network topology maps

* Case studies will include many of these tools
and the investigations will lead through some or
all three of these different layers.

IP/UDP/TCP layer tools:
netstat
arp
nettl tracing and logging
ftp, rcp, ttcp, netperf
ndd
q4
sample socket code in
/usr/lib/demos/networking/socket

Socket/Application level tools:
ttcp, netperf
tusc
lsof
ndd
glance
nfsstat
q4
nslookup, dig
chatr, nm, strings, what
sample socket code in
/usr/lib/demos/networking/socket

07/30/2002

4

4

Link Layer

• Common problems
– Ethernet 10/100/1000 BaseT/SX switched topologies

• Link level connectivity and physical level errors.
• Speed/duplex mismatches
• Interconnect links
• Switch buffering for speed step-downs
• Max throughput expectations.
• Trunking configurations

• Tools
• Lanscan, landiag, linkloop, nettl, HW/SW analyzers,

topology maps, stats from switches/routers and
other interconnect equipment.

Speed mismatches are obvious since nothing gets through. Duplex mismatches are
configuration issues.

Duplex mismatches can be unnoticed at low throughput rates.
check system and switch config settings…they must match
either autoconfig or nailed. Most sites prefer to nail them.

Switch interconnect links at 100BT with individual switch nodes having
1000BT/SX

DMA rates in and out of cards are not always full link bandwidth….know what to
expect.

Throughput expectations with trunking depend highly on the load balancing
algorithm in use, and the connection mix being presented by the system.

07/30/2002

5

5

Link Layer (cont)

• Link level connectivity checks & packet
errors
– linkloop command

• Basic local LAN (local subnet) connectivity tool
– landiag utility can be used to display per interface

link stats.
• In general link stats for full duplex connections

should be squeaky clean….no FCS, collisions,
carrier sense errors.

The linkloop command uses IEEE 802.2 link-level test frames to check connectivity within a
local area network.. It is independent of the Streams based transport, sending its data through
a direct DLPI connection to the interface card. If IP level connectivity fails, start here.
linkloop –i <instance# of local interface to use> <target MAC>
linkloop -i 0 0x08000962d46e
Link connectivity to LAN station: 0x08000962d46e
-- OK

To obtain the MAC addresses for the interfaces on a system use the lanscan command:
lanscan

Hardware Station Crd Hdw Net-Interface NM MAC HP-DLPI DLPI

Path Address In# State NamePPA ID Type Support Mjr#

0/0/0/0 0x00306E0625F4 0 UP lan0 snap0 1 ETHER Yes 119

0/2/0/0 0x00306E036EF4 1 UP lan1 snap1 2 ETHER Yes 119

07/30/2002

6

6

Link Layer (cont)
• Speed & duplex mismatches

– Symptoms run from no link level connectivity, FCS
errors, collisions for half duplex modes, and packet
loss in general.

– lanscan –v
• Provides interface specifics:

– HW path
– MAC address
– Card instance number (ppa #)
– Driver name
– Interface name…i.e.. Lan2

– lanadmin –x <ppa>
• Displays speed, duplex, and autonegotiation state

– /etc/rc.config.d/<card config file>
• Config files for interface cards specifying

speed/duplex to be set during bootup.

Use lanscan –v to get a quick snapshot of the cards installed in the system (not
necessarily in use, but at least installed). Then use the ppa or card instance number
in subsequent commands such as lanadmin. The name of the config file in
/etc/rc.config.d that controls a specific flavor of interface card, is not always
obvious. For reference:
Variables
xxx_INTERFACE_NAME : Name of interface (lan0,lan1...)
xxx_SPEED : set the card speed. Values are : 10HD, 10FD,100HD, 100FD, auto_on

Driver name Configuration File .
btlan hpbtlanconf
btlan0 hpeisabtconf
btlan1 hpbasetconf
btlan3 hpbase100conf
btlan4 hpgsc100conf
btlan5 hppci100conf
btlan6 hpsppci100conf
igelan hpigelanconf
gelan hpgelanconf

After the system startup scripts in /sbin/init.d have run, the lanadmin –x<ppa>
output should match the config file setting AND the switch port we are connected
to.

07/30/2002

7

7

Link Layer (cont)
• Interconnect links

– Low bandwidth
– Symptoms are low throughput and packet loss

– FDDI – ethernet bridging
– IP fragmentation/MTU changes can cause performance

issues
– Load balancing equipment

– Application level load balancers and firewalls can
complicate the connection paths.

Switch

Server connected
via 1000BT/SX

Switch Switch

Server connected via
1000BT/SX

100Mbt interconnect link
1000Mbt interconnect

FDDI Ring

A good network topology map is the best place to start in understanding what paths
two nodes will be using through the network. If they are on the same subnet, then
this switch topology is less obvious. In an environment with a lot of
change/growth/moves/additions, a temporary interconnect can go unnoticed as long
the basic connectivity is there.

The switch statistics may show some buffer overruns and packet drops. In a pure
switched, same subnet, non WAN environment, there should be no packet loss,
retransmissions etc.

Where FDDI bridging occurs, the need for IP fragmentation inside the switch needs
to be understood. Some switches do not perform IP fragmentation, so the MTU
sizes used by the nodes on the FDDI ring need to be managed.

Load balancing equipment and firewalls can have configurable parameters that
terminate (non-gracefully) connections and dictate path and server loads. Care
needs to be taken to understand the load balancing scheme in use for connection
setup, tear down and for idle connections.

07/30/2002

8

8

Link Layer (cont)
• Switch buffering for speed step downs

– Symptoms are packet loss and poor throughput at upper
layers

– In some high traffic scenarios large bursts of packet
trains on the gig side will overrun the buffering of the
switch. This is usually a sustained high packet rate with
little or no upper level protocol flow control.

• NFS PV3 over UDP with 32K read/write sizes…..this will put 22
packets in a burst on the wire for every read from the server. UDP
being connectionless means there is no pacing or flow control, so
frames are pumped out as fast as the card can drive the link.

Server connected via
1000BT/SX Gigabit

Clients connected via 100Mbt

Packet loss due to buffering limits is tough to prove. Typically an analyzer on the gig
side shows full utilization and no loss, but the frames will not show up on the 100bt
side. Dual analyzer traces or SW network tracing is required to prove it is really the
switch. Of course we expect the switch vendor to be honest and accurate in its
statistical reporting of buffer overrun/packet drops.

While the buffering is being stressed it can of course affect different ports and
connections depending on the buffer management algorithms in use by the switch.
Look for TCP retransmissions on the sending side, and NFS client side retransmissions
and timeout using the nfsstat command. Also if NFS is part of the environment, the IP
level stats on the HP systems might show “fragments dropped after timeout” when
netstat –sp ip is run.
ip:

124918984 total packets received

0 bad IP headers

2237756 fragments received

0 fragments dropped (dup or out of space)

18 fragments dropped after timeout

Key data:
Switch buffer statistics, client and server side transport stats showing retransmissions

07/30/2002

9

9

Link Layer (cont)

• Max throughput expectations
– #### BaseT is not a promise of #### Mbit/sec

– System CPU speeds and card DMA rates both inbound
and outbound are typically the limiting factor.

– Even if the card can do it, the application/transport
driving the connection may be the limiting factor.

– Trunking (Auto Port Aggregation) has load balancing
schemes that play a key role in trunk utilizations and
throughput for any one TCP connection.

– The specific test used to measure throughput is
also a critical factor. You need to understand
exactly what the test tool is doing and what
limitations the tool has.

The tools to measure throughput are typically UDP/TCP/IP based tools and vary
greatly in their accuracy. Knowing the limitations of each tool in measuring
throughput is important.
Quick and dirty, but course measurements of throughput:

ftp – file system and buffercache usage will influence results as will socket
buffer sizing. (64k max)

rcp – file system and buffercache usage will influence results. Socket buffer
settings need to be tuned for the test.

nfs copy – influenced by local file system, buffercache, biod process load,
mount type, mount protocol, and other processes using NFS….and that’s just the
client side. There are a similar list of issue on the server.
More precise tools:

ttcp – “Test TCP” a simple sockets-based test tool that allows you to specify
TCP or UDP transfers to various port number. It does not use disc buffercache so is
a better test of pure network throughput, has tunable socket buffer settings and data
size settings. It does the throughput calculations for you.

netperf – a benchmarking tool that can be used to measure the performance of
many different types of networking. It provides tests for both unidirectional
throughput, and end-to-end latency. Primary performance tool of HP unix network
labs.

07/30/2002

10

10

Link Layer (cont)

• HP APA or Trunking
– Trunking or Auto-Port-aggregation configurations

offer redundancy and higher bandwidth logical
links.

– lanscan –v can be used to see which individual
links are in which aggregates. The the
lanadmin/landiag interface can be used to review
per interface stats.

– netstat –in will show which IP’s are assigned to
which links…that includes APA trunks.

– System startup config files /etc/rc.config/hpapa*
control the trunk configurations.

– Switch side configurations

HP’s Trunking product is called APA for Auto Port Aggregation and is
compatible with Cisco Fast EtherChannel (FEC) and the IEEE 802.3ad Link
Aggregation Control Protocol (LACP) standards. Typically one or more like-type
links (FastEther or Gigabit) are grouped into a trunk and appear to the system as one
logical interface card. IP address(es) can then be assigned like any other interface.

To see which individual links are grouped into trunks, use the lanscan –v
command.

There are different load balancing algorithms to choose from which will
ultimately determine which connections use which link inside the trunk, and the
efficient use of the trunk. Most switch environments use the MAC source,
destination, or a combination of the MAC source and destination address to
distribute the traffic. Many layer 3 switches also support distributions algorithms
based on the IP address of a packet contained in a frame. Whether the algorithm
uses the MAC address or IP address the concept of the address-based distribution is
the same. Often, these methods for load balancing share one important
limitation—they are static. They generally neither adjust to reflect traffic volume
through the individual links, nor do they evaluate an individual conversation to
determine which link would be best at a given moment. Instead, the selected
algorithm distributes the conversations across the links with the expectation that
statistically, with multiple conversations, the load will be balanced.

07/30/2002

11

11

Link Layer Tools - lanscan

• Displays information about LAN interfaces installed
that the system SW supports/recognizes

• Typical usage:
lanscan –v | more or simply lanscan

• Key fields:
– HW IO path for card
– HW MAC address
– Instance # or ‘PPA #’
– Netname…ie. lan1 etc.
– Driver name for this card
– APA port assignment

lanscan

Hardware Station Crd Hdw Net-Interface NM MAC HP-DLPI DLPI

Path Address In# State NamePPA ID Type Support Mjr#

0/0/0/0 0x00306E0625F4 0 UP lan0 snap0 1 ETHER Yes 119

0/2/0/0 0x00306E036EF4 1 UP lan1 snap1 2 ETHER Yes 119

lanscan -v

Hardware Station Crd Hdw Net-Interface NM MAC HP-DLPI DLPI

Path Address In# State NamePPA ID Type Support Mjr#

0/0/0/0 0x00306E0625F4 0 UP lan0 snap0 1 ETHER Yes 119

Extended Station LLC Encapsulation

Address Methods

0x00306E0625F4 IEEE HPEXTIEEE SNAP ETHER NOVELL

Driver Specific Information

btlan

Hardware Station Crd Hdw Net-Interface NM MAC HP-DLPI DLPI

Path Address In# State NamePPA ID Type Support Mjr#

0/2/0/0 0x00306E036EF4 1 UP lan1 snap1 2 ETHER Yes 119

Extended Station LLC Encapsulation

Address Methods

0x00306E036EF4 IEEE HPEXTIEEE SNAP ETHER NOVELL

Driver Specific Information

gelan

07/30/2002

12

12

Link Layer Tools –
landiag/lanadmin

• Admin tool to manage LAN interfaces at the link
layer
– Display and change the station address.
– Display and change the 802.5 Source Routing options

(RIF).
– Display and change the maximum transmission unit

(MTU).
– Display and change the speed setting.
– Clear the network statistics registers to zero.
– Display the interface statistics.
– Reset the interface card, thus executing its self-test.

• Basic data gathering info utility

The lanadmin flavor of this utility has command line options to alter MAC addr, MTU, speed,
duplex settings.
Typically used to display the link specific configuration settings (speed/duplex/MTU)
and displaying the traffic stats. It is run interactively as follows…I’ll spare you the stdout
menu’s:
landiag -> lan -> ppa 0-> dis

LAN INTERFACE STATUS DISPLAY

PPA Number = 0

Description = lan0 HP PCI 10/100Base-TX Core [100BASE-TX,FD,

AUTO,TT=1500]

Type (value) = ethernet-csmacd(6)

MTU Size = 1500

Speed = 100000000

Station Address = 0x306e0625f4

Administration Status (value) = up(1)

Operation Status (value) = up(1)

Last Change = 105783429

Inbound Octets = 1703017292

Inbound Unicast Packets = 330723

Inbound Non-Unicast Packets = 2542161

Inbound Discards = 0

Inbound Errors = 0

Inbound Unknown Protocols = 894660

Outbound Octets = 35206501

Outbound Unicast Packets = 119383

Outbound Non-Unicast Packets = 1217

Outbound Discards = 0

Outbound Errors = 0

Outbound Queue Length = 0

Specific = 655367

Index = 1

Alignment Errors = 0

FCS Errors = 0

Single Collision Frames = 0

Multiple Collision Frames = 0

Deferred Transmissions = 0

Late Collisions = 0

Excessive Collisions = 0

Internal MAC Transmit Errors = 0

Carrier Sense Errors = 0

Frames Too Long = 0

Internal MAC Receive Errors = 0

07/30/2002

13

13

Link Layer Tools - linkloop

• The linkloop command uses IEEE 802.2 link-
level test frames to check connectivity within
a local area network (LAN).

– A good sanity check of basic link level connectivity
when dealing with IP connectivity problems within
the same subnet or vlan.

– Uses DLPI to talk to the interface card…no
Streams/transport stack involved.

First obtain the local interfaces instance # (also referred to as the PPA #) via
lanscan and obtain the remote systems MAC address via lanscan on that system.

linkloop [-i PPA] [-n count] [-r rif] [-s size] [-t timeout]

[-v] linkaddr ...

linkloop -n 4 -s 1400 -i 0 -v 0x08000962d46e

Link connectivity to LAN station: 0x08000962d46e

-- OK

07/30/2002

14

14

Link Layer Tools - nettl
• The nettl tracing and logging subsystem

– Kernel subsystems log at various levels of severity
to /var/adm/nettl.LOGXXX nettl –ss to list them

– At the link level it can be used to trace the packets
at the driver level.

– Significant driver events are also logged by default.
– Traces to raw binary files which must be formatted

using the netfmt command
– Post filtering is done with (-c filterfile) option to

netfmt
– High speed links can overrun the trace buffer

causing holes in the trace data.

There are many kernel nettl subsystems. Execute nettl –ss to see them. The
types of event logged and traced vary per subsystem. There are 4 levels of
‘logging’ …Informative, Warning, Error, and Disaster. Error and Disaster levels
are enabled by default.

An extensive man page describes the use of nettl and netfmt to format the data.
I’ll spare you some reading. To enable tracing at the btlan driver level use:

nettl –tn pduin pduout –e btlan –tm 90000 –s 1024 –m 256 –f raw
or for IP level
nettl –tn pduin pduout –e ns_ls_ip –tm 90000 –s 1024 –m 256 –f raw

The –tm –m and –s options are important to avoid loosing data on a busy link.
On HPUX 11.0, the output is written to two output files with extensions.TRC00 and
.TRC01. The .TRC00 file always has the most recent data and the files wrap. On
11.11+ there can be more than two files using the –n option. You just need lots of
disc space.
Use netfmt to format the .TRCXX files. The one-line-per-packet command:

netfmt –n –c filter –1T –f raw.TRC00 > terse.fmt
The fully formatted output is obtained using:

netfmt –n –c filter –lN –f raw.TRC00 > nice.fmt
***note the ‘ell’ above is not the number 1 as in the one-liner syntax.

07/30/2002

15

15

Link Layer Tools – nettl
(cont) – netfmt formatter
• The nettl tracing and logging subsystem

– The netfmt formatter has a flexible filter file format
– The nettl trace header record has useful info like

Kernel threadID’s of the process sending down the
packet and timestamps of course, and this can be
specified in the filter file. Inbound packets have a
thread ID of –1 for ICS.

– Multiple subsystems can be traced at the same
time. The –e option specifies the entity/subsystem
to trace and ‘-e all’ is a valid option.

– With light enough traffic and enough CPU speed,
real-time formatting through a filter file is possible.

To avoid delays I typically use –n option to skip the number-to-name mapping that netfmt
tries to do. You get raw IP’s and port numbers instead, but it formats much more quickly.

The filter file has a layered approach…as in OSI-like layers, wherein filters at the same
layer are OR’ed and AND’ed with subsequent upper layers.

A sample filter file with unused filters commented out:
formatter option suppress

formatter option !highlight

formatter mode nice

#filter dest 080009036A04

#filter source 080009036A04

filter ip_saddr 15.43.234.203

filter ip_daddr 15.43.234.203

#filter ip_saddr 15.19.80.72

#filter ip_daddr 15.19.80.72

#filter ip_saddr 127.0.0.1

#filter connection 15.43.225.56:1309 15.56.216.34:7000

#formatter filter time_from 15:11:22.000000 10/11/93

#formatter filter time_through 15:11:23.000000 10/11/93

#formatter filter subsystem NS_LS_LOOPBACK

formatter filter subsystem NS_LS_IP

#filter rpcdirection call

#filter rpcdirection reply

#filter tcp_sport 1201

#filter tcp_dport 53

#filter udp_sport 1200

#filter udp_dport 1201

#formatter filter Process ID 366153

#formatter filter kind pduout

07/30/2002

16

16

Link Layer Tools – nettl
(cont) – sample output
• The nettl tracing and logging subsystem

– netfmt formatted output in one line presentation
helps searching a large trace file and formats
quicker and the output is smaller.

– Once the specific connection or time period is
identified, the –N or nice formatting can be done
using a filter file.

– The ‘-n -1T’ option specifies one-line with
Timesamps and name/address translation
suppressed.

– The ‘–n –lN’ option specifies ‘nice’ formatting with
name/address translation suppressed.

One-line per packet output:
07:34:03.083704 8b Unknown DSAP Type: 0xe0

07:34:03.678806 Eb arp request for: 15.24.40.87 from: 15.24.47.253

07:34:04.821804 TCP .23 > .1564: PA 361195ad:361195af(2) ack: 677695 win: 8000 telnet

07:34:04.821822 IP 15.24.46.28.23 > 15.24.46.33.1564: [DF] PA 361195ad:361195af(2) ack: 677695
win: 8000 telnet

07:34:04.821836 Ei 15.24.46.28.23 > 15.24.46.33.1564: [DF] PA 361195ad:361195af(2) ack: 677695
win: 8000 telnet

07:34:05.000810 Ei 15.24.46.33.1564 > 15.24.46.28.23: [DF] A ack: 361195af win: 2218

07:34:05.000820 IP 15.24.46.33.1564 > 15.24.46.28.23: [DF] A 677695:67769b(6) ack: 361195af win:
2218 telnet

Nice or fully formatted output:
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvARPA/9000 NETWORKINGvvvvvvvvvvvvvvvvvvvvvvvvvv@#%

Timestamp : Thu Jul 11 MDT 2002 07:34:04.821822

Process ID : 366153 Subsystem : NS_LS_IP

User ID (UID) : 0 Trace Kind : PDU OUT TRACE

Device ID : -1 Path ID : 0

Connection ID : 0

Location : 00123

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

================================ IP Header (outbound -- pid: 366153) =========

Source:  15.24.46.28(A) Dest:  15.24.46.33(A)

len:  42 ttl: 64    proto: 6 cksum:  0x67da      id: 0x5887

flags:  DF tos: 0x0 hdrlen: 20    offset:  0x0 optlen: 0

-------------------------------- TCP Header ----------------------------------

sport:   23   --> dport:  1564     flags: PUSH ACK

seq: 0x361195ad urp: 0x0 chksum: 0x494f   data len: 2

ack: 0x677695    win: 0x8000 optlen: 0

-------------------------------- TELNET --------------------------------------

0: 23 20 -- -- -- -- -- -- -- -- -- -- -- -- -- -- # ..............

Note – the 
header field 
labeled 
‘Process ID’ is 
actually the 
kernel thread 
ID of the 
sending thread.  
The Glance 
performance 
tool has a 
menu to 
display the 
thread ID’s for 
all running 
processes.



07/30/2002

17

17

Link Layer Tools –
HW/SW analyzers

• External analyzers come in two forms
– Hardware designed to listen/connect to the network
– SW using std NIC’s running in promiscuous mode

• Objective data gathering.
– Helps resolve the “we sent it out” finger pointing

• Can be difficult to insert in data path.
– Monitor ports on switches and Gig fiber links

• $$$
• Varying trace file formats
• Expert modes

Popular HW analyzers for 100/1000BT/SX:
Network general Sniffer
Agilent ‘Network Advisor’
…many more

Popular SW analyzers:
Microsoft Netmon
Network General Netxray
Network Instruments Observer 8.0
Ethereal
….many more



07/30/2002

18

18

Link Layer Tools – SW analyzers



07/30/2002

19

19

IP/UDP/TCP  Layer
• Common IP layer problems

– Path MTU
– Route through network
– Multiple Interface, multiple IP addr confusion
– Arp cache entries in switches and routers
– ICMP redirect, unreachable, sourcequench

• Tools
– Ifconfig
– route
– arp – displays/modifies arp cache entries
– traceroute - maps IP routes through network
– netstat –rn – displays transport routing tables
– nettl - Network tracing and logging subsystem
– ndd - utility to get/set transport tunables
– ping - Utility to send ICMP echo packets 

Path MTU issues frequently arise from concerns about mixed link level topologies 
such as FDDI, Token ring, ethernet, WAN’s.

IP routing through the network can affect application performance.  Understand 
what route is being taken and why. 

Multihomed systems (those with multiple IP interfaces) and systems with aliased 
(secondary) IP addresses on an interface can add to the confusion of which 
interfaces or paths through a network a connection will take.  An accurate topology 
map with system NIC/IP addresses accurately labeled is a must. 

The Arp caches in the switches and routers can on occasion become ‘confused’ 
about which MAC address is associated with which port.  The HA or relocatable IP 
addresses have certain behaviors that _should_ keep the IP/MAC mappings updated 
correctly, but on occasion, a switch reboot or arp cache clear has been known to 
clear up erratic connectivity issues. 

The ICMP messages (not true IP datagrams) of this type are not so much problems 
as indicators of problems.   They also have a feature of responding with the 
UDP/TCP/IP header of the packet which generated the ICMP message…a big help 
in isolating the real cause of trouble. 



07/30/2002

20

20

IP/UDP/TCP Layer (cont)

• Path MTU issues
• netstat –rn can be used to list routing table 

entries and MTU’s 
• landiag/lanadmin can be used to display/set an 

interfaces current MTU setting.
• Ping can be used to send ICMP packets of 

varying sizes
• ndd tunables for path MTU management

If FDDI or token ring topologies are involved in the connection paths, there will likely 
be some network component (router or switch) doing IP fragmentation to manage the 
MTU differences.  This is not so much a concern for TCP since it attempts to discover 
the proper path MTU as part of the connection setup phase for every TCP connection.   
UDP however has no such mechanism.  It is not unheard of to discover IP 
fragmentation disabled or not supported on some old switch equipment.
The netstat –rn command displays the path MTU associated with each routing table
entry.
The route command can be used to set route PMTU’s for network and host routes, but 
only new connections will use the altered setting.  Existing connections (in the case of 
TCP) use previous route MTU settings.
The lanadmin –m command can be used to check current MTU value for an interface.  
The lanadmin –M <mtu> command can be used to set the MTU for an interface which 
is often a handy way to temporarily play with MTU size while troubleshooting.  
The ping  -p <host> <packet-size> command can be used to probe path MTU issues.  
Packet sizes can vary from 64-4095 bytes.
The ndd command can control three MTU related variables:

ip_ire_pathmtu_interval   - Controls the probe interval for PMTU
ip_pmtu_strategy          - Controls the Path MTU Discovery strategy
tcp_ignore_path_mtu       - Disable setting MSS from ICMP 'Frag Needed'



07/30/2002

21

21

IP/UDP/TCP Layer (cont)
• IP routing

– Default gateway definitions
• /etc/rc.config.d/netconf    config file for IP

– Dynamic routes
• netstat –rnv command to see routing table
• ndd tunables for managing IP routing

ip_ire_hash               - Displays all routing table entries, 
in the order searched when resolving 

an address

ip_ire_status             - Displays all routing table entries

ip_ire_cleanup_interval   - Timeout interval for purging routing 
entries

ip_ire_flush_interval     - Routing entries deleted after this 
interval

ip_ire_gw_probe_interval  - Probe interval for Dead Gateway Detection

ip_ire_pathmtu_interval   - Controls the probe interval for PMTU

ip_ire_redirect_interval  - Controls 'Redirect' routing table entries

– traceroute tool  to map out the IP 

The netconf file in /etc/rc.config.d  is the file which controls the configuration for the 
core networking subsystems on HP-UX.  It assigns IP addresses to the LAN interfaces, 
sets the default gateway, determines if DHCP is used, and controls the enabling of gated.

The netstat –rnv command can be used to display the current routing tables active on 
the system:
Routing tables

Dest/Netmask                    Gateway            Flags   Refs Interface Pmtu

127.0.0.1/255.255.255.255       127.0.0.1          UH        0  lo0        4136

10.10.30.28/255.255.255.255     10.10.30.28        UH        0  lan1       4136

15.24.46.28/255.255.255.255     15.24.46.28        UH        0  lan0       4136

15.24.40.0/255.255.248.0        15.24.46.28        U         2  lan0       1500

127.0.0.0/255.0.0.0             127.0.0.1          U         0  lo0           0

default/0.0.0.0                 15.24.47.253       UG        0  lan0          0

The traceroute command in /usr/contrib/bin can be used to map out the path an IP 
packet will take through the network.  It also reports approximate response/latency 
times.
# ./traceroute hpatlse.atl.hp.com

traceroute to hpatlse.atl.hp.com (15.51.240.6), 30 hops max, 40 byte packets

1  bel2410gw1.nsr.hp.com (15.24.55.253)  0.714 ms  0.611 ms  0.582 ms

2  172.16.65.1 (172.16.65.1)  82.933 ms  82.511 ms  82.604 ms

3  atlgwb03-leg148.cns.hp.com (15.24.240.58)  82.217 ms  82.179 ms  82.191 ms

4  atlsite5.tio.atl.hp.com (15.41.16.215)  82.879 ms  82.647 ms  82.410 ms

5 hpatlse.atl.hp.com (15.51.240.6)  82.966 ms  82.815 ms  82.368 ms



07/30/2002

22

22

IP/UDP/TCP Layer (cont)
• Multiple interfaces/IP addresses

– Multihomed hosts still only have one default GW.
• Traffic might go out one interface and back 

another.
– Moving secondary IP’s between interfaces and 

systems
• Switches and routers need to remap the MAC/IP 

addresses.
– Duplicate IP addresses…..a bad idea.
– Cabled to wrong subnet

• nettl tracing can help see subnet bcasts and ID 
what subnet you’re really on.

The IP addresses for interfaces are assigned/configured in the 
/etc/rc.config.d/netconf file.
netstat –in will show all interface IP assignments and current packet in/out counts.
ifconfig <lan name unit> displays the IP/subnetmask and other interface settings.  
When used to assign an IP (primary or secondary) to an interface, an unsolicited, 
self directed ARP packet is sent out to ‘advertise’ the new IP/MAC address 
mapping.

Duplicate IP addresses do still occur, so use another local subnet system’s arp cache 
to see if his IP/MAC address mapping changes…then note the two MAC addresses.  
(The arp –an command)

If you’re unsure whether the interface is on the correct subnet (ie. Can’t ping what 
you think is another valid IP for the subnet) you can use nettl tracing to trace the 
inbound IP broadcast traffic….look at that traffic for source IP addresses. 



07/30/2002

23

23

IP/UDP/TCP Layer (cont)
• ARP cache tables in switches/routers

– Relocatable IP addresses can confuse them
• Only one ARP is sent when ifconfig is issued

– Clearing them may be necessary

– Temporary use of a dumb hub/repeater to verify 
link level connectivity.  

The current MAC address cached in the ARP cache for local subnet IP addresses 
can be seen using the arp –an command.  

Be aware that local interface factory default MAC addresses can be overwritten at 
startup time by the “*_STATION_ADDRESS=“ variable in the various interface
config files in the  /etc/rc.config.d directory.

Relocatable IP’s require that switch/routers be notified of MAC/IP address mapping 
changes.  When an IP address is assigned with the ifconfig command, only one 
unsolicited ARP is sent out.

The switch/router arp cache and port assignment tables can get ‘confused’ on 
occasion and need to be reset/cleared.



07/30/2002

24

24

IP/UDP/TCP Layer (cont)
• ICMP redirect, unreachable, sourcequench

– Network and host redirects
• System routing tables will be updated and a 5 minute 

time started on the ‘learned’ or ‘dynamic’ route 
entries that result.

– Network and host unreachables
• Stderr messages will usually result.

– ENETUNREACH errno 229
– EHOSTUNREACH errno 242

– Sourcequench
• HPUX generates them by default when UDP or  raw IP 

socket buffers overflow
• Ndd can disable them
• Typically nothing to worry about and can be useful in 

troubleshooting udp socket overflows. The ICMP 
message will contain the IP/UDP header of the packet 
that caused the overflow.

At the IP layer, the ICMP network unreachable, host unreachable, network 
redirect, host redirect, and sourcequench messages are of interest.  A summary of 
the ICMP messages received and sent by the transport can be obtained using the 
command netstat –sp icmp.  

The ping –o command can be used to check basic IP connectivity and in most 
cases report the path through the network that the ICMP message traverses.  The 
traceroute tool can also be used to map out the network path a packet traverses.

The netstat –rn command will show ‘flags’ for the routing entries and those 
with the “D” flag set are one learned/updated due to ICMP redirects.  There are 
two ndd tunables that affect ICMP redirects:
ip_ire_redirect_interval - Controls 'Redirect' routing table entries

(5 minute default)

ip_send_redirects     - Sends ICMP 'Redirect' packets

(enabled by default)

ICMP sourcequench messages are ‘advisory’ in nature, and how a particular 
transport responds to them will vary.  HP-UX ignores them but does send them out 
(another ndd tunable enables/disables them) when a local UDP or RAWIP socket 
buffer overflows.  The UDP stats given by netstat –sp udp do not tell you which 
UDP socket has overflowed, but another ndd command does (on 11.11 and above).  
ndd –get /dev/ip ip_udp_status  dumps the UDP fanout table, and contained within 
that for each UDP port is the overflow count.  This is only available for HP-UX 11.0 
with ARPA transport patch PHNE_23456 or later installed.
See ndd –h ip_send_source_quench also.



07/30/2002

25

25

IP/UDP/TCP Layer (cont)

• Common UDP related problems
– IP fragmentation of UDP datagram 
– No congestion/flow control at the UDP layer other 

than ICMP sourcequenches
– Reserved and anonymous port range usage

• Tools
– Nettl
– Netstat
– Ndd
– lsof
– Glance – ‘Thread List’ screen

Most frequent UDP abuser is NFS PV3 with 32k read/write sizes.  The 32k 
read/write bursts are comprised of 21+ 1500 byte packets in a burst and can 
contribute to network congestion if the server is at Gigabit speeds and clients at 
100bt.

Intermediate network equipment needs to support IP fragmentation if FDDI/Token 
Ring/Ethernet topologies are mixed.

Any UDP or raw IP socket buffer that overflows will cause an ICMP source quench 
packet to be sent out.  Many network administrators get a bit concerned about 
seeing them, but in reality most network devices ignore them…but some may not.  
By default HP-UX does send them, but there is an ndd tunable to control them (ndd
–h ip_send_source_quench).  It is often difficult to determine which UDP or raw IP 
ports are overflowing.  As mentioned in the previous slide, you can find the UDP .



07/30/2002

26

26

IP/UDP/TCP Layer (cont)

• IP fragmentation of UDP datagram larger than 
the interface MTU size.
– Performance concerns 

• IP fragmentation reassembly memory is fixed 
but can be tuned.

• Timeout of IP fragments waiting for reassembly
– Intermediate network equipment needs to support 

IP fragmentation if FDDI/Token Ring/Ethernet 
topologies are mixed.

Two ndd tunables referring to IP reassembly (typically a UDP datagram being 
reassembled) are:
ip_reass_mem_limit    - Maximum number of bytes for IP 

reassembly (2 megs default)

ip_fragment_timeout   - Controls how long IP fragments are 
kept (60 secs default)



07/30/2002

27

27

IP/UDP/TCP Layer (cont)
• No congestion/flow control at UDP other than 

ICMP sourcequench messages
– Most frequent UDP abuser is NFS PV3 with 32k 

read/write sizes.   The 32k read/write bursts are 
comprised of 21+ 1500 byte packets in a burst and 
can contribute to network congestion if the server 
is at Gigabit speeds and clients at 100bt.

– ICMP source quench messages are not typically 
acted upon.

• Can be useful in finding which UDP port is 
overflowing and which process owns the port.

– ndd  tunables for default UDP socket buffer size on 
11.11+

Any UDP or raw IP socket buffer that overflows will cause an ICMP source 
quench packet to be sent out.  Many network administrators get a bit concerned 
about seeing them, but in reality most network devices ignore them…but some may 
not.  By default HP-UX does send them and ignores them when received, but there 
is an ndd tunable to control sending them (ndd –h ip_send_source_quench).  

It is often difficult to determine which UDP or raw IP ports are overflowing and 
more importantly which process is asleep at the wheel…i.e. not reading from their 
socket in a timely manner.

As described earlier, you can use nettl tracing to catch the ICMP sourcequench 
message going out and look at the UDP header that it attaches from the original 
packet.  You can also use  ndd –get /dev/ip ip_udp_status to see which UDP sockets 
have overflows.  Once you know the UDP port number, a tool like lsof (List Open 
Special Files…a very handy tool) which maps all the current running processes’ 
open files, can be used to see which process own the particular UDP socket.  You 
can also use nettl to trace outbound packets for that port and see what the kernel
thread ID is of the sending process from the nettl trace record header.  With the 
kernel thread ID and the use of the Glance performance monitoring tool, you can 
map the thread ID to a process ID. 

Then you need the developer to tell you what his starchild process is doing when 
it’s not reading from it’s UDP socket.….let’s hope he built in some logging 
features.



07/30/2002

28

28

IP/UDP/TCP Layer (cont)

• Reserved UDP port range usage
– Ports < 1024 are considered reserved for superuser
– A weak implication of security.
– There are only 1023 of them…..
– What process owns them?
– What are they being used for?
– NFS/NIS/ONC heavy users

• Anonymous UDP port range
– ndd –h | grep anon for tunable limits
– 49152-65535 is default range
– Low end may need to be dropped

netstat –an | grep udp will show the open UDP ports but not who owns them.

lsof –n | grep UDP will list all processes that have UDP ports open.

The kernel has a pool of UDP ports open for nfs client calls.  The lsof tool will not 
show these ports since there is no user space process that owns them.

With the port number and/or the kernel thread ID (remember glance allows you to 
list the kernel thread ID’s of processes) of the owner, you can do some nettl tracing 
to watch who and what the port is in use for…or just kill the owning process for 
getting between you and a UDP port.

The UDP ports that are allocated when a bind() call is made and a port is NOT 
explicitly requested are referred to as ‘anonymous’ or ephemeral port ranges.
More than the 24k default amount may be needed.  Typically the bind() system call 
will fail with errno EADDRNOTAVAIL .  The ndd command controls two tunables 
for UDP and a similar two tunables for TCP:

# ndd -h | grep anon

tcp_largest_anon_port     - Largest anonymous port number to use

udp_largest_anon_port     - Largest anonymous port number to use

tcp_smallest_anon_port     - Smallest anonymous port number to use

udp_smallest_anon_port     - Smallest anonymous port number to use



07/30/2002

29

29

IP/UDP/TCP Layer (cont)

• Common TCP related problems
– TCP Connection setup 
– TCP Data transfer …Established state
– TCP Connection teardown

• Tools
– Nettl, netstat, ndd
– Ttcp, netperf
– ftp, rcp, telnet
– Sample TCP socket code
– Tusc, lsof

The issues seen with the TCP protocol and the network management of a TCP 
connection will be discussed here separately from the system calls and application 
usage of TCP sockets.  That comes later in the socket/application layer section.

Again, many of the same tools used for link/IP/UDP layer investigation work here 
as well.



07/30/2002

30

30

IP/UDP/TCP Layer (cont)
• TCP Connection setup

– 3-way handshake 
– Kernel will put conn in EST before listener accept()s.  

The listen backlog queue size determines how many 
can be waiting.  System default is 20 .

– Take note of TCP options in SYN packets..MSS and 
window scaling options.

– Connection timeouts
– ndd –h tcp_ip_abort_cinterval 75 sec on HPUX 11.X
– netstat –an | grep SYN_SENT  is a clue 
– ndd –h tcp_conn_grace_period

– Connection rejected
– resets of failed connection attempts may tack on 

added text info to the reset packet
– netstat –sp tcp to see drops due to queue full or no 

listener

-------------------------------- TCP Header ----------------------------------

sport:   55555   --> dport:  49199     flags: RST ACK

seq: 0x0 urp: 0x0 chksum: 0x1f     data len: 11

ack: 0x306842ba  win: 0x0 optlen: 0

-------------------------------- User Data -----------------------------------

0: 4e 6f 20 6c 69 73 74 65 6e 65 72 -- -- -- -- -- No listener.....

0 connect requests dropped due to full queue

50 connect requests dropped due to no listener

System call Conn state

recv(sd,data,…)DATA �send(sd,data)

sd=accept(lsd,..)ESTABLISHED

ESTABLISHED

ACK �<connect returns>

SYN_RCVD

� SYN ACK

SYN_SENT

SYN  �connect(sd)

LISTENlisten(lsd,backlog)

bind(lsd,..)sd=socket()

lsd=socket()

System callTCP packetConn state

Server side programClient side program



07/30/2002

31

31

IP/UDP/TCP Layer (cont)

• TCP Data transfer …Established state
– Retransmission timeout

– netstat –sp tcp | more
– Fast Retransmission 

– netstat –sp tcp | grep retrans
– netstat –sp tcp | grep rexmit

– Slow Start Algorithm
– A kinder gentler transport

– Keepalives

ndd tunables for TCP retransmit timers:

tcp_rexmit_interval_initial     - Initial value for round trip time-out

tcp_rexmit_interval_initial_lnp - tcp_rexmit_interval_initial for LNP

tcp_rexmit_interval_max   - Upper limit for computed round trip timeout

tcp_rexmit_interval_min   - Lower limit for computed round trip timeout

tcp_dupack_fast_retransmit - No. of ACKs needed to trigger a retransmit

TCP keepalives start after 2 hours of inactivity on a connection by default.
ndd –h tcp_keepalive_interval

Some network equipment (Load balancers, firewalls) may terminate an idle connection 
earlier than 2 hours….Usually just a TCP reset packet is received.



07/30/2002

32

32

IP/UDP/TCP Layer (cont)
• TCP connection teardown

– netstat –an | grep –E ‘CLOSED|FIN’  to see connections which 
are in the process of shutting down.

– Connections that linger in the CLOSED_WAIT state indicate a 
local process owning the port has not issued a close() call 
against the socket

– Likewise connections that linger in FIN_WAIT2 indicate that the 
node and the _other_ end of the connection is not closing his 
socket.

– Some connections can be terminated non- gracefully with a 
TCP RESET packet.  Typically the setsockopt() socket option 
enables so_linger, but sets the linger time value to zero.  This
will result in a RESET on the connection as soon as the socket 
is closed.

– Some network load balancers and firewalls will forcibly reset 
idle or problematic connections with RESET packets.

Important states to look for are CLOSE_WAIT on the server side and 
FIN_WAIT2 on the client side.  If they persist it implies the server side process 
owning the TCP port is not closing it’s socket….the question is why?

Either side can initiate the connection shutdown. The side that does, I am 
labeling the ‘client’ in this example.  The terms ‘client’ and ‘server’ are used in 
many different contexts.

The above connection diagram can differ depending on the use of the 
SO_LINGER socket option.  

System call Conn state

CLOSEDACK �

LAST_ACKTIME_WAIT

close()� FIN

FIN_WAIT2

� ACK

CLOSE_WAITlisten(lsd,backlog)FIN_WAIT1

FIN �close()

ESTABLISHEDESTABLISHED

System callTCP packetConn state

Server side programClient side program



07/30/2002

33

33

IP/UDP/TCP Tools - netstat

• netstat – show network status
– netstat –in

• IP interfaces configured
– netstat –rnv

• IP routing table
– netstat –s

• IP/UDP/TCP/ICMP/IGMP/ IPv6/ICMPv6 stats
– netstat –an

• transport AF_UNIX and AF_INET connection 
lists

netstat –in

netstat –rnv

netstat –s

netstat -an

Name Mtu Network            Address Ipkts      Opkts

lan1*         1500 10.10.30.0         10.10.30.28            318005     105508

lan0          1500 15.24.40.0         15.24.46.28           1373097     327999

lo0           4136 127.0.0.0          127.0.0.1              177261     177262

Dest/Netmask                    Gateway            Flags   Refs Interface Pmtu

127.0.0.1/255.255.255.255       127.0.0.1          UH        0  lo0        4136

10.10.30.28/255.255.255.255     10.10.30.28        UH        0  lan1       4136

15.24.46.28/255.255.255.255     15.24.46.28        UH        0  lan0       4136

15.24.40.0/255.255.248.0        15.24.46.28        U         2  lan0       1500

127.0.0.0/255.0.0.0             127.0.0.1          U         0  lo0           0

default/0.0.0.0                 15.24.47.253       UG        0  lan0          0

tcp:

381147 packets sent

267989 data packets (239228277 bytes)

48 data packets (2602 bytes) retransmitted

…and on and on with remain tcp, udp.up.icmp, etc  stats

Active Internet connections (including servers)

Proto Recv-Q Send-Q  Local Address          Foreign Address        (state)

tcp        0      0  127.0.0.1.49310        127.0.0.1.49226         ESTABLISHED

tcp        0      0  *.13                   *.*                     LISTEN

tcp        0      0  *.37                   *.*                     LISTEN

udp        0      0  *.13                   *.*

udp        0      0  *.518                  *.*

udp        0      0  *.514                  *.*

udp        0      0  *.*                    *.*



07/30/2002

34

34

IP/UDP/TCP Tools - arp

• arp – address resolution display and control
– arp –an

• display the arp cache using IP addresses 
instead of names.

– arp –d
• delete an arp cache entry, forcing ARP 

resolution on next reference
– arp –s

• add a static arp cache entry manually
• ndd –h | grep arp

arp –an

ndd –h | grep arp

# arp -an

(15.24.46.33) at 0:50:da:29:f8:33 ether

(15.24.46.27) at 0:30:6e:6:15:d3 ether

(15.24.47.253) at 0:60:83:41:90:1c ether

arp_cache_report          - Displays the ARP cache

arp_cleanup_interval      - Controls how long ARP entries stay in the

arp_defend_interval       - Seconds to wait before initially defending a

arp_redefend_interval     - Seconds to wait before defending a published

arp_resend_interval       - Number milliseconds between arp request

arp_announce_count         - Number of transmits used to announce a

arp_debug                  - Controls the level of ARP module debugging

arp_dl_sap                 - Set the SAP when ARP binds to a DLPI device

arp_dl_snap_sap            - The SAP to use for SNAP encapsulation

arp_probe_count            - Number of address resolution requests to make



07/30/2002

35

35

IP/UDP/TCP Tools - nettl
• network tracing and logging utility.

– nettl –ss | more to see configured subsystems
– ns_ls_ip   ns_ls_udp   ns_ls_tcp

• ‘-e all’ option traces all subsystems
– packets can be traced at every layer

• did it make it to the next layer?
• what was the latency between layers?

– Outbound packets are stamped with the kernel 
thread ID of the sending thread

– 99Mbyte max raw trace file for 11.0 more for 11.11+

For syntax/usage refer to the man page and the previous discussion in the Link 
Layer tools section.



07/30/2002

36

36

IP/UDP/TCP Tools - ndd
• The ndd command allows the examination and 

modification of several tunable parameters that 
affect networking operation and behavior.

– ndd –h | more for general list of tunables
– ndd –h <specific tunable> for detailed description
– /etc/rc.config.d/nddconf for tunables to set at startup 

time
– tunables vary from 11.0 to 11.11+
– tunables for IP, TCP, UDP, RAWIP, ARP, IPSEC, 

SOCKET

Some ndd commands (typically the ones labeled *_status) which dump large amounts of 
kernel information will have significant network performance impact.  Global transport locks 
are held while key data structures are dumped.  Most notably the ‘ndd –get /dev/tcp 
tcp_status’ command will halt all inbound traffic processing while the TCP fanout table is 
dumped….on systems with 2000+ TCP connections, this can mean a 5+ second network 
outage.

The ndd data returned is sent back via a single streams message.  The system tunable 
STRMSGSZ (default is 64k) may need to be increased to allow all data to be seen.

The first field of the tcp_status output is a  pointer to the tcp_t structure in the kernel.  The 
q4 utility can be used to dump this structure to get detailed info about the state of a particular 
TCP connection…including the LISTEN sockets.

Here’s an example of looking at the TCP LISTEN socket for inetd’s telnet port 0x17 or 23 .
The field in the square brackets [xx,xx] are the local and remote port numbers.

# ndd -get /dev/tcp tcp_status | grep LISTEN | grep 17,  

0000000100ea9068 000.000.000.000 045ce9d6 045ce9d5 00000000 00000000 00000000 00

000000 00000000 01500 00536 [17,0] TCP_LISTEN 

# q4 /stand/vmunix /dev/mem

q4> load tcp_t from 0x0000000100ea9068

loaded 1 tcp_t as an array (stopped by max count)

q4> print -tx > tcp_telnet_listen_port        To see all kinds of TCP info or…
q4> print -tx tcp_conn_ind_cnt   tcp_conn_ind_max

tcp_conn_ind_cnt  0     � How many conn’s we currently have waiting

tcp_conn_ind_max  0x14  � max of 20 inbound connections pending.



07/30/2002

37

37

IP/UDP/TCP Tools - ifconfig
• Configure or display network interface parameters

– ifconfig lan0 inet 15.24.46.28 netmask 255.255.248.0 up

– ifconfig lan0
lan0: flags=843<UP,BROADCAST,RUNNING,MULTICAST>

inet 15.24.46.28 netmask fffff800  broadcast 15.24.47.255

– ifconfig lan0:1 inet 15.24.46.29 netmask 255.255.248.0 up
# netstat -in | grep lan0

lan0:1        1500 15.24.40.0         15.24.46.29           34  0

lan0          1500 15.24.40.0         15.24.46.28      1430849  344305

Basic command used to add/display IP addresses to interfaces.   The above shows an example 
of a primary Ip and a secondary IP being added.

To disable the secondary IP use:
# ifconfig lan0:1 down

# netstat -in | grep lan0

lan0:1*       1500 15.24.40.0         15.24.46.29               125          0

lan0          1500 15.24.40.0         15.24.46.28           1430942     344386

To completely unplumb the IP address use:
# ifconfig lan0:1 0

# ifconfig lan0:1  

lan0:1: flags=842<BROADCAST,RUNNING,MULTICAST>

inet 0.0.0.0 netmask 0 

# netstat -in | grep lan0

lan0:1*       1500 none               none                      0          0

lan0          1500 15.24.40.0         15.24.46.28           1431053     344455

Note the * asterisk denotes a down IP interface

.



07/30/2002

38

38

IP/UDP/TCP Tools - route
• manually manipulate the routing tables

/usr/sbin/route [-f] [-n] [-p pmtu] add [net|host]   
destination [netmask mask] gateway [count]

/usr/sbin/route [-f] [-n] delete [net|host] 
destination

[netmask mask] gateway [count]

– adding network or host routes with altered path MTU
– override default gateway assignment for networks/hosts
– delete routes manually
– refer to netstat –rn to see current routing table entries
– ndd –h | grep ip_ire to see ndd tunables referring to routes.

# ndd -h | grep ip_ire

ip_ire_gw_probe           - Enable dead gateway probes

ip_ire_hash               - Displays all routing table entries, in the 

order searched when resolving an IP address.

ip_ire_status             - Displays all routing table entries

ip_ire_cleanup_interval   - Timeout interval for purging unused 

routing entries

ip_ire_flush_interval     - All routing entries deleted after this

interval, even active routes.

ip_ire_gw_probe_interval  - Probe interval for Dead Gateway Detection

ip_ire_pathmtu_interval   - Controls the probe interval for PMTU

ip_ire_redirect_interval  - Controls 'Redirect' routing table entries



07/30/2002

39

39

IP/UDP/TCP Tools - traceroute

• /usr/contrib/bin/traceroute

• Maps out the path through a network between 
two nodes.

• traceroute [ -m max_ttl ] [ -n ] [ -p base_port ] 
[ -q nqueries ] [ -r ] [ -s src_addr ] [ -t tos ] [ -v ] 
[ -w waittime ] host [ packetsize ]

Traceroute command attempts to send a UDP packet to the remote host by setting IP header's 
TTL(time to live) field to 1. Then, the adjacent router will generate ICMP TIME_EXCEED 
message.  Traceroute can measure the response time of this 1st hop router with this ICMP 
message. It sends the same packet for 3 times and prints each time's response.  Next, it sends the 
same UDP packet setting TTL to 2.  Then, the next hop router will generate ICMP 
TIME_EXCEED message.  Using this message, traceroute can measure the response time of the 
2nd hop router.   It repeats it for 3 times for the 2nd router again.  Traceroute will increment TTL 
and measure each router's response time in the same way.  Then, if the UDP packet reaches the 
final destination, it can generate ICMP PORT_UNREACH message since traceroute uses port 
numbers which are not likely to be used (33434, 33435, 33436. ..). The diagram below describes 
this behavior.

# ./traceroute wtc.cup.hp.com

traceroute to wtec.cup.hp.com (15.XX.XX.XX), 30 hops max, 40 byte packets

1  bl241g1.nsr.hp.com (15.XX.XX.XX)  0.697 ms  1.170 ms  0.588 ms

2  172.XX.XX.XX (172.XX.XX.XX)  33.579 ms  34.013 ms  34.226 ms

3  pagb02-legh2.americas.hp.net (15.XX.XX.XX)  34.872 ms  36.888 ms  35.660 ms

4  cugb01-p9-1-0.americas.hp.net (15.XX.XX.XX)  35.212 ms  34.513 ms  34.777 ms

5  cp4-gw2.cup.hp.com (15.XX.XX.XX)  34.469 ms  33.857 ms  34.446 ms

6  cp5-gw.cup.hp.com (15.XX.XX.XX)  34.424 ms  34.144 ms  34.204 ms

7 wtc.cup.hp.com (15.XX.XX.XX)  34.103 ms  34.622 ms  34.419 ms



07/30/2002

40

40

IP/UDP/TCP Tools - ping
• Send ICMP Echo Request packets to network host

– ping [-oprv] [-i address] [-t ttl] host [-n count]
– ping [-oprv] [-i address] [-t ttl] host packet-size [ [-

n] count]
• Used to check IP connectivity
• Used to probe response to differing packet size

– IP fragmentation check
• The –v and –p options

– useful for decoding the ICMP error messages 
routers may send in reply to you ping packet…

• path MTU updates, sourcequenches

# ping -v hpujrlz 
PING hpujrlz.jpn.hp.com: 64 byte packets 
92 bytes from 15.74.172.191: icmp_type=4 (Source Quench) 
x00: x4500005c 
x04: x00000000 
x08: xff015260 
x0c: x0f4aacbf 
x10: x0f4aacc0 
x14: x0400fbff 
x18: x00000000 
x1c: x45000054 
x20: xaf204000 
x24: xff015474 
x28: x0f4aacc0 
x2c: x0f4aacbf 
x30: x08005f54 
x34: x13a40000 
icmp_code=0
64 bytes from 15.74.172.191: icmp_seq=0. time=3. ms 
92 bytes from 15.74.172.191: icmp_type=4 (Source Quench) 
x00: x4500005c 
x04: x00000000 : : : : 

# ping -vp 5.5.5.1 1500 

PING 5.5.5.1: 1500 byte packets 

92 bytes from 15.74.172.191: icmp_type=3 (Dest
Unreachable) 

x00: x4500005c 

x04: xc8414000 

x08: xff013914 

x0c: x0f4aacbf 

x10: x0f4aaee3 

x14: x03046b37 | Type = 3 | Code = 4 | Checksum |

x18: x00000200 | unused = 0 | Next-Hop MTU |

x1c: x450005dc 

x20: xe4116000 

x24: xfe01aadb 

x28: x0f4aaee3 

x2c: x05050501

x30: x08006757 

x34: x0fd00000 icmp_code=4 

new Path MTU = 512 

1500 bytes from 5.5.5.1: icmp_seq=1. time=4. ms 

----5.5.5.1 PING Statistics----

2 packets transmitted, 1 packets received, 50% packet loss 

round-trip (ms) min/avg/max = 4/4/4 



07/30/2002

41

41

IP/UDP/TCP Tools - lsof
• List Open Special Files utility.

– Lists open files for every running process and 
where possible tries to map it to a meaningful file 
name/path or type

– Lists local and remote IP and UDP/TCP port 
numbers

– provides socket address pointers for AF_INET and 
AF_UNIX sockets

– shows what shared libs are mmap’ed in.
– cwd for the process
– Does not show kernel owned sockets…i.e. NFS

The latest distribution of lsof is available via anonymous ftp from the host vic.cc.purdue.edu. 
You'll find the lsof distribution in the pub/tools/unix/lsof directory. You can also use this 
http://ftp.cerias.purdue.edu/pub/tools/unix/sysutils/lsof

# ./lsof -n -p 16432

COMMAND   PID USER   FD   TYPE     DEVICE SIZE/OFF  NODE NAME

telnetd 16432 root cwd    DIR     64,0x3     1024     2 /

telnetd 16432 root  txt    REG     64,0x6    90112 10827 /usr/lbin/telnetd

telnetd 16432 root mem    REG     64,0x6    24576 13966 /usr/lib/libnss_dns.1

telnetd 16432 root mem    REG     64,0x6    45056 13967 /usr/lib/libnss_files.1

telnetd 16432 root mem    REG     64,0x6   135168   118 /usr/lib/libxti.2

telnetd 16432 root mem    REG     64,0x6   724992   120 /usr/lib/libnsl.1

telnetd 16432 root mem    REG     64,0x6    45056   165 /usr/lib/libnss_nis.1

telnetd 16432 root mem    REG     64,0x6  1044480 14006 /usr/lib/libsis.sl

telnetd 16432 root mem    REG     64,0x6    24576 13903 /usr/lib/libdld.2

telnetd 16432 root mem    REG     64,0x6  1843200 13855 /usr/lib/libc.2

telnetd 16432 root mem    REG     64,0x6   155648 13586 /usr/lib/dld.sl

telnetd 16432 root mem    REG     64,0x7      532 10909 /var/spool/pwgr/status

telnetd 16432 root    0u inet 0x4284c0c0 0t0   TCP 15.24.46.28:telnet->15.

24.46.33:1272 (ESTABLISHED)

telnetd 16432 root    1u inet 0x4284c0c0 0t0   TCP 15.24.46.28:telnet->15.

24.46.33:1272 (ESTABLISHED)

telnetd 16432 root    2u inet 0x4284c0c0 0t0   TCP 15.24.46.28:telnet->15.

24.46.33:1272 (ESTABLISHED)

telnetd 16432 root    3u   STR     32,0x1    0t101   499 /dev/telnetm->pckt->telm

telnetd 16432 root    4u unix     64,0x7      0t0 11326 /var/spool/sockets/pwgr

/client16432 (0x43710700)



07/30/2002

42

42

IP/UDP/TCP Tools – lsof (cont)
COMMAND   PID USER   FD   TYPE     DEVICE SIZE/OFF  NODE NAME

telnetd 16432 root cwd    DIR     64,0x3     1024     2 /

telnetd 16432 root  txt    REG     64,0x6    90112 10827 /usr/lbin/telnetd

telnetd 16432 root mem    REG     64,0x6    24576 13966 /usr/lib/libnss_dns.1

telnetd 16432 root mem    REG     64,0x6    45056 13967 /usr/lib/libnss_files.1

telnetd 16432 root mem    REG     64,0x6   135168   118 /usr/lib/libxti.2

telnetd 16432 root mem    REG     64,0x6   724992   120 /usr/lib/libnsl.1

telnetd 16432 root mem    REG     64,0x6    45056   165 /usr/lib/libnss_nis.1
telnetd 16432 root mem    REG     64,0x6  1044480 14006 /usr/lib/libsis.sl

telnetd 16432 root mem    REG     64,0x6    24576 13903 /usr/lib/libdld.2

telnetd 16432 root mem    REG     64,0x6  1843200 13855 /usr/lib/libc.2

telnetd 16432 root mem    REG     64,0x6   155648 13586 /usr/lib/dld.sl

telnetd 16432 root mem    REG     64,0x7      532 10909 /var/spool/pwgr/status

telnetd 16432 root    0u inet 0x4284c0c0 0t0   TCP 15.24.46.28:telnet->15.

24.46.33:1272 (ESTABLISHED)

telnetd 16432 root    1u inet 0x4284c0c0 0t0   TCP 15.24.46.28:telnet->15.

24.46.33:1272 (ESTABLISHED)

telnetd 16432 root    2u inet 0x4284c0c0 0t0   TCP 15.24.46.28:telnet->15.

24.46.33:1272 (ESTABLISHED)

telnetd 16432 root    3u   STR     32,0x1    0t101   499 /dev/telnetm->pckt->telm

telnetd 16432 root    4u unix     64,0x7      0t0 11326 /var/spool/sockets/pwgr

/client16432 (0x43710700)

q4 /stand/vmunix /dev/mem
q4> load struct socket from 0x4284c0c0

q4> print -tx | so_type so_options so_linger so_state

so_type  0x1

so_options  0xc

so_linger  0

so_state  0x82

q4> print -tx | grep so_q

so_q0  0

so_q  0

so_q0len  0

so_qlen  0

so_qlimit  0

q4> print -tx | grep buf

so_sndbuf  0xffff

so_rcvbuf  0xffff

See /usr/include/sys/socket.h for definition of types, flags and options fields.



07/30/2002

43

43

IP/UDP/TCP Tools - Glance
• GlancePlus system performance monitor for HP-

UX
• Useful screens…..

– Thread List
– Process syscalls
– Open files

• shows offset within files and file types/names
– Network by interface
– NFS global and by system 

• stats plus read/write rates for client and server
– Memory report

• buffercache size and pagein/out rates



07/30/2002

44

44

IP/UDP/TCP Tools - Glance
• Thread List screen

Recall that nettl stamps all outbound packet headers with the Kernel Thread ID 
(TID above) and you can specify this TID in the filter file used by the netfmt 
command to format the raw trace file.



07/30/2002

45

45

IP/UDP/TCP Tools - Glance
• Process syscalls

On the main global screen there is a softkey for ‘Select Process’ .  Once you’ve 
selected a process you can look at the process specific screens.

This screen is useful for spotting unusually high rates of a particular syscall or a 
syscall that is accumulating a lot of CPU time.  This data is typically used in 
conjunction with a tusc trace or application logfile to make sense of what the high 
call rate is due to.



07/30/2002

46

46

IP/UDP/TCP Tools - Glance
• Open files

If the lsof tool is not available, this screen can be used to map a processes File 
Descriptors to files/sockets.  It does not provide details of the type of socket or the 
IP/ports associated with it.  The tusc tool used with the verbose option will display 
the IP/port number information as well.



07/30/2002

47

47

IP/UDP/TCP Tools - Glance
• Network by interface

Unless you really want to use the netstat –in command and do the packet rate 
calculations manually, this is very useful for overall link throughput/utilization info.



07/30/2002

48

48

IP/UDP/TCP Tools - Glance
• NFS global and by system 

A good client or server wide view of NFS traffic rates and client side service times.  
It does not break it down into individual file systems mounted.



07/30/2002

49

49

IP/UDP/TCP Tools - Glance
• Memory report

Since buffercache can be fixed or dynamic, this is a quick way to see the exact 
usage.   NFS clients are limited to only using 25% of buffercache for NFS mounted 
file access.  As a result, any NFS copy/performance testing using large files needs to 
take this into consideration.  NFS client performance begins to drop off if the 25% 
limit is constantly being hit. 

The Page Out rates and the Deactivations indicate memory pressure.



07/30/2002

50

50

IP/UDP/TCP Tools - ttcp
• Test TCP (TTCP) is a command-line sockets-based 

benchmarking tool for measuring TCP and UDP 
performance between two systems. 

• simpler than netperf, UDP/TCP only
• public domain and copies avail at a number of 

anon ftp sites.
• typical usage:

ttcp –stp9  <host>
• sends 2048 8k buffers to TCP port 9 (inetd’s discard 

port) on target host.
• can be run in server mode if no discard port available

• No use of file system buffercache to skew results

Usage: ttcp -t [-options] host [ < in ]

ttcp -r [-options > out]

Common options:

-l ##   length of bufs read from or written to network (default 8192)

-u      use UDP instead of TCP

-p ##   port number to send to or listen at (default 5001)

-s      -t: source a pattern to network

-r: sink (discard) all data from network

-A      align the start of buffers to this modulus (default 16384)

-O      start buffers at this offset from the modulus (default 0)

-v      verbose: print more statistics

-d      set SO_DEBUG socket option

-b ##   set socket buffer size (if supported)

-f X    format for rate: k,K = kilo{bit,byte}; m,M = mega; g,G = giga

Options specific to -t:

-n##    number of source bufs written to network (default 2048)

-D      don't buffer TCP writes (sets TCP_NODELAY socket option)

Options specific to -r:

-B      for -s, only output full blocks as specified by -l (for TAR)

-T      "touch": access each byte as it's read

# ./ttcp -stp9 15.24.46.27

ttcp-t: buflen=8192, nbuf=2048, align=16384/0, port=9 tcp  -> 15.24.46.27

ttcp-t: socket

ttcp-t: connect

ttcp-t: 16777216 bytes in 14.18 real seconds = 1155.46 KB/sec +++

ttcp-t: 2048 I/O calls, msec/call = 7.09, calls/sec = 144.43

ttcp-t: 0.0user 0.0sys 0:14real 0% 0i+47d 25maxrss 0+1pf 512+7csw



07/30/2002

51

51

IP/UDP/TCP Tools - netperf
• Benchmark tool for unidirectional and end-to-end 

latency testing.    Test environments :
– TCP and UDP via BSD Sockets 
– DLPI 
– Unix Domain Sockets 
– Fore ATM API, HP HiPPI Link Level Access

• Client/server model – netperf & netserver
– netserver started via command lien or inetd
– two connections, control and test 

• http://www.netperf.org/netperf/NetperfPage.html

Running server side as a standalone daemon:
netserver -p portnum     Listen for connect requests on portnum. 
Or to have inetd invoke add this line to the /etc/services file:
netperf 12865/tcp 
Then add this line to the /etc/inetd.conf file:
netperf stream tcp nowait root /opt/netperf/netserver netserver 
netperf sample using defaults 
Default test is 10 seconds. The socket buffers on ether end will be sized at system defaults. 
All TCP options (e.g. TCP_NODELAY) will be at defaults. The simple test is performed 
by entering the following commands: 
on server system: (or have inetd configured) # ./netserver &
Starting netserver at port 12865 
on client system: 
# ./netperf -H 10.123.123.6 . 
TCP STREAM TEST to 10.123.123.6
Recv Send Send 
Socket Socket Message Elapsed 
Size Size Size Time Throughput
bytes bytes bytes secs 10^6bits/sec
32768 32768 32768 10.01 69.31
•If the test purpose is to investigate problems that arise from high latency of transport, 
driver, and card combinations, then NETPERF is the appropriate tool to use, especially the 
Request/Response group of Netperf tests, are suitable for this purpose; because such 
latency problems would be masked by large socket buffers. 
•Moreover, Netperf's DLPI tests are ideal for stressing the driver at a lower level, thus they 
can be used for testing Ethernet (or LAN Emulation). 



07/30/2002

52

52

IP/UDP/TCP Tools - ftp
• Quick and dirty.

– target file should be /dev/null to avoid disc/buffercache 
influence

– run multiple time so source file is (hopefully) in 
buffercache.

– Uses sendfile() system call.

– 64k socket buffer max, default 56k.

– ensure test file fits in buffercache

Guaranteed to be on every HP  system plus most other vendors with real operating 
systems.

Hash marks to observe packet retransmits etc.



07/30/2002

53

53

IP/UDP/TCP Tools – rcp/remsh
• quick and dirty
• target should be /dev/null to avoid 

buffercache File system usage
• There are –S –R socket buffer size options
• remshd launched by inetd at remote
• Data read from pipes is in 1024 byte chunks
• ndd tcp tunables for default socket size

– tcp_recv_hiwater_def    specifies the recv TCP 
window size used by default on the 
system…..don’t forget to restart inetd after 
changes

More buffer size flexibility than ftp, but if you’re going to bother with the –S –R 
options just go get ttcp.



07/30/2002

54

54

IP/UDP/TCP Tools –
sample socket programs
• /usr/lib/demos/networking/socket

– sample UDP/TCP client server source files
• sync and async models

• /usr/lib/demos/networking/af_unix
– local AF_UNIX socket equivalent of same client  

server programs

• /usr/lib/demos/networking/dlpi

Great for playing with various TCP/UDP socket options, TCP behaviors, hostname 
lookups,and investigating all kinds of ‘how does this really work’ scenarios.

Typically requires adding the ‘example’ service name to the /etc/services file.



07/30/2002

55

55

IP/UDP/TCP Tools – q4

• A dump analysis tool in /usr/contrib/bin 
which can also be used to look at kernel data 
structures live.  
– ndd commands give pointers to some key data 

structures
– used when command line tools do not provide 

enough detail
– Many perl scripts included to help dump various 

kernel data structures
• /usr/contrib/lib/Q4

– Typically used by the RC/WTEC/Labs

Q4 is intended primarily as a dump analysis tool, but can be used on a live system.  A few 
simple tasks that provide useful info:
Get a look at a the kernel stack trace for processes:
q4> load struct proc from proc_list next p_factp max 3000

loaded 139 struct procs as a linked list (stopped by null pointer) 
q4> print –tx > proc_structures.out
q4> trace –u pile > proc_stacktrace_with_args.out
q4> trace –v pile > proc_stacktrace_with_stkptrs.out
q4> trace pile  > proc_stacktrace_plain.out
Select one process to look at in more detail:
q4> keep p_pid == 740
kept 1 of 139 struct proc's, discarded 138
q4> load struct kthread from p_firstthreadp next kt_nextp max 40
loaded 3 struct kthreads as a linked list (stopped by null pointer)
q4> print -tx | grep last

kt_lastrun_time  0x6d64fd
kt_lastrun_time  0x6d6503
kt_lastrun_time  0x6d64ff

q4> ticks_since_boot
033745712       7326666 0x6fcbca        tick = 0.010 seconds usually



07/30/2002

56

56

NFS client/server
• typical performance related issues

– Biod tuning
– number of nfsds
– PV3 vs. PV2   TCP vs UDP
– Automount (legacy vs. autofs) 

• autofs and LOFS
– Buffercache
– HPUX 11.0 vs. 11.11 and beyond

• Tools
– nfsstat, nettl, rpcinfo, deamon logging  AND….
– Session Number 001  - NFS Performance Tuning for HP-

UX 11.0 and 11i Systems  by Dave Olker
– Optimizing NFS Performance: Tuning and 

Troubleshooting NFS on HP-UX Systems
by David Olker

The biods are the processes that handle the client read/write requests and mange the 
read-ahead function.  How many to use and how efficient/fair they are in serving client 
requests is completely dependant on the client read/write usage profile.

The number of nfsds is less critical…just have enough of them  There are cases where 
adding more will just end up with more waiting on the same resource, adding to 
contention for that resource…i.e., all nfsds accessing files in a huge directory waiting for 
the directory inode lock.  the ps –elf | grep nfsd will show a common wait channel.

Be aware of PV2 and PV3 read/write size differences, async vs sync differences, and 
the transports used.

Automount maps…direct=good, indirect=ok,  hierarchical=easy/lazy/bad. Inactivity 
unmount timer setting should be raised from 5minute default unless maps change 
frequently.

Buffercache is a concern for HPUX client code primarily.  For a pure NFS server, 
more buffercache is better.  the NFS client code will limit itself to 25% of buffercache.  
Due to this, the tendency is to increase buffercache size for the client-sides sake, there is 
significant overhead incurred in some of the client-side buffercache management 
routines.  It’s a try-and-see iterative balancing act.

HPUX 11.0 NFS client code makes extensive use of the File System Alpha 
semaphore and can be a performance/scalability bottleneck.  HPUX 11.11+ has replaced 
this with multiple spinlocks.  This has greatly improved client performance and 
scalability on HPUX 11.11+.

http://h21007.www2.hp.com/dspp/files/unprotected/devresource/Docs/Presentations/
NFSperf.pdf
An excellent reference for this vast subject.



07/30/2002

57

57

Socket/Application Layer 
• Common problems

– Server/Listener performance
• External influences

– DNS/NIS problems for example
– multiprocess vs. multithreaded
– Connection management
– Where is this process spending its time?

• Tools
– Netstat, nettl
– Tusc, lsof, ps, glance
– Application logging
– Sample socket code

Some of these tools have been previously discussed, but they will be mentioned 
here again with specific reference to features that can be useful in the 
socket/application layer troubleshooting.



07/30/2002

58

58

Socket/Appl Layer (cont)
• Server/Listener Performance

– socket()  bind()  listen()  accept()*  select()*
– any work the listener does prior to going back to the 

listen socket for another accept/select attempt can 
impede performance….that includes fork() and the 
handoff of the new connection to a child process

• authentication (gethostbyaddr(), getpwnam(),  DNS, 
NIS)

• IPC mechanisms to another slow-as-mud process
• other socket connections made

– Listen backlog queue size
• maximum accept() rate?
• ndd –get /dev/tcp tcp_conn_request_max
• netstat –sp tcp | grep ‘full queue’
• on client netstat –an | grep SYN_SENT

– Glance process syscalls screen for listen process
– nettl trace of traffic to/from listen port

Some of these tools have been previously discussed, but they will be mentioned 
here again with specific reference to features that can be useful in the 
socket/application layer troubleshooting.

Typically a multiprocess model will do non-blocking accept()s with select() to 
check for a readable listen socket…a new connection.  It forks a child process to do 
the accept(), and returns to the accept()/select() polling loop.

See sample server.tcp.c code in /usr/lib/demos/networking/socket.

System tunable maxfiles and maxfiles_lim can be hit when large number of 
connections are being created

Tools for observing the listen process to see what it’s up to:
tusc, glance, nettl, and the listen processes own application level logfile which had 
better be there or you need a rebate from the developer for the incomplete job 
he/she/it did for you.

tusc – Trace Unix System Call.  A wonderful utility to trace process system calls 
with arguments, call timing, return values, etc.  Invaluable.

Debugging is almost always best done at the highest layer possible.



07/30/2002

59

59

Socket/Appl Layer (cont)
• Connection management 

– after the accept() who/what handles the client transactions and 
what do they spend their time doing.

• ask the developers first
• then use tusc, glance, and application logging to see if it 

looks even remotely like what they described.
– socket options for send/recv buffer sizes tuned to link 

topology and data profile
• bulk one-way data xfer or small bidirectional exchanges.  

Link bandwidth and latency.
– connection close

• shutdown() can be for read, write, or both
• SO_LINGER socket option used?
• nettl tracing can show latencies not obvious at the 

application level.
• close() on a socket does not always mean the TCP 

connection has terminated gracefully.

The goal here is to identify what the application/processes are suppose to be doing, 
then use tools to trace/time/profile where the time is being spent.

If a critical area of behavior is suspect, it is sometimes possible to use the sample 
socket code in /usr/lib/demos/networking/socket to simulate the key mechanisms 
and simulate the problem outside a production environment.



07/30/2002

60

60

Socket/Appl tools - netstat
• Connection states via netstat -an

– SYN_SENT
• trying to contact remote host….either host is not up 

or the listen queue is full….otherwise you would have 
seen a RESET packet

– ESTABLISHED
• normal state for active TCP connection

– CLOSE_WAIT
• FIN received from remote end and waiting for local 

process owning the port to issue a close.
– FIN_WAIT2

• FIN sent to remote, and ACK’ed, but remote process 
has not closed his end of connection…the partner 
state to CLOSE_WAIT on the remote host.

– TIME_WAIT
• 60 second state after both ends close gracefully

Used in conjunction with lsof to find processes owning connections of interest.  
Once local process owning port is ID’ed tusc or glance can be used to see what it is 
doing.
Then the application developer can tell you why it is doing it.



07/30/2002

61

61

Socket/Appl tools - nettl
• Trace and filter by IP address or UDP/TCP 

port number or sending kernel thread ID.

– used to see the transport view of a client/server 
transaction/traffic.

– will show TCP potions being set that reflect socket 
calls such as specifying the recv socket buffer size.

– will show flow control at TCP layer to indicate 
application level timeliness of reading from recv 
socket buffer.

A prime example of nettl offering a little different view of things is the case of the 
client SYN packet being accepted immediately by the transport, and the client 
starting to send data….this can happen immediately yet it does not mean the listener 
has done the accept() yet.  A listener side logging mechanism may not show any 
latency in such a connection, but to the client, it sees the entire delay. 



07/30/2002

62

62

Socket/Appl tools - tusc
• Trace unix System Call  

– traces process syscalls
– follows forks and threads
– wall clock time and kernel syscall times provided
– verbose mode decodes most syscall arguments in detail
– select masks, socket IP/port info, semop args
– shows all shared libs being mmap’ed in
– can trace multiple PID’s
– Does affect performance…a bunch

• The single most powerful tool for application debugging 
next to application logging.

• Latest version is 7.3

http://ftp.au.freebsd.org/pub/hpux/Sysadmin/tusc-7.3 or any freeBSD.org mirror ftp site

Since many services (telnet, remshd, etc) are forked from inetd (the listener) to trace such 
processes you will need to trace the inetd process with the ‘-f’ option which follows the 
process forks.
ps -ef | grep inetd

root 27708 22348  1 08:47:22 pts/tb    0:00 grep inetd

root 22862     1  0 04:05:19 ?         0:00 inetd

# /tmp/tusc -flv -ccc -T "" -o /tmp/tusc.out 22862

<cntl-C>

( Detaching from process 27729 ("login -h c2410c33.nsr.hp.com -p") )

( Detaching from process 27728 ("telnetd") )

( Detaching from process 22862 ("inetd") )

# 



07/30/2002

63

63

Socket/Appl tools - tusc
( Attached to process 22862 ("inetd") [32-bit] )
1027349371.048254 {650884} <0.000000> select(35, 0x7f7f08d0, NULL, NULL, NULL) [

sleeping]

readfds: 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34

writefds: NULL

errorfds: NULL

1027349385.649931 {650884} <0.000109> select(35, 0x7f7f08d0, NULL, NULL, NULL) =

1

readfds: 6

writefds: NULL

errorfds: NULL

1027349385.650604 {650884} <0.000163> accept(6, NULL, NULL) = 35

1027349385.651985 {650884} <0.000031> getpeername(35, 0x7f7f09d0, 0x7f7f09ec) =

0

*fromlen: 16

sin_family: AF_INET

sin_port: 3561

sin_addr.s_addr: 15.24.46.33

1027349385.652323 {650884} <0.000045> stat("/var/adm/inetd.sec", 0x40004738) = 0

- skipping forward a bit -

1027349385.655274 {650884} <0.000864> fork() ............. = 27728 {656254}

1027349385.655422 {656254} <-0.000000> fork() (returning as child ...) = 22862 {

650884}

- skippping forward  a bit -

1027349385.692340 {656254} <0.001165> execve("/usr/lbin/telnetd", 0x4000aff0, 0x

7f7f055c) = 0 [32-bit]

Color code –

Wall clock time

Kernel TID

System CPU time

Syscall with args

Return value

verbose call detail

Syscall trace entries are written to the output file at syscall completion time.  the ‘ –E’ option 
will log a trace file entry upon syscall entry and exit.  Without the –E option, it is hard to 
know what wall clock time was due to user space CPU time vs. system call duration.  For 
non-blocking system calls, the system cpu time provided will be the bulk of the wall clock 
time for that syscall.

Application logging is often the only way to know for sure what is being done in user space 
without attaching with a real debugger live and trying to extract a stack trace from the 
process.

Having source code for the process being traced is a _big_ help in understanding exactly 
what’s going on.



07/30/2002

64

64

Socket/Appl tools - lsof
• List Open Files

– finds every running process, maps out the open file 
descriptors and displays details.

– shows cwd, mmap’ed file, regular files, sockets
• resolves questions about which shared libs were 

really used
– displays IP/UDP/TCP port info for AF_INET sockets
– displays struct socket ptr for every socket…AF_INET 

and AF_UNIX
– displays partner AF_UNIX stream socket addr 

• you can see which two processes own opposite 
ends of the AF_UNIX stream socket connection.

– used to help map tusc data to process files
• tusc doesn’t always trace the open of a file and 

hence cannot provide the name

# ./lsof -n -p 22862 | more

COMMAND   PID USER   FD   TYPE      DEVICE SIZE/OFF  NODE NAME

inetd   22862 root cwd    DIR      64,0x5     3072     2 /tmp

inetd   22862 root  txt    REG      64,0x6    65536 22253 /usr/sbin/inetd

inetd   22862 root mem    REG      64,0x6    16384 14017 /usr/lib/libstraddr.1

inetd   22862 root mem    REG      64,0x6    45056 13967 /usr/lib/libnss_files.

1

inetd   22862 root mem    REG      64,0x6    45056   165 /usr/lib/libnss_nis.1

inetd   22862 root mem    REG      64,0x6   135168   118 /usr/lib/libxti.2

inetd   22862 root mem    REG      64,0x6   724992   120 /usr/lib/libnsl.1

inetd   22862 root mem    REG      64,0x6   282624 13948 /usr/lib/libm.2

inetd   22862 root mem    REG      64,0x6   151552 14001 /usr/lib/libsec.2

inetd   22862 root mem    REG      64,0x6    24576 13903 /usr/lib/libdld.2

inetd   22862 root mem    REG      64,0x6  1843200 13855 /usr/lib/libc.2

inetd   22862 root mem    REG      64,0x6   155648 13586 /usr/lib/dld.sl

inetd   22862 root    0r   DIR      64,0x3     1024     2 /

inetd   22862 root    1r   DIR      64,0x3     1024     2 /

inetd   22862 root    2r   DIR      64,0x3     1024     2 /

inetd   22862 root    3u  FIFO  0x41d5d048      0t0   201

inetd   22862 root    4u inet  0x426d2280      0t0   UDP *:50474 (Idle)

inetd   22862 root    5u inet  0x41f5d4c0      0t0   TCP *:ftp (LISTEN)

inetd   22862 root    6u inet  0x41f5d640      0t0   TCP *:telnet (LISTEN)



07/30/2002

65

65

Socket/Appl tools – ps -elf

• Maps process names to pids for cross 
reference with other tools

• The wait channel
– address/token passed to sleep()/sleep_one()

• The proc structure address
• incore memory  image size

– data, text, stack 
• total CPU execution time

It’s handy to have a ps –elf listing(s) when other tools are used since process names 
are not always available and the processes themselves are transitory. 



07/30/2002

66

66

Socket/Appl tools - glance
• Screens of interest for application level troubleshooting

– process syscalls
• looking for excessive/unusual syscall counts/rates
• looking for unusual CPU time associated with a particular 

syscall
– process resources

• context switches –forced vs. voluntary
– Wait states

• pipe, socket, stream, rpc
– memory regions

• RSS VSS and mmap’ed regions
– Open files

• names, types, open modes, offsets
– Thread list

• cross referencing for nettl 

If the process syscalls indicates an unusual rate or count of a particular syscall you 
can always use tusc to get more detailed information.

Memory allocation requests can be tracked by looking at the ‘brk( )’ system call 
with tusc.  The brk( ) syscall is used to extend the process data stack area.

Open files screen is the next best thing to lsof.



07/30/2002

67

67

Socket/Appl Tools - Glance
• Process syscalls

On the main global screen there is a softkey for ‘Select Process’ .  Once you’ve 
selected a process you can look at the process specific screens.

This screen is useful for spotting unusually high rates of a particular syscall or a 
syscall that is accumulating a lot of CPU time.  This data is typically used in 
conjunction with a tusc trace or application logfile to make sense of what the high 
call rate is due to.



07/30/2002

68

68

Socket/Appl Tools - Glance
• Process Resource

The items of interest here are the CPU utilization, Context switching, RSS/VSS, 
logical/physical read  counts.  Knowing what is ‘good’ or ‘bad’ depends largely on 
the application, but in general forced context switches mean you’re being a cpu hog 
and consuming your 10ms time slice, or are returning from a system call and 
another higher priority process is waiting. 



07/30/2002

69

69

Socket/Appl Tools - Glance

Network related wait states are:
Pipe – Pipes (Non-streams based) are 8k in size and can block if data is being piped 
to a network connected process.  The command ‘dd if=/dev/rdsk/bigdisc bs=64k | 
remsh target node dd of=/dev/rmt/0m bs=64k’ will read from the raw disc in 64k 
read() calls, write it to the pipe, the stdin for the remsh reads in 1k increments, and 
sends it over the TCP connection to the target node’s stdin for the dd process.  A 
tape problem on the target node, would likely flow control off (TCP window of 
zero) the TCP connection.  The remsh process would show blocked on socket, while 
the sending dd process would be blocked on pipe.

RPC – blocked waiting for a reply from an RPC program

Socket – blocked on a read or write of a socket FD.

Stream – blocked on getmsg() or putmsg() call on a Streams connection.  The libxti 
library routines open /dev/udp and /dev/tcp streams based driver device files 
directly.  Plus many other places in the kernel will be blocked on some portion of a 
stream connection. 



07/30/2002

70

70

Socket/Appl Tools - Glance
• Memory Regions

A more detailed view of a processes memory resource usage…if DATA memory 
size is 1.5 Gigs and growing, you might have a memory leak :0



07/30/2002

71

71

Socket/Appl Tools - Glance
• Open files

If the lsof tool is not available this is the next best thing.  In the example above there are no 
AF_INET  or AF_UNIX sockets open, but you do see the /dev/udp and /dev/tlc*  files 
open…these are network connections opened via calls to the libxti.2 shared library.   The 
Glance openfiles screen does not label all the mmap’ed files, but the lsof tools does:

#lsof -p 740 | grep mem

automount 740 root mem    REG      64,0x6    24576 13966 
/usr/lib/libnss_dns.1

automount 740 root mem    REG      64,0x6    16384 14017 /usr
(/dev/vg00/lvol6)

automount 740 root mem    REG      64,0x6   147456   111 
/usr/lib/libpthread.1

automount 740 root mem    REG      64,0x6   135168   118 /usr/lib/libxti.2

automount 740 root mem    REG      64,0x6   724992   120 /usr/lib/libnsl.1

automount 740 root mem    REG      64,0x6    36864 13991 /usr
(/dev/vg00/lvol6)

automount 740 root mem    REG      64,0x6  1843200 13855 /usr/lib/libc.2

automount 740 root mem    REG      64,0x6    24576 13903 /usr/lib/libdld.2

automount 740 root mem    REG      64,0x6   155648 13586 /usr/lib/dld.sl



07/30/2002

72

72

Socket/Appl tools – logging
• Debugging is almost always best done at the highest 

layer possible.
– analyzing a network trace is often akin to looking at footprints

in the sand and trying to tell what color hat the guy was 
wearing…

• Multiple levels of detail
– assuming more detail means a larger impact on appl 

performance
• If you’re going to bother to log a message, make it 

meaningful.
– where in the code
– timestamp in sufficient granularity
– system errno and appl error together

• Dynamic enabling of logging
– implemented as a signal handler

Many of the NFS RPC daemons use SIGUSER2  signal ( kill –17) to toggle verbose 
logging with default logging locations….very handy.

Don’t print a message that says ‘recv on pipe’ if you are really reading data via 
shared mem, and semops



07/30/2002

73

73

Socket/Appl tools – sample 
socket source code

• /usr/lib/demos/networking/socket
– AF_INET sockets
– async and sync models
– UDP and TCP cleint and server code samples

• Server code is multiprocess

• /usr/lib/demos/networking/af_unix
– AF_UNIX sockets  (local system IPC)
– datagram and stream models

• Easy to read/hack and compile

The client and server AF_INET socket code provides sample usage for:

gethostbyname()
getservbyname()
getsockname()
socket()
connect()
send()
sendto()
recv()
recvfrom()
shutdown()
fork()
bind()
listen()
accept()
setsockopt()



07/30/2002

74

74

Case study #1
• Socket application…poor performance

– Single process/single threaded
– This application takes client requests to verify/change access to 

NFS mounted files and directories which the client will then 
accesses via NFS.

– The server also accesses these files via NFS
– Accept loop, queue processing loop
– Tools used

• Glance
– Process syscalls

» getmount_entry() and stat()  syscalls high.
• Tusc

– Delta time from accept() to recv()
– Number of getmount_entry() calls
– Duration of getmount_entry() calls.

• Matching up with application source with tusc data
– getmount_entry() calls….where are they all coming from?

The single threaded process was falling behind in processing client requests.  
The clients had a timeout/retry algorithm that caused the server to do the work only 
to find the clients tcp connection had been closed when it timed out.  The snowball 
was starting to roll downhill….

A modest number of new clients were added recently, but it was ‘felt’ that the 
server should be able to keep up.  In reality it looked like a response-time cliff had 
been reached and the additional client load had pushed us over the edge.

The developers explained the basic design:
Select/accept new connections, put their request in a queue, when no more 

pending connections, go into processing loop to handle the queued requests (no 
laughing please).  When the requested file/dir permission change has been 
accomplished, reply to the client, and go process the next request.  When all queued 
requests are processed, go back to the select/accept loop.

They had tested the client connection handling in the past but were now seeing 
request handling times five times higher than expected.    

So what was this server process spending its time doing?



07/30/2002

75

75

Case study #1 (cont)
• Socket application…poor perf. (cont)

– Application call to getcwd() ID’ed
• Use of sample socket code to write a small 

piece of code to do getcwd() and use tusc
to verify the getmount_entry() behavior.

• Getmount_entry() aquires the Filesystem sema
• The libc interface to getcwd() results in 2 calls

for every mount entry by design, doubling the 
exposure to Filesystem sema contention.

– Resolution
• attempt to keep track of cwd and minimize calls to 

getcwd()
– Epilogue  - It sure looked like a network problem….

To find out where this process was spending its time a tusc trace was taken.
The time from accept() to close() for the socket connection was timed at 160ms.
The bulk of the time was spent doing many repeated getmount_entry() calls and 
subsequent stat() calls against those mount points.  Not every request resulted in the 
getmount_entry() call flood.
This matched the basic description  the developer gave for the design…he said they 
open and read the /etc/mnttab file to see if the requested path is even mounted. Then 
go through every mount entry stat’ing it and seeing if it’s still alive…remember 
these are NFS mounted file systems.  If, so the permissions and ownership are 
changed and the reply sent back to the client. 
It was assumed the way they were reading the /etc/mnttab file was the cause of the 
getmount_entry() system calls….not so.

They said they were doing setmntent() and then repeated getmntent() libc calls.  To 
see if indeed this was the cause, we wrote a small piece of code to do exactly that.  
No getmount_entry() calls were made.  They then looked in their code and saw that 
for some types of requests, they made a getcwd() call just prior to the setmntent() 
and getmntent() loop.

Upon further investigation, the libc routine getcwd() is the one doing all the 
getmount_entry() calls.  It also does so holding the filesystem semaphore.



07/30/2002

76

76

Case Study #2 
• Another Socket app perf problem

– Parts of listener process are serialized
– Listener select()/accept()’s, makes another socket connection to

another local process for authentication purposes, which in turn
makes another connection to a different logging daemon.  When the 
calls return, a child process is forked to handle the remainder of the 
work.  Listener goes on the next select()/accept().

– Tools used
• netstat –an | grep SYN_SENT
• tusc

– Look for periods of inactivity in syscalls or syscalls of long duration.
» Close( ) syscall for the socket would occasionally take 2.5 

seconds when normally it would complete is < 1ms.
• nettl tracing at IP and TCP layers

– The socket was local…ie. Through loopback.  At IP we see the last FIN 
packet being retransmitted, and the TCP level trace never showed
it…it was, in effect, lost.

The netstat-an command showed a large number of local TCP connection going 
through loopback, but in the SYN_SENT state.  Since this is loopback and we know 
the host is up and listening on the port, the only reason for this was a full listen 
queue.  This was indeed the case as verified by looking and the kernel socket 
structure for the socket.

The response time from the main listener process was slow and erratic, as measure 
from accept() to the first reply of data to the client via the send() syscall.

Again the question is ‘what is this process spending it’s time doing?’.

We ran tusc on the main listener as well as the two other pertinent processes and 
spotted an intermittent close() syscall on a socket that was delayed for 2.5 seconds.  
During this period the process was blocked.  Why?  The socket accepted had a 
setsockopt() call made to set so_linger which would delay the close() from returning 
until the TCP connection had completely shutdown.
A nettl trace of the ns_ls_ip and ns_ls_ip layer was taken.  A loopback connection 
should shutdown gracefully with no delays.



07/30/2002

77

77

Case study #2 (cont)
• Socket appl perf problem (cont)

– Implication of delayed close() syscall
– A socket close()  should complete immediately for the caller 

unless the SO_LINGER flag is set via setsockopt().
– tusc verified that indeed the SO_LINGER option was being set.

– Root cause and workaround
– A race condition inside the Streams based transport was causing 

the FIN packet to be lost and retransmitted. (now resolved with 
current ARPA patches)

– The application was modified to remove the SO_LINGER option 
for loopback connections, while they waited for the GR ARPA 
patches containing the fix. 

The second FIN in the three-way shutdown ( FIN� � FIN/ACK    ACK� )   was 
being dropped between IP and TCP, causing a retransmission timer to pop, and a 
delay of the close.  Loosing packets on a loopback connection is not suppose to 
happen.



07/30/2002

78

78

Case study #3
• Poor http performance through firewall

– Load balancing equipment for http traffic load.
– The HP Firewall seems to have a consistently higher connection 

count at all times compared to other HW vendors running the 
equivalent Firewall product, thus the Load Balancer sends more 
traffic to the other Firewalls resulting in ‘low connection handling’ 
rates on the HP.

– http daemons are mutliprocess and multithreaded
– Tools used

– Tusc
» Syscall trace of thread interaction 

and connection handling
– Nettl

» Trace connection setup 
and teardown filtered by 
kernel threadID

– httpd daemon log files.
» What the httpd thinks

it’s doing.

Firewalls www

Load balancer

http clients



07/30/2002

79

79

Case Study #3 (cont)
• Poor http performance thru Firewall

– nettl was used to watch a typical connection from start to 
finish.   Inconsistent connection times noted…some fast, some 
slow.  

• Connection termination was non-graceful… TCP reset 
packets.

– httpd daemon logs gave no indication of errors other than 
failing to perform some name lookups…DNS

– tusc was used to trace the threads of on of the ten httpd 
daemons.

• all threads seemed to be waiting (ksleep() syscall) on a 
resource/lock held by another thread within the same 
process.

• Backtracking the thread that released the resource (it was 
the one making kwapeup() calls) it appeared to be doing 
DNS queries.

– open of /etc/nsswitch.conf
– sendto() calls etc. to port 53



07/30/2002

80

80

Case Study #3 (cont)
• Poor http performance thru Firewall – resolution

– The tusc data pointed to DNS calls made via gethostnyname() 
as the source of the thread mutex lock/resource contention.

– Code inspection of the libc.1 and libnsl.1 library routines 
showed that the resolver routines they were using had a mutex 
lock to single thread all DNS queries for threads within a single 
process….a legacy protection from days when DNS resolver 
routines were not thread safe.  A patch for libnsl.1 removed this 
unnecessary mutex lock.

– sample threaded socket code was written to test/verify the 
mutex lock behavior.

– With this intermittent hold up of connection processing 
removed, the connection ‘handling rate’ outperformed the 
competition’s HW running the same firewall product by 20%



07/30/2002

81

81

Case Study #4
• Slow database response at top of hour

– 1000+ remote hosts connecting to database at top of 
hour…exactly, in unison, at top of hour

– multiple userspace threads with single process design
– one thread doing NBIO select() and then accept() on 

listen socket plus a few other semop & sendmsg calls
– other threads perform remaining work
– uses semop and sendmsg for IPC to other processes
– client connect times from 25ms to 90 seconds

• Tools used
– netstat –an
– nettl tracing at IP layer filtered on TCP listen port 
– tusc tracing of listen process

The general investigation approach was to us tusc on the listener process to see how 
quickly he was handling the incoming connections.  Then map out where he was 
spending his time and, using average execution times for each phase/step, go 
hunting for any events/trace entries that differed greatly from the average.  



07/30/2002

82

82

Case Study #4 (cont)
• Slow database response at top of hour

– verifiy the listen backlog queue was large enough

– trace the connection handling loop to see where it is 
spending its time.

– synchronize the developers view of how it “should be” 
working with how the tusc data says it “is” working.

• resolution
– the semop calls used to signal another process where 

not ‘suppose to’ be blocking, but due to an error in 
porting an old fix forward to HP-UX, the semop call did in 
fact sleep.  The correct semop syntax was used and all 
1000+ connection completed in 30-40 seconds

The listen() syscall was requesting a fairly large backlog queue, but the transport 
silently imposes it’s own limit based on the ndd tunable 
tcp_conn_request_max…….which was at the default of 20.

We increased the tcp_conn_request_max to 1024 and then the client TCP 
connections would at least all go to the  ESTABLISHED state…netstat –an  would 
show them all connected.

The tusc data for the listener process indicated that a typical client connection could 
be performed in 25ms, or about 40 per second on average.  

Further investigation of the tusc trace for the slow connect cycles showed 15-
3000ms of that time was spent in one semop call used to signal another process 
thread to handle the new connection.  The developers said this semop call should 
NOT be blocking, but it obviously was.

The other platforms this database ran on did not experience this performance delay 
because a fix involved in making these semop calls not block was not correctly 
ported to HP-UX.  The tusc data forced them to double check the source.



07/30/2002

83

83

Case study #5
• Database client program fails to connect to 

database if database is not on the local host.
– In both case AF_INET sockets are used, so whether 

the database is local (accessed via IP loopback) or 
remote, the calls to connect to the database are the 
same.

– Older rev of client program has no problem
• Tools used:

– tusc
– nettl
– client application log files

This was a 10.20 to 11.0 porting effort that failed outright for 11.X if the database 
accessed was on a remote node.

The application level log file simply showed a time out event when the remote 
database was opened.



07/30/2002

84

84

Case study #5 (cont)
• Database client program fails to connect to database if 

database is not on the local host.
– We first ran a nettl trace at the ns_ls_ip layer to trace the 

working and non-working scenarios
• local TCP connection looked fine:

– SYN �
– � SYN/ACK
– ACK �

• remote TCP connection did not…it looked like:
– SYN �
– � SYN/ACK
– RESET �

– Then we used tusc to watch the syscalls involved in the 
failing case

• The connect FD was set to non-blocking, and indeed 
the connect() syscall was getting 
EINPROGRESS…then it immediately closed the 
connect FD….not good.

– Resolution…correct error handling code put in place

The tusc trace showing the failing connect:

1027621190.090693 [27747]{1293} #6 <0.000212> socket(AF_INET, SOCK_STREAM, 0) ........ = 9

1027621190.091067 [27747]{1293} #6 <0.000087> bind(9, 0x7f5cf584, 16) ................ = 0

Family: AF_INET

Port: 0

Addr: 0.0.0.0

1027621190.091486 [27747]{1293} #6 <0.000057> fcntl(9, F_GETFL, 0) ................... = 2

1027621190.091835 [27747]{1293} #6 <0.000037> fcntl(9, F_SETFL, 6) ................... = 0

1027621190.092258 [27747]{1293} #6 <0.000167> connect(9, 0x7f5cf56c, 16) ............. 
ERR#245 EINPROGRESS

Family: AF_INET

Port: 23301

Addr: 1XX.1XX.56.213

1027621190.092848 [27747]{1293} #6 <0.000359> close(9) ............................... = 0

The resolution was to correct the logic that was incapable of understanding and dealing with the 
EINPROGESS return on the non-blocking connect( ) call.


